The present invention relates to plastic bags for storage such as food storage bags and particularly to milk storage bags having an expandable bottom that allows them to stand up without external support.
Commercially available stand-up plastic storage bags for storing food products and especially for storing milk with freezer capability include bags having an expandable bottom gusset. This gusset allows the bag to stand upright in preparation for filling, when filled, when stored in a freezer; while also having a flat conformation when empty so that it can be stored flat and in an efficient stack when empty.
U.S. Pat. No. 4,837,849 shows a stand-up plastic storage bag which has three layers including an exterior preferably nylon layer, an interior preferably polyethylene layer, and a glue layer therebetween. The nylon layer is stated to have a high modulus and high heat distortion resistance to improve hot liquid stand-up stability.
U.S. Pat. No. 8,303,182 shows a plastic bag with a bottom reinforced by lateral ridges.
It is therefore an object of this invention to provide a plastic storage bag with a gusseted bottom that is reinforced to enhance the bag's stand-up stability, tear-resistance, and freeze tolerance. It is another object to provide such a plastic storage bag which has monolayer major panels, and a monolayer gusset floor reinforcement layer. And it is a further object to provide such a plastic storage bag which is free of gusset area and bottom area reinforcement ribs, which present extrusion challenges and initiation sites for formation of leaks and tears.
Briefly, therefore, the invention is directed to a stand-up plastic food storage bag, comprising a front panel, a rear panel, and a bag mouth at top edges of the front and rear panels; a front bottom gusset wall and a rear bottom gusset wall disposed between the front and rear panels at the bottom of the front and rear panels; a folding seam defining abutment of the front bottom gusset wall to the rear bottom gusset wall; a front bottom gusset wall reinforcement layer on an external surface of the front bottom gusset wall, and a rear bottom gusset wall reinforcement layer on an external surface of the rear bottom gusset wall; and wherein the bottom gusset wall reinforcement layers terminate at least about 0.25 cm away from the folding seam defining abutment between the bottom gusset walls and the bottom gusset wall reinforcement layers do not cover the folding seam.
In another aspect, the invention is directed to a method for forming such stand-up plastic food storage bags by coextruding a monolayer plastic panel film and two monolayer plastic gusset floor reinforcement layers, wherein the monolayer plastic gusset floor reinforcement layers comprise two parallel strips spaced apart by at least about 0.25 cm on the panel film, lengthwise in a direction of coextrusion, followed by folding the monolayer plastic panel film lengthwise to form a lengthwise fold line between the two monolayer plastic gusset floor reinforcement layers, forming a gusset in the area of the lengthwise fold line, forming seals in the plastic panel film in a direction perpendicular to the lengthwise fold line to define individual bag segments, and cutting the plastic panel film at the seals to form individual stand-up plastic food storage bags.
Other objects and features will be in part apparent and in part pointed out hereinafter.
Corresponding features are given corresponding reference numerals throughout the drawings.
The invention is directed to a plastic bag which comprises two abutting flat panels having an opening at one edge and sealed along other edges, such as two rectangular panels sealed along three edges with an opening at the fourth edge. In one preferred embodiment, there is a first panel and a second panel, wherein the first panel and second panel define a bag interior and an opening at an end margin of the first and second panels to permit access to the bag interior.
Referring to
These respective gusset reinforcement layers are separated from each other by a gap G. The gap is formed by the fact each of the gusset reinforcement layers terminates at least about 0.25 cm from the gusset fold peak 40. This gap G has a width of at least about 0.5 cm, such as between about 0.5 and 2 cm, such as about 1 cm. The width of the gap G is at least about 5% and preferably between about 10% and about 40%, such as between about 10% and about 40%, of the total width T of the gusset floor panels 36 and 38 that form the bag floor when the gusset is in its open position as shown in
In the preferred embodiment, the material from which the main bag panels 12 and 14 are extruded is different from the material from which the gusset reinforcement layers 30 and 32 are extruded. These first and second bag panels are preferably monolayers having a thickness between about 1.5 mils (1 mil=0.001 inch) and about 3.5 mils each, such as between about 2 mils and about 3 mils each. LDPE is the preferred material for the main bag panels 12 and 14. That is, these panels preferably comprise at least about 95 wt % LDPE plus optional conventional additives, such as antiblock and/or slip. The gusset panel reinforcement, in contrast, is preferably extruded from a blend of elastomer and metallocene LLDPE. Each of the first panel gusset reinforcement layer and second panel gusset reinforcement layers is preferably a monolayer which is coextruded with the main bag panels. The reinforcement layer monolayers each have a thickness between about 0.3 mil and about 1.5 mils, such as between about 0.7 mil and about 1.2 mils.
The gusset panel reinforcement layers' blend of elastomer and metallocene LLDPE comprises from about 35 to about 45 wt % elastomer, and from about 55 to about 65 wt % metallocene LLDPE. In one preferred embodiment, the elastomer is 40 wt % and the metallocene LLDPE is 60 wt %. The wt % figures herein are on an equivalent basis, as it is not necessarily possible to separately identify distinct compounds in the bag, after melting and extruding. These layers may also include optional conventional additives in small amounts, such as up to about 5 wt %.
The process for forming the bag of the invention involves extruding the film such as shown in
After co-extrusion of the bag film, gusset floor reinforcement strips, and zipper components, the bag is folded in half lengthwise (parallel to the travel/extrusion direction) so that the zipper components line up with each other. Then the film travels over a roller which contacts the film in the land between the two strips 30 and 32 to impart a gusset in the area which will be the bottom of the eventual bag.
Thereafter the bag is optionally printed. After optional printing, the bag is sealed, perforated, and cut into individual bags. The sealing operation seals panel 12 to panel 14 along lines which will eventually define sealed edges 22 and 24 in the eventual bag. The sealing is preferably by heat sealing.
After sealing, the film is subjected to perforation to impart features such as the perforation shown in
It can therefore be seen that the method involves coextruding a monolayer plastic panel film and two monolayer plastic gusset floor reinforcement layers, wherein the monolayer plastic gusset floor reinforcement layers comprise two parallel strips spaced apart by at least about 0.25 cm on the panel film, lengthwise in a direction of coextrusion. The subsequent method steps include folding the monolayer plastic panel film lengthwise to form a lengthwise fold line between the two monolayer plastic gusset floor reinforcement layers; forming a gusset in the area of the lengthwise fold line; forming seals in the plastic panel film in a direction perpendicular to the lengthwise fold line to define individual bag segments; and cutting the plastic panel film at the seals to form individual stand-up plastic food storage bags.
It can therefore be seen that the bags of the invention achieve high integrity reinforcement of the bag bottom and gusset area, including resistance to tearing, and especially resistance to tearing at freezer temperatures down to −20° C. Advantageously, the bags are nylon-free and glue-free, and there are no ribs on the bag bottom, lower side walls, or gusset area.
Generally speaking, the reinforced zipper regions are a film of the two blended materials as described above and it have a thickness about the same as the main bag panels, such as between about 1.5 mils (1 mil=0.001 inch) and about 5 mils each, such as between about 2 mils and about 4 mils. Reinforced zipper region 60 is bounded by upper edge 62 and lower edge 64. The distance between 62 and 64, which corresponds to the height of the reinforced zipper region, is in the range of about 1.5 to about 5 cm, such as between about 2 and about 4 cm, for example between about 2 and about 3 cm.
In the embodiment shown in
Generally speaking, the reinforced gusset region is a film of the two blended materials as described above and it has a thickness about the same as the main bag panels 82 and 84, such as between about 1.5 mils (1 mil=0.001 inch) and about 5 mils each, such as between about 2 mils and about 4 mils.
The reinforced gusset regions are separated from each other by a gap of the same dimensions as described above in connection with
The front bottom reinforced gusset region 90 extends from the front bottom gusset wall onto the front panel 82; and the rear bottom gusset wall reinforcement layer 92 extends from the rear bottom gusset wall onto the rear panel 84. The distance these reinforced regions extend up the panels 82 and 84 is between about 1.5 cm and about 7 cm, such as between about 2 and about 5 cm in one preferred embodiment, such as between about 2 and 3 cm. In the currently preferred embodiment, the front reinforced gusset region and rear reinforced gusset region extend the same distance up their respect front and rear panels.
Plastic bags were prepared according to the above-described method with the following parameters: bag width: 9.7-9.9 cm; bag height: 22.5 cm; thickness of bag panels: 3 mils; thickness of gusset reinforcement layers: 0.9 mils; width of gap G: 1 cm; total width of each of the reinforcement layers: 3.9 cm including 1.5 cm on the bottom of the bag and 2.4 cm up the side wall.
The bags passed leak tests performed according ASTM D3078 Standard Test Method for Determination of Leaks in Flexible Packaging by Bubble Emission. This involves submerging the sample bag in fluid contained in the vessel within the vacuum chamber, setting the cover on the vacuum chamber, closing the outlet valve, and turning on the vacuum so that the gage rises slowly (approximately 1 in. Hg/s) to vacuum level 12.5+/−0.5 in. Hg. During the rise in vacuum, the sample is observed for leakage in the form of a steady progression of bubbles from the flexible container. If there are no bubbles observed attributable to leaks, and if no test fluid attributable to a leak is inside a specimen, the specimen passes the test.
When introducing elements of the present invention or the preferred embodiments(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above products and methods without departing from the scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.
This application is a continuation-in-part of U.S. patent application Ser. No. 15/678,574 filed Aug. 16, 2017, the entire disclosure of which is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2334410 | Hume | Nov 1943 | A |
3006257 | Orsini | Oct 1961 | A |
3023679 | Piazze | Mar 1962 | A |
3084731 | Kugler | Apr 1963 | A |
3715074 | Michel | Feb 1973 | A |
4358466 | Stevenson | Nov 1982 | A |
4837849 | Erickson et al. | Jun 1989 | A |
5524990 | Buck | Jun 1996 | A |
5804265 | Saad et al. | Sep 1998 | A |
6371643 | Saad et al. | Apr 2002 | B2 |
6385905 | Weder | May 2002 | B1 |
6550966 | Saad et al. | Apr 2003 | B1 |
7712962 | Reuhs et al. | May 2010 | B1 |
8070359 | Taheri | Dec 2011 | B2 |
8303182 | Taheri | Nov 2012 | B2 |
8637129 | Withers | Jan 2014 | B2 |
10414566 | Bielke | Sep 2019 | B2 |
20050180665 | Eriksson | Aug 2005 | A1 |
20080199643 | Withers | Aug 2008 | A1 |
20080285897 | Taheri | Nov 2008 | A1 |
20100296755 | Eriksson | Nov 2010 | A1 |
20120288669 | Gatos et al. | Nov 2012 | A1 |
20160096659 | Bielke et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2038777 | Jul 1980 | GB |
2038777 | Jul 1980 | GB |
58171345 | Oct 1983 | JP |
Entry |
---|
Machine translation of JP-58171345-A. |
Number | Date | Country | |
---|---|---|---|
20190359404 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15678574 | Aug 2017 | US |
Child | 16533360 | US |