Embodiments of the invention relate generally to compressed air energy storage (CAES) systems and, more particularly, to thermal energy storage (TES) pressure vessels in an adiabatic CAES system.
CAES systems allow the generation of electricity without producing substantial emissions and/or consuming vast quantities of natural resources. CAES systems typically include a compression train having one or more compressors. The one or more compressors compress intake air in a compression stage for storage in a cavern, porous rock formation, depleted natural gas/oil field, or other compressed air storage component. The compressed air is then later used to drive turbines to produce electrical energy in an energy generation stage, which can in turn be provided to the utility grid. Often, if utility energy is used to power the compression train during the compression stage, the compression train operates during the off-peak hours of utility plants. The energy generation stage of the CAES in turn typically operates during high energy demand times. Alternatively, energy from renewable sources, such as energy from wind mills or solar panel arrays, may be used to power the compression train during the compression stage to compress and deliver air to the compressed air storage location (e.g., a cavern). In this way, the compression train may be operated during times other than off-peak hours, and existing utility energy may be preserved.
One type of CAES system is known as a diabatic-CAES system. In a diabatic-CAES system, heat generated by the compression train is typically lost to the ambient environment. That is, the heat of compression may be largely present when entering the cavern or other compressed air storage component, but its energetic value and availability is diminished as the compressed air mixes with the cavern air and further cools to ambient temperature during storage. Thus, when the compressed air stored in the cavern or compressed air storage component is to be used to drive one or more turbines to produce electrical energy, the compressed air is typically reheated prior to entering the turbines. This reheating step is typically performed using a natural gas-fired recuperator positioned between the compressed air storage component and the one or more turbines. Due to this reheating step, the overall efficiency of the diabatic-CAES system is reduced, and the use of natural gas to fuel the recuperator leads to carbon emissions and natural resource consumption.
Adiabatic-CAES, or ACAES, systems are capable of improving system efficiency by capturing and storing the heat of compression for later use. In such a system, one or more thermal energy storage (TES) units are positioned between the compressor and the cavern. Typically, a TES unit contains therein a medium for heat storage, such as concrete, stone, a fluid (e.g., oil), a molten salt, or a phase-change material. Hot air from the compression stage is passed through the TES unit, thereby transferring its heat of compression to the medium in the process. Thus, unlike diabatic-CAES systems, ACAES systems do not lose all of the heat generated by the compression train, but instead store some of the heat within the TES unit or units. The compressed air then enters the cavern at or near ambient temperature.
When the compressed air stored within the cavern or other compressed air storage unit is to be withdrawn to drive the one or more turbines to produce electrical energy, the compressed air passes back through the TES unit, thereby reheating the compressed air prior to entry into the turbine or turbines. In this way, ACAES systems do not necessitate additional natural gas-fired recuperation to reheat the compressed air exiting the cavern or other compressed air storage component. Thus, ACAES systems provide improved efficiency over diabatic-CAES systems, with fewer (if any) carbon emissions and little to no natural resource consumption.
TES units built to effectively store heat generated during the compression cycle of the compression train are constructed to withstand the high heat fluctuations and high pressure associated with ACAES systems. For example, the compressed air temperature exiting the compression train may vary from 250° C. to 750° C., while the temperature of the compressed air entering the TES unit from the cavern is at or near ambient temperature. Likewise, the TES units are designed to withstand pressures of 65-85 bar. To withstand such high temperatures and pressures, current proposals for TES units involve the construction of large concrete cylinders filled with a medium for heat storage. Due to their large diameter, these TES units are formed having thick, pre-stressed and steel-reinforced concrete walls, which enable the TES unit to withstand the high tension forces in the wall created by the pressure therein. However, construction of such thick concrete walls leads to substantial engineering difficulties and high costs, thereby reducing the feasibility of implementing an ACAES system as opposed to a less efficient diabatic-CAES system. Furthermore, high operating temperatures and temperature cycles induce damaging thermal stresses into the concrete walls, and these stresses are amplified as the concrete walls grow thicker.
Therefore, it would be desirable to design an apparatus and method that overcomes the aforementioned drawbacks related to TES unit construction.
Aspects of the invention provide a system and method for a TES unit having at least one reinforced structure affixed thereto to allow the TES unit to withstand both high pressures and high temperatures. The at least one reinforced structure enables the wall of the TES unit to have a minimal thickness.
In accordance with one aspect of the invention, a thermal energy storage system is disclosed, the thermal energy storage system comprising a pressure vessel configured to withstand a first pressure, wherein the pressure vessel has a wall comprising an outer surface and an inner surface surrounding an interior volume of the pressure vessel. The interior volume of the pressure vessel has a first end in fluid communication with one or more compressors and one or more turbines, and a second end in fluid communication with at least one compressed air storage component. A thermal storage medium is positioned in the interior volume, and at least one reinforcement structure is affixed to the outer surface of the wall, wherein the at least one reinforcement structure configured to reinforce the wall to withstand a second pressure greater than the first pressure.
In accordance with another aspect of the invention, a method of forming a thermal energy storage pressure vessel is described. The method comprises forming a wall having a predetermined height and thickness, wherein an inner surface of the wall bounds an interior volume therein. The method further comprises affixing a reinforcement structure to a surface of the wall at a first location, affixing at least one additional reinforcement structure to a surface of the wall at another location along the height of the wall, and disposing a porous thermal storage medium within the interior volume.
In accordance with yet another aspect of the invention, a thermal energy storage pressure vessel is disclosed, the thermal energy storage pressure vessel comprising a concrete cylindrical wall bounding an interior volume, wherein the interior volume is configured to allow air passage therethrough, and at least one reinforcing structure affixed to an outer surface of the concrete cylindrical wall. The thermal energy storage pressure vessel further comprises a porous thermal matrix material disposed within the interior volume of the concrete cylindrical wall, wherein the porous thermal matrix material is configured to allow air passage therethrough.
Various other features and advantages will be made apparent from the following detailed description and the drawings.
The drawings illustrate preferred embodiments presently contemplated for carrying out the invention.
In the drawings:
According to embodiments of the invention, a system is provided that comprises a TES unit having at least one reinforced structure affixed thereto to allow the TES unit to withstand high pressure and temperature fluctuations.
First, referring to
As the air passes through respective low-pressure compressor 104 and high-pressure compressor 112, the air is pressurized to a level of 65-85 bar and subsequently heated to a temperature of up to 650° C. This pressurized, heated air 114 then enters a thermal energy storage (TES) unit 116. TES unit 116 typically includes a porous thermal storage medium disposed therein, the porous thermal storage medium capable of retaining a substantial amount of the heat emitted by air 114 as it passes through TES unit 116. The porous thermal storage medium may be a variety of solid materials, such as natural stone, ceramics, concrete, cast iron, or a combination of ceramics and salt. Alternatively, the porous thermal storage medium may be a liquid material, such as a combination of nitrate salt and mineral oil.
After heated air 114 passes through TES unit 116, compressed air 118 exits TES unit 116 at a lowered temperature to enable compressed air 118 to be stored in a cavern 122 or other compressed air storage component. Prior to entering cavern 122, though, compressed air 118 may need to be further cooled by an optional intercooler 120 such that compressed air 118 enters cavern 122 at a maximum temperature of approximately 50° C., for example. Cavern 122 enables air pressurized to a level of about 60-80 bar to be stored for an extended period of time without significant compression losses.
Referring still to
As discussed above with respect to
Referring now to
According to another embodiment, rather than extending entirely through wall 202 and interior volume 212 as a single rod, rods 210 may be configured to pass through wall 202 and extend toward centerpoint hub 216. In this manner, one end of each rod 210 is retained by a respective anchor 214, while the other end is retained by or coupled to centerpoint hub 216.
It is to be understood that the configuration shown in
By reinforcing TES unit 116 in the fashion shown by
Referring now to
Using the trussed framework 410 as described above with respect to the embodiment shown in
Next,
As can be readily appreciated, the combination of the spoke-shaped reinforcement structure and the external trussed framework shown in
Therefore, according to one embodiment of the invention, a thermal energy storage system is disclosed, the thermal energy storage system comprising a pressure vessel configured to withstand a first pressure, wherein the pressure vessel has a wall comprising an outer surface and an inner surface surrounding an interior volume of the pressure vessel. The interior volume of the pressure vessel has a first end in fluid communication with one or more compressors and one or more turbines, and a second end in fluid communication with at least one compressed air storage component. A thermal storage medium is positioned in the interior volume, and at least one reinforcement structure is affixed to the outer surface of the wall, wherein the at least one reinforcement structure configured to reinforce the wall to withstand a second pressure greater than the first pressure.
According to another embodiment of the invention, a method of forming a thermal energy storage pressure vessel is described. The method comprises forming a wall having a predetermined height and thickness, wherein an inner surface of the wall bounds an interior volume therein. The method further comprises affixing a reinforcement structure to a surface of the wall at a first location, affixing at least one additional reinforcement structure to a surface of the wall at another location along the height of the wall, and disposing a porous thermal storage medium within the interior volume.
According to yet another embodiment of the invention, a thermal energy storage pressure vessel is disclosed, the thermal energy storage pressure vessel comprising a concrete cylindrical wall bounding an interior volume, wherein the interior volume is configured to allow air passage therethrough, and at least one reinforcing structure affixed to an outer surface of the concrete cylindrical wall. The thermal energy storage pressure vessel further comprises a porous thermal matrix material disposed within the interior volume of the concrete cylindrical wall, wherein the porous thermal matrix material is configured to allow air passage therethrough.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.