1. Field of Invention
The present disclosure relates in general to a variable ram packer for use with a blowout preventer (BOP) mounted on a wellhead. More specifically, the present disclosure relates to a variable ram packer with a packer element having a reinforcement material on its contact surface.
2. Description of Prior Art
Wellbores in hydrocarbon bearing subterranean formations are formed by rotating a drill bit mounted on a lower end of a drill string. Typically, a wellhead housing is installed at the earth's surface and through which bit and string are inserted. A blow out preventer (BOP) stack usually mounts on top of the wellhead housing that provides pressure control of the wellbore, and often includes rams to shut in the wellbore should pressure in the wellbore become uncontrollable. Additional rams are often included with BOP stacks that are for shearing the string within the BOP stack, and also for pressure testing within the BOP. Further typically included with BOP stacks are flow lines and valves to allow fluid flow through the BOP stack for remediating overpressure in the wellbore.
One type of BOP ram for pressure testing within a BOP stack is a variable ram packer. Variable ram packers usually include a pair of hydraulically powered rams on opposing lateral sides of the BOP stack, which are selectively forced radially inward into compressive engagement with the tubular. An elastomer packer element is typically provided with the variable ram packers for engaging the tubular, and has a curved recess on its engaging surface for receiving the tubular. The curved recesses on the pair of packers form a seal in the bore and around the tubular so pressure in the wellbore can be verified. Adjacent the curved recess, each packer element often has a planar surface that defines an edge at the interface between the recess and planar surface. During operation of the variable ram packers, compressive stresses in the recess transfer to the unsupported edge portion and extrude it outward. Over time, the edge portion is susceptible to damage from these multiple extrusion cycles, especially during exposure to varying low and high temperatures.
Provided herein are embodiments of a variable ram for use with a blowout preventer (BOP) and a method of making In one example, a variable ram is disclosed that includes a ram block selectively moveable within a BOP, and a ram packer disposed in the ram block. In this example, the ram packer is made of an elastomer body with a contact surface along one of its lateral sides. A recess portion is provided on a mid-portion of the contact surface, and which projects radially into the body. The recess portion is in selective sealing engagement with a tubular in the BOP, and fibers in the body adjacent the contact surface, so that when the ram block is moved radially inward into sealing contact with the tubular, the fibers exert a force that oppose extrusion of the body. The fibers can be made from a polyester, a polyamide, a cellulose fiber, cotton, para-aramid synthetic fiber, neoprene, nitrile rubber, hydrogenated nitrile rubber, carboxylated nitrile rubber, and combinations thereof. In one example, a portion of the contact surface, adjacent an end of the recess portion, is at an angle with respect to the recessed portion; where the angle defines an edge on the contact surface, and wherein the fibers extend adjacent the edge. The fibers comprise can be lateral fibers that extend laterally along the body. Optionally, the fibers can be axial fibers that extend axially in the body. In another example, the fibers are lateral fibers that extend laterally along the body and axial fibers in the body adjacent the contact surface that are generally coplanar with the lateral fibers and oriented at an angle with the lateral fibers. The fibers can be woven into a planar fabric and rubber coated to define a rubberized fabric. In an example, at least some of the fibers extend adjacent to one of an upper surface and a lower surface of the body that respectively adjoin opposing upper and lower ends of the contact surface. The elastomer body can be more elastic than the fibers. The elastomer body can be substantially solid.
Also disclosed herein is an example of a ram packer assembly for use in a BOP and which includes an elastomeric body selectively disposed in a ram block. The body has a contact surface with a curved recess that selectively seals against a tubular in the BOP. A fabric is integral in the body and adjacent the contact surface. Thus when the body is forced against the tubular, the fabric exerts a force that opposes extrusion of the body. A series of interlocking inserts can be included that selectively slide with respect to one another on a radial surface of the body when the body is radially compressed. The fabric can include fibers made of one or more of a polyester, a polyamide, a cellulose fiber, cotton, para-aramid synthetic fiber, neoprene, nitrile rubber, hydrogenated nitrile rubber, and a carboxylated nitrile rubber. In an example, the fabric is provided along an interface between an end of the curved recess and an adjacent planar portion of the contact surface. The portion of the body adjacent the fabric can be stiffer than a portion of the body distal from the fabric.
A method of forming a ram packer assembly is provided herein, where the ram packer assembly has a contact surface and that is for use in a BOP. One example of the method includes providing an uncured elastomer and disposing it into a ram packer assembly mold. Fibers are strategically disposed in the mold to be adjacent the contact surface. The uncured elastomer is cured to form a body with the fibers integrally set in the body. Sliding plates are optionally provided in the mold that mount on opposing surfaces of the body. In one example, the fibers are made from one of a polyester, a polyamide, a cellulose fiber, cotton, para-aramid synthetic fiber, neoprene, nitrile rubber, hydrogenated nitrile rubber, and combinations thereof The fibers can be woven into a fabric and coated with an elastomer that adheres with the body.
Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
An example of a blowout preventer (BOP) 20 is shown in a side sectional view in
A perspective view of an example of packer assembly 14 is provided in
Further illustrated in the example of
In an embodiment, the reinforcing compound 38 is made up of a fabric of the fibers 39. Example materials for the fiber 39 include polyester, nylon, rayon, cotton, polyamide, neoprene, nitrile rubber, hydronated nitrile rubber, carboxylated nitrile rubber, and combinations thereof. Moreover, the fiber 39 can have an end per inch value of 10×10, 15×15, 20×20, 30×30, and all values there between. Exemplary values for a gauge of the fibers 39 include 0.22 inch, 0.50 inch, 0.10 inch, 0.20 inch, and all values there between. Additionally, example materials for the packer element 15 include rubber, neoprene, nitrile rubber, hydrogenated nitrile rubber, carboxylated nitrile rubber, natural rubber, butyl rubber, ethylene-propylene rubber, epiclorohydrin, chlorosulfunated polyethylene, fluororelastomers, and combinations thereof
One example of forming a packer element 16 is shown in
The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.
This application claims priority to and the benefit of co-pending U.S. Provisional Application Ser. No. 61/747,576 filed on Dec. 31, 2012, the full disclosure of which is hereby incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
61747576 | Dec 2012 | US |