The present invention generally relates to overhead structures and in particular, to a reinforcement rib and to an overhead structure incorporating the same.
As rural and urban infrastructure continues to age and develop, there is a continual demand for cost-effective technologies relating to the construction and maintenance of highways, railways and the like. Often unappreciated but vitally important to the construction of such infrastructure is the underpass system. Underpass systems are typically designed to carry not only dead loads, but also live loads. While some of the most impressive underpass systems are used in mining or forestry applications where spans can exceed twenty (20) meters, they are also very common in regular highway construction to allow passage of railway, watercourses or other vehicular/pedestrian traffic. While concrete structures have been regularly employed for these purposes, such concrete structures are very expensive to install, cost prohibitive in remote areas, subject to strength weakening due to corrosion of the reinforcing metal, thereby requiring ongoing repair and are rigid limiting their use in certain environments.
In the field of overhead structures, such as for example but not limited to box culverts, circular and ovoid culverts, arch-type structures, encased concrete structures and other similar structures that make use of corrugated plate, there have been significant advances. For example, U.S. Pat. No. 5,118,218 to Musser et al. discloses a corrugated box culvert constructed from reinforced corrugated steel or aluminum sheets having very deep corrugations and a generally uniform bending moment profile for the whole length of the box culvert. By using significant material on the crown portions as well as on the haunch portions of the box culvert, significant loads can be carried by the box culvert. Ovoid and circular culvert structures are disclosed in U.K. Patent Application No. 2,140,848 where wing members are used to increase the load carrying capabilities of the culvert structures thereby to avoid bending of the crown portions of the culvert structures as live loads pass thereover.
U.S. Pat. No. 5,326,191 to Wilson et al. discloses a reinforced metal box culvert formed of interconnected corrugated metal sheets and having a crown, opposing sides and opposite curved haunches. Continuous corrugated metal sheet reinforcement is secured to at least the crown of the culvert and extends the length of the culvert which is effective in supporting the load. The metal sheet reinforcement has a profile which abuts the crown corrugations with the troughs of the metal sheet reinforcement being secured to the crests of the crown corrugations. The metal sheet reinforcement has a curvature complementary to the crown corrugations to facilitate securement. The metal sheet reinforcement enhances load carrying characteristics, reduces overburden requirements and allows the culvert to be used in large span applications.
U.S. Pat. No. 5,833,394 to McCavour et al. discloses a composite concrete reinforced corrugated metal arch-type structure comprising a first set of shaped corrugated metal plates interconnected in a manner to define a base arch structure with the corrugations extending transversely of the longitudinal length of the base arch structure and a second series of shaped corrugated metal plates interconnected in a manner to overlay the first set of interconnected metal plates of the base arch structure. The second series of metal plates has at least one corrugation extending transversely of the longitudinal length of the base arch structure with the troughs of the corrugations of the second series of metal plates secured to the crests of the first set of metal plates. The interconnected series of second metal plates and the first set of metal plates define individual, transversely extending, enclosed continuous cavities that are filled with concrete. The interior surfaces of the cavities for each of the first and second metal plates carry shear studs for providing a shear bond at the concrete-metal interface. The concrete filled cavities define curved beams transversing the base arch structure giving the base arch structure positive and negative bending resistance and combined bending and axial resistance to superimposed loads.
To provide resistance to deformation during construction of arch-type structures such as those discussed above, mechanically-stabilized earth construction techniques have been considered. For example, U.S. Pat. No. 4,618,283 to Hilfiker discloses an archway construction positioned over a pathway for supporting a crossroad or the like. The archway has three primary sections including an upper ceiling section which spans the pathway and which is supported on two vertical support sections positioned on opposite sides of the pathway. The three primary sections are each comprised of alternating layers of compacted soil fill and steel reinforcing mats, with the mats serving to stabilize the compacted soil fill. The ceiling section preferably includes at least three reinforcing mats, namely a lower flat mat and a pair of curved upper mats, with the three mats being separated by layers of compacted soil fill except in a central region midway between the vertical support sections where the three mats are connected together. The two upper curved mats of the ceiling section provide vertical support for the center of the lower flat mat.
U.S. Pat. No. 6,050,746 to McCavour et al. discloses a method for controlling deformation of an erected structural metal plate culvert or underpass during backfilling of the erected structure. The method comprises building progressively a reinforced earth retaining system on each side of the erected structure by alternately layering a plurality of compacted layers of earth with interposed layers of reinforcement to form reinforced earth on each side of the erected structure and securing each layer of reinforcement to its respective side of the structure. Securement of the layers of reinforcement to the sides of the erected structure controls deformation of the erected structure during backfilling. Each layer of reinforcement may be a plurality of strips extending away from the erected structure, or a reinforcement mat of interconnected rods.
In some instances such as for example in high load carrying environments, further reinforcement for overhead structures is required. To provide such further reinforcement, reinforcement ribbing secured to the exterior surface of the overhead structure has been considered. For example,
b and 1c show conventional reinforcement ribs 20. As can be seen, in each case the reinforcement rib 20 comprises a lower flange 30 having a curved undersurface 32 that rests on a crest of the metal archway 10. Fasteners (not shown) such as bolts pass through spaced holes in the lower flange 30 to secure the reinforcement rib 20 to the metal archway 10. An upstanding wall 34 intergral with the lower flange 30 runs the length of the lower flange. A head 36 is formed along the top of the upstanding wall 34. In the example of
Although the reinforcement ribs 20 provide additional support, the reinforcement ribs are difficult to bend. Also, the reinforcement ribs 20 are typically formed using an extrusion process making the reinforcement ribs expensive to manufacture. Using extrusion also limits the size of the reinforcement ribs 20 that can be made. As will be appreciated, improvements in overhead structure reinforcement are desired.
It is therefore an object of the present invention at least to provide a novel reinforcement rib and overhead structure incorporating the same.
Accordingly, in one aspect there is provided a reinforcement rib for an overhead structure comprising a pair of sidewalls, a top wall bridging one end of each sidewall and a lower flange extending from an opposite end of each sidewall. Each lower flange is adapted to be secured to the overhead structure.
In one embodiment, the overhead structure is formed of corrugated plate and the lower flanges are secured to different crests of the corrugated plate. The reinforcement rib has an enclosed configuration. At least one structural element such as for example, an I-beam, a channel member or a plate member may be secured to the top wall. Alternatively, the top wall may be provided with at least one longitudinal feature such as for example, at least one groove.
In another embodiment, the reinforcement rib may have one or more shear studs thereon. The shear studs may extend from inner surfaces of at least one of the sidewalls and the top wall or from exterior surfaces of at least one of the sidewalls and the top wall.
According to another aspect there is provided an overhead structure comprising a corrugated structure having corrugations extending transversely of the longitudinal length of the corrugated structure and reinforcement ribbing extending transversely of the longitudinal length of the corrugated structure at, at least one location along the corrugated structure. The reinforcement ribbing is secured to a pair of crests of the corrugated structure and spans at least one trough of the corrugated structure.
In one embodiment, the reinforcement ribbing comprises a plurality of ribs fastened to the crests. The ribs are arranged end-to-end. At least one splice may span adjacent ribs. Alternatively, end regions of adjacent ribs may be nested.
Embodiments will now be described with reference to the accompanying drawings in which:
a is an end view of a metal archway having prior art reinforcement ribbing thereon;
b and 1c are end views of prior art reinforcement ribs;
The construction of underpass systems or similar thoroughfare infrastructure using large and/or long span metal overhead structures presents certain challenges. As one of skill in the art will appreciate, such overhead structures are subject to extreme stresses not only during the intended use (i.e. anticipated live/dead loads), but also during the initial construction process. Technology has enabled the construction of larger and longer overhead structures, as evidenced by U.S. Pat. No. 5,326,191 to Wilson et al. and U.S. Pat. No. 5,375,943 to McCavour et al., assigned to the assignee of the subject application. With larger overhead structures, the susceptibility of deformation and/or failure due to extreme forces imparted during the backfill process has required further technological development, as evidenced by U.S. Pat. No. 6,050,746 to McCavour et al., assigned to the assignee of the subject application. Not surprising, these technological advances have expanded the number of applications for such overhead structures resulting in new challenges presenting themselves.
Turning now to
To provide additional support and increase the load carrying capabilities of the arch-type structure 22, reinforcement ribbing generally identified by reference numeral 80 is secured to the metal archway 60 as best seen in
In this embodiment, at each location, the reinforcement ribbing 80 comprises a plurality of interconnected reinforcement ribs of similar configuration. In particular, the reinforcement ribbing 80 comprises a plurality of steel ribs 82 abutting in an end-to-end fashion so that the ribs 82 extend across the crown and along the haunches of the metal archway 60. The ribs 82 are secured to the metal archway 60 by suitable fasteners 86, in this case bolts. Of course, those of skill in the art will appreciate that other suitable means of securing the ribs 82 (welds, rivets, adhesive etc.) to the metal archway 60 may be employed.
Turning now to
The thickness of the top wall 94 and the height of the sidewalls 92 are chosen according to the intended load carrying characteristics of the arch-type structure 22. In typical applications, the sidewalls 92 will have a thickness in the range from about 1/16″ to 1″ and a height in the range of from about 2½″ to 12″. The top wall 94 will have a thickness in the range of from about 1/16″ to 2″. Of course, the dimensions of the sidewalls 92 and top wall 94 may deviate from the above ranges to suit the required load carrying characteristics of the arch-type structure 22. The longitudinal spacing of the reinforcement ribbing 80 and the configuration of the reinforcement ribbing (i.e. whether at each location the reinforcement ribbing comprises the same number of ribs 82) are also chosen according to the intended load carrying characteristics of the arch-type structure 22. In this manner, the configuration of the reinforcement ribbing 80 at each location and the reinforcement ribs 82 making up the reinforcement ribbing can be tailored to the specific application of the arch-type structure 22.
Connecting plates or splices 100 and 102 are provided at the interfaces or seams between abutting ribs 82. The connecting plates 100 span the top walls 94 of the ribs 82 and are secured to the ribs by suitable fasteners 104, in this case bolts. The connecting plates 102 span the lower flanges 90 of the ribs 82 and are secured to the ribs by the same fasteners 86 that are used to secure the ribs 82 to the metal archway 60.
The ribs 82 provide many advantages over conventional reinforcement ribs. Because the ribs 82 span adjacent crests 62a fewer fasteners are required to secure the ribs to the metal archway 60 as compared to conventional reinforcement ribs. In addition, fastening the ribs 82 to a pair of crests 62a provides better composite action as compared to the prior art ribs described previously. Also, the ribs 82 can be formed from metal plate using a roll-forming technique avoiding the need to use expensive extrusion. This allows larger ribs 82 to be formed. Forming the ribs in this manner also allows the ribs 82 to be curved while inhibiting twisting from occurring. As a result, the ribs 82 can be shaped to conform closely to the shape of the metal archway 60 facilitating attachment of the ribs 82 to the metal archway. In addition, the inward angle of the sidewalls 92 allows the ribs 82 to be stacked facilitating storage of the ribs as well as transportation of the ribs 82 to the site at which the underpass system 50 is to be constructed.
Although a particular embodiment of reinforcement ribbing 80 is described and shown above, those of skill in the art will appreciate that many variations are possible. For example, the ribs 82 need not be arranged so that the interfaces 104 between the ribs making up the reinforcement ribbing 82 at each location are in longitudinal alignment. The interfaces 104 between the ribs 82 may be staggered as shown in
Rather than arranging the ribs 82 in an end-to-end abutting fashion, the ends of adjacent ribs may be configured so that the ribs 82 overlap as shown in
If desired, the reinforcement ribbing 80 can be provided on the metal archway 60 so that the reinforcement ribbing 80 spans consecutive troughs 62b as shown in
Other rib configurations are also possible. For example, although the ribs 82 are shown in
To provide further structural reinforcement to the arch-type structure 22, additional structural elements may be fastened to the top wall 94 of the ribs 82 or 182. For example, as shown in
The interior space or cavity formed between the ribs 82 and the metal archway 60 may be filled with concrete 400 or other suitable material to provide additional reinforcement as shown in
Still further rib configurations are possible. For example, flat plating 500 that extends beyond the sidewalls 92 to form overhangs may be welded or otherwise secured to the top wall 94 as shown in
In the embodiments described above, the overhead structure is arched and is shown in an underpass environment. Those of skill in the art will appreciate that the reinforcement ribbing 80 may be employed in other overhead structures including but not limited to box culverts, round and ovoid culverts, encased concrete structures and other similar structures used in underpass environments as well as in other environments. For example,
In addition, when steel is used to form the ribs 82, the ribs can be applied to steel and aluminized steel overhead structures making them suitable for use in marine environments.
Although embodiments have been described, it will be appreciated by those skilled in the art that variations and modifications may be made without departing from the spirit or scope thereof as defined by the appended claims.
This application is a continuation of co-pending U.S. patent application Ser. No. 12/035,643, filed Feb. 22, 2008.
Number | Name | Date | Kind |
---|---|---|---|
944592 | Bonsall | Dec 1909 | A |
1999500 | Carswell | May 1934 | A |
4099359 | Sivachenko | Jul 1978 | A |
4099386 | Sagasta | Jul 1978 | A |
4186541 | Sivachenko | Feb 1980 | A |
4527372 | Ryan | Jul 1985 | A |
4563107 | Peterson | Jan 1986 | A |
4966082 | Takeichi et al. | Oct 1990 | A |
5326191 | Wilson et al. | Jul 1994 | A |
5385423 | Abukawa | Jan 1995 | A |
5833394 | McCavour | Nov 1998 | A |
6050746 | McCavour | Apr 2000 | A |
D484609 | Harrington | Dec 2003 | S |
Number | Date | Country |
---|---|---|
WO 2007073075 | Jun 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20130263529 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12035643 | Feb 2008 | US |
Child | 13852693 | US |