The present invention relates to an instrument panel reinforcement structure for motor vehicles, and more particularly to a tubular support structure for a knee bolster.
Critical to the fundamental development of a restraint system are the concepts of occupant energy management and occupant kinematics. In this regard, Federal Motor Vehicle regulations provide load limitations for various anatomical features of a seated occupant in a forward crash. These load limitations generally have been set to reduce the overall percentage chance of an injury for a given anatomical feature caused by a vehicle crash at a specific vehicle crash speed.
The individual components of a restraint system must be designed with the view of the other components in the restraint system, as well as the specific vehicle geometry. For example, the stiffness of an airbag cushion must be designed with view of the stiffness of a vehicle's steering column, windshield slope, and instrument panel stiffness. As such, it is very desirable during the development of a restraint system to have components which have easily modifiable engineering properties.
One integral component in any restraint system is the lower portion of the instrument panel or knee bolster. In this regard, the knee bolster functions to absorb a significant amount of an occupant's impact energy during a crash event. Further, the knee bolster is critical in a regulation of an occupant's kinematics. Specifically, the knee bolster regulates the angle an occupant rotates about its hip to encounter a deploying airbag. The regulation of the occupant's kinematics is a function of the load the knee bolster imparts onto an occupant's knees as well as the displacement of the knee bolster with respect to the vehicle. The travel of an occupant's hips within the vehicle is closely related to the translation of the knee bolster. It is known by those skilled in the art that the adjustment of the stiffness of the knee bolster can be used to reduce the likelihood an occupant will hit a windshield for an unbelted occupant during a crash event, by reducing the amount of rotation of an occupant's torso.
As such, it would be desirable to have a knee bolster for use in a restraint system which has engineering properties that can be easily tuned based upon vehicle geometry, occupant loading, and occupant displacement. It also would be desirable to provide a knee bolster which provides a steady state loading of an occupant's femurs so as to absorb as much energy during a crash event without exceeding government and industry set safety standards.
It is an object to the present invention to provide an instrument panel which overcomes the disadvantages of present knee bolster systems. Specifically, it is an object of the present invention to provide a highly tunable knee bolster which provides steady state loading of an occupant's lower extremities during a crash event.
In accordance with the teachings of the present invention, an energy absorbing knee bolster for use in an interior of a vehicle is disclosed. The knee bolster is configured to absorb energy from the vehicle's occupants during a crash. The knee bolster is formed of a collapsible cylinder which is welded to an impact plate on its first end and to a vehicle's cross-car beam at its second end. A coupling flange is disposed between the impact plate and a medial portion of the collapsible cylinder. The collapsible cylinder is configured to axially collapse at a predetermined force when impacted by a moving occupant.
In one preferred embodiment, a knee bolster having a collapsible cylinder with a first end and a medial portion is disclosed. An impact plate is coupled to the first end, while a coupling flange is coupled to the impact plate and to the medial portion of the collapsible cylinder. The collapsible cylinder is configured to axially collapse at a predetermined force when impacted by the moving occupant.
In another embodiment of the invention, an energy absorbing support structure configured to support an instrument panel within a vehicle is disclosed. The energy absorbing structure has a tubular means for absorbing occupant impact energy and an impact plate coupled to said tubular means for absorbing occupant energy. A coupling bracket is disposed between the impact plate and the tubular means for absorbing impact energy. The coupling bracket is configured to encourage the collapse of the tubular means for absorbing energy in a telescopic fashion.
In yet another embodiment of the invention, a cross-car beam is disclosed. The cross car beam is formed by a first member, which is disposed between two points with a vehicle compartment and a collapsible cylinder having first and second ends. The second end of the collapsible cylinder is coupled to the first member. An impact plate is coupled to the first end of the collapsible cylinder. A coupling flange coupled to the impact plate and to the collapsible cylinder. The collapsible cylinder is configured to axially collapse any predetermined force when impacted by a vehicle occupant.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The tubular member 12 is preferably formed of 1008 or 1010 mild steel. The first tubular member 26 preferably has a diameter from about 1.25 to 1.75 and most preferably 1.5 inches, while the second tubular member 28 preferably has a diameter of from about 1.75 to 2.25 and most preferably 2 inches. The tube wall preferably has a thickness from about 0.5 to about 2 millimeters. The outer diameter of the first tubular member 26 is smaller than the outer diameter of the second tubular member 28, and most preferably smaller than an inner diameter of the second tubular member 28.
As best seen in
Disposed between the tubular sections 26 and 28 is a transition portion 30 having generally concave and convex sections 32 and 34. The forces needed to collapse the tubular member 12 are a function of the stiffness, thickness, and the geometry of the transition portion 30. Specifically, they are a function of the diameter of the tubular members 26 and 28.
As it is best seen in
The coupling bracket 16 is welded to a medial portion 58 of the tube 12 and specifically to the second tube member 28 at a coupling member first end 48. Additionally, the coupling bracket 16 is welded at its second end 50 to the impact plate 14. The first end 48 of the coupling bracket 16 has a defined notch 52 which forms a pair of forked members 54. These forked members 54 are bent to be generally parallel to an exterior surface 56 of the second tube portion 28 and are coupled to the tubular member 12 using general welding techniques.
As best seen in
The first tubular portion 66 will be allowed to telescope into the second tubular portion 69 and/or the second tubular portion 69 will be allowed to telescopically collapse into the third tubular portion 70. In having knee bolster bracket structures that can collapse at two different locations, it is possible to tune the collapse so that the first tubular portion 66 collapses into the second tubular portion 69 at a first impact load while the second coupling mechanism collapses at a second impact load. This presents the option of designing the first impact region to collapse for a specific occupant type while the second collapsible region will collapse for a second occupant type. This allows the restraint engineer to design the displacement of the knee bolster for a given occupant.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3599757 | Takamatsu et al. | Aug 1971 | A |
3924707 | Renner et al. | Dec 1975 | A |
5037130 | Okuyama | Aug 1991 | A |
5071162 | Takagawa | Dec 1991 | A |
5096223 | Tekelly et al. | Mar 1992 | A |
5413379 | Koma | May 1995 | A |
5584509 | Tekelly et al. | Dec 1996 | A |
5632507 | Sinner et al. | May 1997 | A |
5865468 | Hur | Feb 1999 | A |
5927755 | Matsuo et al. | Jul 1999 | A |
5931520 | Seksaria et al. | Aug 1999 | A |
5934733 | Manwaring | Aug 1999 | A |
6050628 | Allison et al. | Apr 2000 | A |
6145880 | White et al. | Nov 2000 | A |
6176544 | Seksaria et al. | Jan 2001 | B1 |
6213504 | Isano et al. | Apr 2001 | B1 |
6299208 | Kasahara et al. | Oct 2001 | B1 |
6554352 | Nagy | Apr 2003 | B2 |
20030057692 | Horsch et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
2001-163120 | Jun 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040036264 A1 | Feb 2004 | US |