Reinforcing system for stackable retaining wall units

Information

  • Patent Grant
  • 6792731
  • Patent Number
    6,792,731
  • Date Filed
    Wednesday, August 21, 2002
    22 years ago
  • Date Issued
    Tuesday, September 21, 2004
    20 years ago
Abstract
A stablized retaining wall structure comprising concrete blocks stacked in an array of superimposed rows, and with a stable anchoring assembly being in restraining contact with selected blocks. A retainer detent extends from the top surface of a wall of the block between the outer surface of the block and the hollow core. An earthen fill zone is arranged in spaced apart relationship to the rear surface of the retaining wall and clean granular back-fill is interposed between the retaining wall and the earthen fill zone. A retainer device is provided to couple selected wall blocks to a remote stable anchoring assembly, with the retainer device being configured to be restrainably held within the hollow core. One end of an elongated fastener is coupled to the retainer device, with the fastener extending outwardly through the retainer detent and secured to the remote stable anchoring assembly.
Description




BACKGROUND OF THE INVENTION




The present invention relates generally to an improved system for stabilizing retaining wall structures, and particularly retaining wall structures which comprise a plurality of individual blocks stacked in an array of superimposed rows. More particularly, the present invention relates to improved connector devices which provide and facilitate attachment between selected individual blocks and a remotely positioned stable anchoring assembly. By way of explanation, the stable anchoring assembly may typically be in the form of a geogrid, mesh, deadman, or the like, with the anchoring assembly normally being disposed in on-site soils which typically contain corrosion inducing salts and the like.




Retaining walls are in general use for a wide variety of applications, including virtually any application where it is necessary to hold or retain earth to prevent erosion or undesired washing of a sloped surface or for general landscaping purposes. Examples of such applications further include retaining walls designed for configuring contours for various landscaping projects, as well as those for protecting surfaces of roadways, walkways, or the like from eroded soil and earth. Because of their physical structure and for protection of the wall from excessive hydrostatic pressures, the wall is normally separated from on-site soils by a buffer zone of clean granular backfill, such as, for example, crushed rock, binder rock, or the like. Such buffer zones assist in drainage, while at the same time assist in reducing hydrostatic pressure against the wall.




In order to achieve proper stabilization of the erected retaining wall, a geogrid, deadman, wire mesh system, or other anchoring means buried remotely from the retaining wall and disposed within the on-site soil is utilized to positionably stabilize, hold, or otherwise restrain individual blocks or groups of blocks forming the array against movement or motion. Selected blocks comprising the wall are coupled to the anchoring means. Various forms of coupling means have been utilized in the past, they have typically been designed to be captured within the block structure, and thereafter fixed directly to the anchoring means. Little, if any, length adjustment has been possible in the coupling means, thereby making the interconnection less than convenient. As such, the ultimate interconnecting operation can be time consuming due to the necessity of configuring coupling means to fit the block wall. Also in those coupling devices which are permanently fixed to the block, pallet stacking densities of blocks to be shipped may be reduced.




The present invention facilitates the interconnection process by utilizing a coupling means which includes a standard keeper frame together with elongated couplers of adjustable or assorted lengths. Individual blocks comprising the retaining wall structure are provided with a hollow core along with one or more retainer detents across and through an upper edge of the block surfaces to the inner wall of the core. This arrangement makes it possible to utilize standard block making equipment to create a single block structure which may be tightly palletized as any standard block design, with the block having a structure which facilitates secure attachment of the coupling means to individual blocks, with the coupling means being, in turn, produced conveniently in selective and appropriate lengths for ready attachment or fastening to the stable anchoring assembly. The configuration of the interconnect on the block structure is such that conventional and standard block-making equipment systems and processes may be utilized.




SUMMARY OF THE INVENTION




In accordance with the present invention, a coupling means for securing individual blocks in a retaining wall to a stable remote anchoring assembly. The coupling means includes a keeper device with an elongated transversely extending fastener means secured to the keeper frame, and with the opposed end being linked to the anchoring assembly. The individual blocks are hollow core structures having retainer detents extending inwardly from a top edge surface of the block, with the detents extending through the thickness of the walls in which they are formed. The retainer detents may be formed in the rear wall of a given block, an alternative may be formed inwardly from the top edge of the side walls. When formed in the rear wall, the retainer detents extend inwardly from the top edge of the rear of the block. The retainer detents extend downwardly into the web to an arcuate base pod at the top edge of the rear of the block to a point generally midway between the upper and lower edges of the block. When formed in the side walls, corresponding or aligned retainer detents are formed in parallel relationship inwardly from the top edge, and may, in these situations, conveniently extend inwardly a modest distance sufficient for retention purposes. In certain unusual retaining wall structures, the keeper frames and assemblies are designed to receive and retain the elongated fastener, with the next-adjacent superimposed row of blocks serving to further retain the keeper assemblies and elongated fasteners. The keeper frame is sized for retention within the block core, while various lengths of fasteners are provided to achieve and facilitate the interconnection between individual blocks and the stable anchoring assembly. The fasteners are preferably length adjustable in order to facilitate or accommodate taut or tight interconnects.




In this fashion, a stabilized retaining wall is formed with a universal coupler means being provided, the coupling means employing a keeper frame along with anchors and elongated couplers of a variety of lengths, preferably adjustable to join the stable anchoring assembly.




In an alternative arrangement, a supplemental anchoring or stabilizing “ladder” may be provided on the fastener means by attaching a number of spaced-apart parallelly arranged support rods, each being secured along an axis disposed generally at right angles to the axis of the elongated fastener means.




Therefore, it is a primary object of the present invention to provide an improved interconnection between individual blocks in a retaining wall structure and a remotely positioned or disposed stable anchoring assembly.




It is yet a further object of the present invention to provide an improved interconnection system for use in joining individual blocks of a retaining wall to a remotely positioned stable anchoring assembly such as, for example, a geogrid, wire mesh, or dead-man.




Other and further objects of the present invention will become apparent to those skilled in the art upon a study of the following specification, appended claims, and accompanying drawings.











IN THE DRAWINGS





FIG. 1

is a perspective view of a stabilized retaining wall structure with a portion of the retaining wall being shown along a vertical sectional view;





FIG. 2

is an end elevational view of a retaining wall block of the type illustrated in

FIG. 1

, and illustrating in phantom the disposition of the coupling means as attached to a stable anchoring assembly;





FIG. 3

is a top plan view of a block structure of the type illustrated in

FIG. 1

, and further showing one embodiment of the coupling means of the present invention in position within the core of the block;





FIG. 4

is a detail perspective view of one preferred embodiment of the coupling means of the present invention;





FIG. 5

is a view similar to

FIG. 3

, and illustrating an alternate form of coupling means secured within the block structure;





FIG. 6

is a detail elevational view of a further alternative embodiment of the coupling means and illustrating an elongated fastener being axially slidably engaged within a stopper element, with a portion of the elongated fastener being cut away; and





FIG. 7

is a horizontal sectional view illustrating the arrangement detail of the locking sleeve utilized to retain the elongated fastener within the block structure.





FIG. 8

is a perspective view similar to

FIG. 1

, illustrating the modified stabilizing system for retaining wall structure with a block structure having laterally disposed rod-gripping retainer detents therein with a portion of the overall assembly being shown along a vertical sectional view, and with an alternate form of retainer detent and fasteners being shown;





FIG. 9

is an end elevational view of the retaining wall embodiment illustrated in

FIG. 8

, and illustrating the disposition of the coupling means attached to an elongated rod extending along the longitudinal axis of the retaining wall block assembly; and





FIG. 10

is an end elevational view of the retaining wall block of the embodiment of

FIGS. 7 and 8

, and showing the detail of the retainer detent.











DESCRIPTION OF A FIRST PREFERRED EMBODIMENT




In accordance with one preferred embodiment of the present invention, and with particular attention being directed to

FIG. 1

of the drawings, the stabilized retaining structure generally designated


10


comprises a plurality of individual blocks


11





11


which are arranged in a plurality of superimposed rows to form a stacked array. Each of the blocks


11


has a rear surface


12


with a hollow core


14


being formed in at least selected of blocks


11


. Retaining wall blocks of this configuration and/or form are known in the art.




Blocks


11


are provided with a retainer detent or access slot or opening


15


which extends through the block from the rear surface to the surfaces of the wall comprising the hollow core. Access slot


15


extends from the upper edge of the rear surface of the block to a point substantially midway between the top and bottom edges of the rear surface


12


. Access slot


15


provides a slotted opening through the rear web of the block extending from the top edge to a point generally midway of the height of the block. Additionally, access slot


15


is made as narrow as possible in order to preserve the integrity of the block structure.




As further indicated in

FIG. 1

, a rock and earthen fill such as is illustrated generally at


17


is in contact with the rear surfaces


12


of the blocks


11


, with fill


17


comprising a pair of individual or separate layers. The first layer


18


positioned adjacent wall


10


is preferably clean granular backfill, such as clean crushed rock or binder rock. The more remote layer


19


consists of on-site soils such as, for example, black earth, typically containing quantities of clay and salt. A stable anchoring assembly shown generally at


21


is disposed within the on-site soil, with assembly


21


being comprised of individual geogrid members shown at


22





22


. Alternative forms of anchoring assemblies may be employed in lieu of geogrids


22


, such as for example, steel, mesh, deadman, or the like.




Inasmuch as the on-site soils typically contain moisture and water soluble salts, galvanic or electrolytic corrosion typically occurs within metallic components buried or otherwise immersed in the soil. The galvanic corrosive action is accelerated and/or supported if the on-site soils are permitted to make contact with the rear surfaces of the individual blocks, with the area adjacent the blocks being characterized as the “corrosive front”. Thus, deterioration of any metallic components disposed in close proximity to the interface between the block wall and on-site soils may suffer rapid deterioration. In order to reduce the level of activity of the corrosive front, and increase the life of metallic components disposed therearound, the utilization of clean granular fill has been found to be helpful but never sufficient to eliminate the problem. However, because of the nature and salt content of certain soils, taken together with the nature and content of salts inherently present in the individual blocks, coupling means may be provided to link individual blocks to the stable anchoring assembly which are non-metallic or include non-metallic components, and thus generally immune from corrosive action. In these situations, there nevertheless remains a need for clean granular backfill, particularly for reduction and/or elimination of hydrostatic forces which may otherwise develop if saturated on-site soils are permitted to remain in place and in contact with the retaining wall structure. In accordance with the present invention, however, the retaining wall is provided with additional stabilizing features through the utilization of coupling means which conveniently link the blocks to a remotely disposed stable anchoring assembly.




With attention now being directed to

FIGS. 3 and 4

of the drawings, the coupling means generally designated


25


comprises a retainer or keeper device


26


to which there are attached a pair of elongated fasteners as shown generally at


27





27


(see FIG.


3


). In the alternative arrangement of

FIG. 4

, retainer device


26


A is provided with a single fastener


27


.




Each fastener


27


has a proximal end


30


and a distal end


31


comprises a central body segment


29


interposed between the proximal and distal ends. Body segment


29


extends through and distally of block


11


, passing through access slot


15


formed in the rear web of block


11


. Distal end


31


is configured to engage or otherwise be secured to a suitable anchoring point in one of the geogrids


22





22


. Thus, distal end


31


comprises an anchoring assembly attachment means.




With attention now being directed to

FIGS. 5 and 7

of the drawings, plastic sleeve generally designated


35


is provided, with sleeve


35


comprising a tubular segment


36


and a flanged segment


37


, with flange segment


37


being sized so as to be larger than the diameter of access slot


15


. Means are provided to restrain elongated fastener means


38


within plastic sleeve


35


by means of suitable retainers along the proximal end


30


of fastener


27


. In the embodiment illustrated in

FIGS. 5 and 7

, elongated fastener


38


is in the form of reinforced flexible line or cable, which may conveniently consist of a non-metallic plastic resinous material such as nylon, or alternatively, steel cable. The utilization of sleeve


35


provides protection to the cable from abrasion which may otherwise be created through rubbing contact or other interaction with the concrete. The outer diameter of tubular segment


36


is, of course, sized to pass through access slot


15


while the flanged end is sufficiently large so as to be retained within core


14


.




In those situations where the distance between the rear surfaces of various portions of the block wall and the anchoring assembly may vary, elongated fastener means


27


may more conveniently consist of a material such as reinforced nylon, which may be knotted and/or otherwise formed to length, whereby convenient attachment to geogrid or steel mesh may be achieved. In order to accommodate random length requirements of the fastener means, one convenient technique is to loop a length of line from the keeper device through an opening in the geogrid (or mesh) and then back to and through access slot


15


, whereby the proximal end may be secured by a cable clamping device for a cable or a knot arrangement for materials such as reinforced nylon.




Alternative Preferred Embodiment




Attention is now directed to

FIGS. 8

,


9


and


10


of the drawings wherein a modified block structure is shown, the block having laterally disposed rod-holding retainer detents formed therein. As illustrated in

FIG. 8

, stabilized retaining structure generally designated


50


comprises a plurality of individual blocks


51





51


arranged in a plurality of superimposed rows to form a stacked array, with this view being similar to that of

FIG. 1

with the exception of the individual retainer detents formed in the blocks. Each of the blocks


51


has a rear surface


52


with a hollow core


54


being formed in at least selected of blocks


51


.




Blocks


51


are provided with a pair of laterally disposed retainer detents as at


55


which are disposed in axial alignment through side walls of each block


51


so as to provide a retainer pocket for elongated retainer rod member


56


. Retainer detent or slot


55


is made as narrow as possible to accommodate the diameter of retainer rod


56


, while at the same time serving to engage elongated retainer rod


56


and preserve the integrity of the structure of block


51


.




As shown in

FIG. 1

, rock, earth and fill as at


57


is present and in contact with the rear surfaces


52


of blocks


51


, and is otherwise similar to that fill used and described in connection with the embodiment of

FIGS. 1-7

.




With attention now being directed to the stable anchoring system shown generally at


60





60


, it will be observed at this assembly comprises a series of fastener elements


61





61


which extend rearwardly of the individual blocks


51


in the end wall


50


. Transversely disposed grid members


62





62


comprise steel ladders and are utilized to provide solid frictional engagement with the soil in order to form a stable anchoring assembly. Members


61





61


are, of course, preferably fabricated from the same metallic substance as elongated member


61


to avoid galvanic or electrolytic corrosion at the intersecting weld site. In a typical installation, fasteners


61


extend rearwardly a sufficient distance to provide adequate stability and stable anchoring for those blocks


51


comprising the stacked array


50


.




As indicated in

FIG. 8

, members


61


are secured to elongated retainer rod


56


by means of an eyelet or the like as at


63


. By way of example, eyelet


63


may be a closed loop or alternatively an elongated hook element which will permit members


61


to be reliably attached to elongated retainer rod


56


. In other words, fastener elements or members


61


comprise an eyelet


63


or hook at the proximal end, a central coupling segment as at


64


, and a body portion


65


distally thereof. Body portion


65


is the area or zone in which the steel ladder or grid members


62


are coupled. Thus, the combination of the grid members


62


with fastener means


61


comprise or create the steel ladder for the stable anchoring assembly.




Thus, it will be observed that the coupling means of the present invention provide a simple means by which a hollow core block may be positively connected to a stable anchoring assembly. Additionally, the coupling means may be used in a variety of applications to engage stable anchoring systems such as steel ladder structures as shown in

FIGS. 8-10

inclusive, or to others such as geogrid reinforcements, a dead-man, or the like. Alternatively, certain soil nails may also be used. The connection means resist localized corrosion without requiring use of costly components such as those fabricated from stainless steel, coated steel, hot-dipped high carbon steel, or the like. Galvanic protection is readily achieved, without sacrificing versatility of coupling length.




It will be appreciated that various modifications may be made to the techniques of the present invention, it being further understood that the examples given herein are for purposes of illustration only and are not to be construed as a limitation upon the scope to which the invention is otherwise entitled.



Claims
  • 1. In combination, a stabilized retaining wall structure comprising a plurality of individual blocks stacked in an array of superimposed rows each with front, rear and side walls, at least one hollow core being formed in selected of said blocks and with a retainer detent extending through one of the said rear or side walls of said block, with said retainer detent extending downwardly from the upper surface of the block to a point intermediate the height thereof, an earthen fill zone in spaced apart relation to said rear surfaces and clean granular back-fill interposed between said earthen fill zone and said rear surfaces, a stable anchoring assembly disposed in said earthen fill zone and being coupled to and in restraining contact with said selected blocks, and a coupling means comprising a retainer device disposed in the core of said selected blocks and engaged therewith for interconnection with said stable anchoring assembly, said coupling means further comprising:a. an elongated fastener means with a body segment extending through and distally of said retainer detent, and with said distal end comprising an anchoring assembly attachment means; b. said retainer device being configured to restrain the proximal end of said elongated fastener means within said retainer detent and said hollow core; and (c) said anchoring assembly attachment means being secured to said stable anchoring assembly.
  • 2. The stabilized retaining wall structure of claim 1 wherein said elongated fastener means consists of a flexible cable.
  • 3. The stabilized retaining wall structure of claim 2 wherein said flexible cable consists of polymeric resin.
  • 4. The stabilized retaining wall structure of claim 1 wherein said retainer device comprises a metal bracket.
  • 5. The stabilized retaining wall structure of claim 1 wherein said retainer device consists of a molded plastic plate.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a continuation-in-part of our co-pending application Ser. No. 09/976,384, filed Oct. 11, 2001, entitled “REINFORCING SYSTEM FOR STACKABLE RETAINING WALL UNITS”, assigned to the same assignee as the present application.

US Referenced Citations (41)
Number Name Date Kind
RE28977 Mason Sep 1976 E
4050254 Meheen et al. Sep 1977 A
4266890 Hilfiker May 1981 A
4391557 Hilfiker et al. Jul 1983 A
4703602 Pardo Nov 1987 A
4728227 Wilson et al. Mar 1988 A
4909010 Gravier Mar 1990 A
4952098 Grayson et al. Aug 1990 A
5028172 Wilson et al. Jul 1991 A
5046898 McKinney Sep 1991 A
5066169 Gavin et al. Nov 1991 A
5127770 Ditcher et al. Jul 1992 A
5326193 Peterson Jul 1994 A
5468098 Babcock Nov 1995 A
5484235 Hilfiker et al. Jan 1996 A
5487623 Anderson et al. Jan 1996 A
5507599 Anderson et al. Apr 1996 A
5522682 Egan Jun 1996 A
5551809 Forsberg Sep 1996 A
5551810 Franceski et al. Sep 1996 A
5586841 Anderson et al. Dec 1996 A
5624211 Anderson et al. Apr 1997 A
5642968 Anderson et al. Jul 1997 A
5671584 Mueller Sep 1997 A
5778622 Baker Jul 1998 A
5795106 Herd Aug 1998 A
5807030 Anderson et al. Sep 1998 A
5860771 Ditcher et al. Jan 1999 A
5921715 Rainey Jul 1999 A
5975810 Taylor et al. Nov 1999 A
6050748 Anderson et al. Apr 2000 A
6050749 Khamis Apr 2000 A
6079908 Anderson Jun 2000 A
6089792 Khamis Jul 2000 A
6113317 Myers Sep 2000 A
6152655 Hull Nov 2000 A
6168351 Rainey Jan 2001 B1
6224295 Price et al. May 2001 B1
6238144 Babcock May 2001 B1
6338597 Rainey Jan 2002 B1
20010014255 Orsat Aug 2001 A1
Continuation in Parts (1)
Number Date Country
Parent 09/976384 Oct 2001 US
Child 10/224914 US