1. Technical Field
The present disclosure relates to relays.
2. Description of Related Art
Generally, a relay may include a movable contact, a stationary contact, a coil, an iron core inside the coil, a transistor, and a power source. Usually, the movable contact is electrically connected to the power source, and the stationary contact is connected to an output terminal of the relay. One end of the coil is connected to the power source, and the other end of the coil is connected to a collector of the transistor, an emitter of the transistor is grounded. The transistor is turned on when a control voltage is applied to a base of the transistor, to cause a current through the coil, and the coil produces an electromagnetic field accordingly. The iron core thus attracts the movable contact and causes the movable contact to make contact with the stationary contact, and then the relay can output a voltage. However, in such a relay, if the relay needs to output voltage for a long time, the control voltage must constantly be applied to the base of the transistor, thus resulting an excess of power consumption.
Therefore, it is desirable to provide a relay to overcome the described limitations.
Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Embodiments of the present disclosure will be described in detail, with reference to the accompanying drawings.
Referring to
The first shell 10 and the second shell 20 both are hollow and cuboid. An upper side of the first shell 10 has a first opening 11, the first electromagnet 13 is fixed on a bottom side of the first shell 10. The first shell 10 is used to fix and hold the spring member 14. A fixed end 141 of the spring member 14 is fixed to the edge of the opening 11, a free end 142 of the spring member 14 is securely attached to a fixed end 121 of the first actuation member 12, a free end 122 of the first actuation member 12 passes through the spring member 14. In the embodiment, the spring member 14 is a coil spring, and the first opening 11, the first actuation member 12 are located right above the first electromagnet 13. Initially, the spring member 14 is uncompressed. The free end 122 of the first actuation member 12 is exposed to the first opening 11 after passing through the spring member 14. Initially, the first actuation member 12 and the first electromagnet 13 are spaced a predetermined distance from each other. The first electromagnet 13 and the second electromagnet 25 both include an iron core and conductive windings wrapping the iron core.
The second shell 20 is an enclosure above the first shell 10. The second shell 20 includes a first side 21, a second side 22, and a third side 24. The first side 21 is aimed out over the top of the first shell 10, the second side 22 is connected to the first side 21, the third side 24 is opposite to the first side 21. The second electromagnet 25 is set inside the second shell 20, and one end of the second electromagnet 25 is fixed on a portion of the third side 24. The first side 21 has a second opening 23, the iron core of the second electromagnet 25 may pass through the second opening 23 and be exposed out of the second opening 23. The second actuation member 26 is outside the second shell 20, in the embodiment, the body of the second actuation member 26 is a curved piece of elastic, namely the second actuation member 26 has an elastic body, a fixed end 261 of the second actuation member 26 is fixed to a portion of the second side 22, and a free end 262 of the second actuation member 26 is bent towards the first side 21.
The first actuation member 12 and the second actuation member 26 may be made of conductive material, such as iron or copper, or simply clad in such conductive material(s) as required. The first actuation member 12 is always electrically connected to the power input port 50, and the second actuation member 26 is electrically connected to the output port 60. In an initial state, the first actuation member 12 is electrically connected to the second actuation member 26 and the power input port 50 is electrically connected to the output port 60 via the first actuation member 12 and the second actuation member 26, the relay 1 is thereby in a closed state, or normally closed.
The power input port 50 receives power from a power source (not shown). The power input port 50 can supply power to the first electromagnet 13 when the first switching unit 30 is turned on, and can supply power to the second electromagnet 25 when the second switching unit 40 is turned on.
To better understand the present disclosure, an example showing a work process of the relay 1 is described below.
Initially, at moment t0, a first control voltage is applied to the first switching unit 30 and the first switching unit 30 is turned on. The first electromagnet 13 receives power from the power input port 50 when the first switching unit 30 is turned on and produces an electromagnetic field to attract the first actuation member 12. The first actuation member 12 overcomes the elasticity of the spring member 14 and pulls away from the second actuation member 26 until it contacts the first electromagnet 13 after a time period t1. Then the electrical connection between the power input port 50 and the output port 60 is broken.
After a time period t0+t1, a second control voltage is applied to the second switching unit 40 and the second switching unit 40 is turned on. The second electromagnet 25 receives power from the power input port 50 when the second switching unit 40 is turned on and produces an electromagnetic field to attract the second actuation member 26. The free end 262 of the second actuation member 26 is attracted towards the second electromagnet 25 and makes contact with the second electromagnet 25 after a time period t2.
After a time period t0+t1+t2, the first control voltage to the first switching unit 30 is stopped and the first switching unit 30 is turned off, accordingly, the first electromagnet 13 stops working, the first actuation member 12 moves away from the first electromagnet 13 due to the elasticity of the spring member 14, and the free end 122 of the first actuation member 12 is exposed out of the first opening 11 after a time period t3.
After a time period t0+t1+t2+t3, the second control voltage to the second switching unit 40 is stopped and the second switching unit 40 is turned off, the second electromagnet 25 stops working, and the second actuation member 26 moves relatively slowly away from the second electromagnet 25, due to the inherent elasticity of the elastic body. The free end 262 of the second actuation member 26 electrically contacts with the first actuation member 12 after a time period t4. Then the electrical connection between the power input port 50 and the output port 60 is established again, and the relay 1 is once again in the closed state.
In the embodiment, the first control voltage and the second control voltage are provided by a circuit 2. Therefore, in the embodiment, the relay 1 is normally closed and will output a voltage when neither the first control voltage nor the second control voltage is being applied to the relay 1. The relay 1 is in the open state and can not output any voltage when either the first control voltage or the second control voltage is applied.
Referring to
The second electromagnet 25 includes a third input terminal 251 and a fourth input terminal 252, and the third input terminal 251 is connected to the anode terminal 501 of the power input port 50. The second switching unit 40 includes a second transistor Q2 and a second diode D2. A base of the second transistor Q2 is used to receive the second control voltage, a collector of the second transistor Q2 is connected to the fourth input terminal 252 and an anode of the second diode D2, and an emitter of the second transistor Q2 is grounded. A cathode of the second diode D2 is also connected to the anode terminal 501 of the power input port 50.
In the embodiment, the first control voltage and the second control voltage are both around 5 volts. When the first control voltage is applied to the base of the first transistor Q1, the first transistor Q1 is turned on, then the second input terminal 132 is grounded via the first transistor Q1 which is turned on. The power input port 50 allows current to flow from the first input terminal 131 to the second input terminal 132 because the first input terminal 131 is connected to the anode terminal 501 of the power input port 50 and the second input terminal 132 is grounded, and the first electromagnet 13 thus produces the electromagnetic field. Similarly, when the second control voltage is applied to the base of the second transistor Q2, the second transistor Q2 is turned on, the fourth input terminal 252 is grounded via the second transistor Q2 which is turned on, then the power input port 50 allows current to flow from the third input terminal 251 to the fourth input terminal 252, and then the electromagnet 13 produces the electromagnetic field.
Therefore, as described above, in the present disclosure, when neither the first control voltage nor the second control voltage are applied to the relay 1, the relay 1 can function without any power supply for a long time, until a change of state is required, and thus power is saved.
Referring to
In step S602, the power input port 50 provides power to at least one of the first electromagnet 13 and the second electromagnet 25, then causes the first actuation member 12 and the second actuation member 26 to separate from each other, and the relay 1 is at the open state accordingly. In detail, the power input port 50 provides power to the first electromagnet 13 when the first switching unit 30 is turned on, by the circuit 2 applying a voltage to the first switching unit 30, the first electromagnet 13 then produces an electromagnetic field to attract the first actuation member 12, causing the first actuation member 12 to pull away from the second actuation member 26 until the first actuation member 12 makes contact with the first electromagnet 13. The power input port 50 provides power to the second electromagnet 25 when the second switching unit 40 is turned on by virtue of a second control voltage provided by the circuit 2 to the second switching unit 40, the second electromagnet 25 then produces an electromagnetic field to attract the second actuation member 26 towards itself, the free end 262 of the second actuation member 26 is attracted to move toward to the second electromagnet 25.
In step S604, the power input port 50 stops providing power to the at least one of the first electromagnet 13 and the second electromagnet 25 which being powered by the power input port 50, which causes the first actuation member 12 and the second actuation member 26 to once again make contact with each other, and the relay 1 is then in the closed state. In detail, if the first electromagnet 13 is being powered by the power input port 50, the circuit 2 stops providing power to the first switching unit 30 and turns off the first switching unit 30, then the first electromagnet 13 stops producing an electromagnetic field. The first actuation member 12 moves away from the first electromagnet 13 due to the compression in the spring member 14, the free end 122 of the first actuation member 12 becomes exposed on the first opening 11 and makes contact with the second actuation member 26.
If the second electromagnet 25 is being powered by the power input port 50, then the circuit 2 stops applying the second control voltage to the second switching unit 40 and the second switching unit 40 turns off, removing the supply of power to the second electromagnet 25. Then the second electromagnet 25 stops producing an electromagnetic field, the second actuation member 26 moves away from the second electromagnet 25 over a short period of time due to the inherent elasticity of the elastic body, and the free end 262 of the second actuation member 26 again comes into electrical contact with the first actuation member 12. Then the electrical connection between the power input port 50 and the output port 60 is once again established.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the disclosure or sacrificing all of its material advantages, the examples hereinbefore described merely being exemplary embodiments of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201110337188.5 | Oct 2011 | CN | national |