Like reference symbols in the various drawings indicate like elements.
Referring now to
Referring now to
The channel measurement schemes are based on the ability of the RS to listen to signals from MS. In one embodiment, the RS listens to either the dedicated ranging code or initial ranging code in the initial ranging slot or pilots in the up-link (UL) data message and reports the channel condition to BS. For the channel measurement with the ranging code, both the dedicated ranging and the contention based initial ranging are possible depending on the capability and complexity of RS.
Pilot-Based Channel Measurement in UL Transmission
Here, the mobile station transmits to the base station information indicating the communication channel conditions between the relay station and the mobile station, such information including pilots with the uplink data message from the relay station to the base station. That is, the RS listens to pilot and data signals from MS's message and estimates the channel condition (i.e. quality). The format and location of the pilot relative to that of data are specified in IEEE 802.16. For instance, for the mandatory tile structure in the uplink, pilot sub-carriers are inserted into each data burst in order to constitute the symbol and they are modulated according to their subcarrier location within the OFDMA symbol. (See section 8.4.9.4.3 in IEEE Std 802.16, IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems, 2004 and IEEE Std 802.16e, IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access System, 2005) RSSI and CINR measurement are mandated by the BS in the 802.16, and we apply these mandatory measurements to RS to obtain the channel quality between RS and MS.
Ranging-Based Channel Measurement
As MS enters the network, it performs the initial ranging to synchronize itself to the BS in frequency and time. Also, it may send the periodic ranging code to maintain the synchronization while it is in the network. Here, the system uses dedicated ranging or contention-based initial ranging and reports to the BS. Thus, the ranging code used is either pre-assigned to the mobile station as in dedicated ranging or randomly chosen by the mobile station as in contention-based initial ranging. The method comprises: transmitting from the mobile station information indicating the communication channel conditions between the relay station and the mobile station, such information including either: dedicated ranging codes transmitted from the mobile station; or contention-based initial ranging codes transmitted from the mobile station; instructing, when the dedicated ranging codes are used, the relay station by the base station of dedicated ranging information such as a selected code or location in an uplink subframe; having a relay station monitor the uplink transmission; processing the information received by the relay station in the relay station into a channel condition report; and transmitting from the relay station to the base station the channel condition report.
When the slots and the ranging code are randomly chosen by the MS, RS has to monitor whole ranging slots in the UL-frame and match with all possible ranging codes to estimate the channel quality.
The dedicated ranging can be used and it requires the coordination between BS and RS including the ranging code and ranging slot information. According to 802.16e (section 6.3.22.1.3 in IEEE Std 802.16e, IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access System, 2005), the ranging in the dedicated ranging slot can be performed during the scanning process. During the scanning for the inter-cell HO, MS may do initial ranging optionally with neighboring BSs. When MS requests the association scanning for HO using MOBSCN-REQ message, the serving BS coordinates the association procedure with the requested BSs. Each neighboring BS assigns a unique code number from within the initial ranging codeset and a transmission opportunity within the allocated region, and the serving BS provides the pre-assigned association ranging info via the MOBSCN-RSP message to the MS.
The association procedure described above can be applied to the channel measurement between RS and MS. The serving BS allocates the dedicated slot for MS's dedicated ranging with a unique code and asks each RS to listen to this dedicated ranging. Since the particular code is pre-selected in the dedicated ranging slot, RSs can easily estimate the channel quality between RS and MS by matching the CDMA code, and inform the channel quality to BS. Since many (if not all) RSs can listen to this ranging slot at the same time, significant saving in delay as compared with DL-based measurements can be obtained.
Without explicit coordination between BS and RS, the initial ranging from MS can be overheard by RS. Since the ranging code is not known, RS has to monitor the ranging with the complete ranging codeset. To improve the channel measurement and reduce the complexity of the RS, the dedicated ranging scheme is suggested. In this scenario, MS sends the unique ranging code at the dedicated time slot as instructed by the BS.
The last scheme that we consider is that a relay station listens to the pilot signals embedded in a message coming from a mobile terminal and estimates the channel condition (i.e. quality. For the mandatory tile structure in the uplink, pilot sub-carriers are inserted into each data burst in order to constitute the symbol and they are modulated according to their subcarrier location within the OFDMA symbol. RSSI and CINR measurement can be requested and reported to the base station according to IEEE 802.16.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application claims priority from U.S. Provisional application Ser. No. 60/839,906 filed on Aug. 24, 2006 which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60839906 | Aug 2006 | US |