The present invention relates to a relay structure, and more particularly to a relay structure applied in the field of electrical and electronics.
The coils and contacts of the relay generate heat because of Joule loss when being energized. Although the coil temperature of the relay generally does not exceed 120° C., overvoltage applied on the coil may cause abnormally-high temperature, odor or smoke. When the load generated by arc discharge is frequently switched, the temperature of relay may be abnormally increased in short time due to the arc heat.
The above-mentioned heat is generated under abnormal conditions mostly, and the issue to be discussed herein is the normal heating status of the relay during operation. In general, the internal coil operates based on electromagnetism principle and the electro-thermal principle, and heat energy may exist inside the relay. However, the operation of the relay can be easily affected because of the generated and temporarily-stored heat energy, and among internal components of the relay, the armature is affected greatly by high temperature. The armature of the relay is used to control switching operation of the relay, and an end of the armature is configured to magnetically attract with or release from a leg of the relay, but if the temperature of the armature is too high, the heat energy may be transferred to the circuit board through the leg to affect the operation of the circuit board after the magnetic attraction is conducted. Furthermore, the overheated armature also affects the carrying current to cause disruption of the electronic sequence in the current, and it eventually causes the aforementioned problem.
The objective of the present invention is to effectively reduce the temperature generated on the armature during the operation of the relay, so as to increase the carrying current flowing through the armature to maintain the relay in normal operation. In order to achieve the objective, the present invention provides a relay structure includes a case, first to fourth legs, a magnetoelectric assembly, a magnetic conduction assembly, a driving plate, an armature assembly. The magnetoelectric assembly is disposed inside the case and configured to generate electromagnetism, two ends of the magnetoelectric assembly are electrically assembled with the first leg and the second leg, respectively, and a part of the first leg and a part of the second leg are protruded out of the case. The magnetic conduction assembly is disposed inside the case and around the magnetoelectric assembly, an end of the magnetic conduction assembly is electrically connected to one of the two ends of the magnetoelectric assembly, and other end of the magnetic conduction assembly is magnetically attracted to the other of the two ends of the magnetoelectric assembly when the magnetoelectric assembly generates electromagnetism. The driving plate is assembled on a top surface of the magnetic conduction assembly. The armature assembly is disposed inside the case and electrically connected to an end of the third leg, the other end of the third leg is protruded out of the case, the armature assembly further comprises a plurality of conductive plates, each of the plurality of conductive plates has a part stacked and attached with another one of the plurality of conductive plates, and other part stacked hut not attached with another one of the plurality of conductive plates, an end of the armature assembly is bonded with the third leg, and other end of the armature assembly is extended toward the driving plate and formed with a conductively connecting member, and a top end of the driving plate is inserted through the plurality of conductive plates. The fourth leg has an end disposed inside the case and other end protruded out of the case, the end of the fourth leg disposed inside the case is formed with a contact member above the conductively connecting member.
The present invention uses the conductive plates arranged in stack to increase the conductive area of the armature assembly, and the increase in the conductive area can obviously increase the carrying current and also dissipate the heat generated inside the replay; in this way, when the conductively connecting member of the armature assembly is magnetically attracted with the contact member to form the conductive status, the operation and conduction of the relay and the circuit hoard can be prevented from being affected by excessive heat, so that the relay can be maintained in the normal operation.
The structure, operating principle and effects of the present invention will be described in detail by way of various embodiments which are illustrated in the accompanying drawings.
The following embodiments of the present invention are herein described in detail with reference to the accompanying drawings. These drawings show specific examples of the embodiments of the present invention. These embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. It is to be acknowledged that these embodiments are exemplary implementations and are not to be construed as limiting the scope of the present invention in any way. Further modifications to the disclosed embodiments, as well as other embodiments, are also included within the scope of the appended claims. These embodiments are provided so that this disclosure is thorough and complete, and hilly conveys the inventive concept to those skilled in the art. Regarding the drawings, the relative proportions and ratios of elements in the drawings may be exaggerated or diminished in size for the sake of clarity and convenience. Such arbitrary proportions are only illustrative and not limiting in any way. The same reference numbers are used in the drawings and description to refer to the same or like parts.
It is to be acknowledged that, although the terms ‘first’, ‘second’, ‘third’, and so on, may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used only for the purpose of distinguishing one component from another component. Thus, a first element discussed herein could be termed a second element without altering the description of the present disclosure. As used herein, the term “or” includes any and all combinations of one or more of the associated listed items.
It will be acknowledged that when an element or layer is referred to as being “on,” “connected to” or “coupled to” another element or layer, it can be directly on, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements or layers present.
In, addition, unless explicitly described to the contrary, the word “comprise” and variations such as “comprises” or “comprising”, will be acknowledged to imply the inclusion of stated elements but not the exclusion of any other elements.
Please refer to
According to the above description, the configuration of the armature assembly 7 increases the conductive cross-sectional area, and where the conductive plates 71 are stacked with but not attached to each other can increase the conductive cross-sectional area, so as to efficiently disperse the heat, generated by the magnetoelectric assembly 2, received in the magnetoelectric assembly 7, so that the armature assembly 7 can be prevented from higher temperature. Furthermore, when the armature assembly 7 is maintained at a lower temperature, the electronic sequence of the current flowing through the armature assembly 7 is no longer interfered by heat and can effectively conduct electrons. Moreover, the increase of the conductive cross-sectional area increases the carrying current without being limited by the cross-sectional area. The conventional relay has only a single piece of armature, so the conduction efficiency of the conventional relay is limited by the withstand temperature of the armature. The relay structure of the present invention having the stacked conductive plates 71 can solve the problems occurred in the conventional relay.
One of the conductive plates 71 of the armature assembly 7 is taken as an example for illustration, as shown in
The details of other features of the present invention are described in following paragraphs. The magnetoelectric assembly 2 is used to generate electrical power, and includes a two frames 21 and a coil member 22. The two francs 21 are assembled with two ends of the coil member 22, respectively, and one of the two frames 21 magnetically attracted with the magnetic conduction assembly 5 includes a magnetic contact 211, which is electrically connected to the coil member 22. Each frame 21 has an insert slot 212 formed on a bottom thereof and configured to provide the ends of the first leg 3 and the second leg 4 to insert therein, respectively, so that the horizontal ends, of the first leg 3 and the second leg 4 can be slidably inserted into the insert slots 212 easily, respectively, and the other ends of the first leg 3 and the second leg 4 are protruded out of the case 1 to form the pins for plugging with the circuit board, and the configuration of the insert slots 212 can prevent the first leg 3 and the second leg 4 from being loosened to affect conduction of the circuit, as shown in
After the movable magnetic member 52 is magnetically attracted to swing and the driving plate 6 is driven to upwardly move to make the conductively connecting member 72 of the armature assembly 7 electrically contact the contact member 91, the contact between the movable magnetic member 52 and the magnetic contact 211 can be released by stopping the magnetoelectric assembly 2 generating power. In order to indeed separate the conductively connecting member 72 from the contact member 91 to prevent from the electrical conduction status due to remained magnetic attraction, an elastic recovering member 10 can be disposed in the case 1, and the elastic recovering member 10 includes a fastening plate 101 and an elastic plate 102, the fastening plate 101 is assembled inside the case 1 and between the armature assembly 7 and the movable magnetic member 52, an end of the elastic plate 102 is connected to the fastening plate 101, and other end of the elastic, plate 102 is elastically bent downwardly to press against the movable magnetic member 52. The elastic plate 102 is pushed to slightly deform when the end of the movable magnetic member 52 is electromagnetically attracted to contact the magnetic contact 211, so that the movable magnetic member 52 can be prevented from excessively swinging to affect electrical conduction during repeated operations, as shown in
In order to prevent the movable magnetic member 52 from hitting the fixed magnetic member 51 during the repeated operations, the fixed magnetic member 51 can include a fastening recess 512 recessed on a side thereof and correspondingly in position to the driving plate 6. The movable magnetic member 52 has a fastening notch 521 disposed correspondingly in position to the fastening recess 512, and the fastening notch 521 and the fastening recess 512 in communication with each other. The driving plate 6 has a linking block 61 protruded at a part of the bottom thereof and inserted through the fastening notch 521 and abutted with the bottom of the fastening recess 512. The end, where the linking block 61 is disposed, of the driving plate 6 is partially pushed to the movable magnetic member 52. The fixed magnetic member 51 is fixed, so the movable magnetic member 52 can indeed drive the driving plate 6 to vertically move during the swinging operation of the movable magnetic member 52; when the driving plate 6 is downwardly moved, the linking block 61 is inserted into and fastened with the fastening recess 512, so the linking block 61 is not easy to deviate, thereby maintaining the normal operation of the relay. Besides the configuration of the fastening recess 512 for limiting the recovery position of the driving plate 6, the movable magnetic member 52 can have ribs 522 protruded on top surface of the movable magnetic member 52 and located at two sides of the driving plate 6, respectively, the position of the driving plate 6 is limited between the two ribs 522, so as to prevent the driving plate 6 from skewing and deflecting during movement. The fixed magnetic member 51 can has a through hole 513 cut therethrough and located adjacent to the fastening recess 512, and a cushion 20 can be inserted into the through hole 513. When the movable magnetic member 52 is not in electromagnetic contact with the magnetic contact 211, the movable magnetic member 52 is abutted with the cushion 20 normally, so as to prevent the movable magnetic member 52 from directly hitting the fixed magnetic member 51 during the process of swing to the original position, thereby maintaining the structural completion of the movable magnetic member 52 and the fixed magnetic member 51, as shown in
It is worth noting that the case 1 can further include a housing 11 and a main body 12, and the main body 12 is in a hollow shape to define an assembling room 13, the assembling room 13 is partitioned to form a fastening space 14, the fastening plate 101 of the elastic recovering member 10 is fixed in the fastening space 14, and the housing 11 is configured to cover the magnetoelectric assembly 2, the magnetic conduction assembly 5 and the armature assembly 7 disposed inside the main body 12, as shown in
The present invention disclosed herein has been described by means of specific embodiments. However, numerous modifications, variations and enhancements can be made thereto by those skilled in the art without departing from the spirit and scope of the disclosure set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
4758809 | Bell | Jul 1988 | A |
7283026 | Nakamura | Oct 2007 | B2 |
7710224 | Gruner | May 2010 | B2 |
9142373 | Masui | Sep 2015 | B2 |
9754747 | Yeh | Sep 2017 | B1 |
20180269018 | Shimoda | Sep 2018 | A1 |
20190013172 | Hayashida | Jan 2019 | A1 |