This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2019-177674 filed on Sep. 27, 2019, the contents of which are incorporated herein by reference.
The present invention relates to a relay terminal, and a method for producing the relay terminal.
Conventionally, a relay terminal that is used for electrically connecting a through hole disposed in a circuit board, and a device-side terminal disposed on an electric device to each other is known. When a through hole and a device-side terminal are electrically connected to each other by such a relay terminal, it is possible to supply an electric power from a power supply connected to a circuit board to an electric device, and enable a controller disposed on the circuit board to control the electric device.
As for details of the above relay terminal, refer to JP 2007-95661 A.
The relay terminal disclosed in the patent literature is formed in the following manner. Press fit terminals having press-insertion portions that are to be press-inserted into through holes of a circuit board, respectively are formed integrally with one end portion of a bus bar. A second terminal that is to be connected to a device-side terminal of an electric device is joined to the other end portion of the bus bar.
When a terminal component in which a plating process is performed on the surface for the purpose of rust-proofing and the like is to be produced, usually, one of the following processes is executed: a process of performing a plating process on a flat plate made of a metal base material, and then performing a pressing process on the flat plate (hereinafter, the process is referred to as “pre-plating process”); and another process of performing a pressing process on a flat plate made of a metal base material, and then performing a plating process on the flat plate (hereinafter, the process is referred to as “post-plating process”). In the pre-plating process, the shape of the target object on which the plating process is to be performed is a flat plate shape having a simple profile shape (typically, a rectangular shape). Therefore, the plating process can be easily performed as compared with the post-plating process in which the shape of the target object on which the plating process is to be performed is possibly a three-dimensional shape having a complicated profile shape. In the viewpoint of reduction of production cost, consequently, the pre-plating process is preferably employed.
When the pre-plating process is performed on “bus bar with which press fit terminals are integrally formed” in the relay terminal disclosed in the patent literature, the pressing surfaces of the press fit terminals are formed as shear surfaces caused by the pressing process, and hence the surface of the metal base material is exposed from the pressing surfaces. Therefore, the post-plating process must be performed on “bus bar with which press fit terminals are integrally formed.”
In a relay terminal that is used in the case where the relative distance between a through hole of a circuit board and a device-side terminal is relatively large, for example, “bus bar with which press fit terminals are integrally formed” connecting the press fit terminal and the second terminal to each other has an elongated shape. Therefore, the size of “bus bar with which press fit terminals are integrally formed” is enlarged, and the post-plating process on “bus bar with which press fit terminals are integrally formed” is executed more hardly.
Aspect of non-limiting embodiments of the present disclosure relates to provide a relay terminal in which, even in the case where a bus bar that connects a press fit terminal and a second terminal to each other has an elongated shape, the post-plating process can be easily performed on the press fit terminal, and a method for producing the relay terminal.
Aspects of certain non-limiting embodiments of the present disclosure address the features discussed above and/or other features not described above. However, aspects of the non-limiting embodiments are not required to address the above features, and aspects of the non-limiting embodiments of the present disclosure may not address features described above.
According to an aspect of the present disclosure, there is provided a relay terminal to electrically connect a through hole of a circuit board with a device terminal of an electric device, the relay terminal comprising:
Exemplary embodiment(s) of the present invention will be described in detail based on the following figures, wherein:
Hereinafter, a relay terminal 1 of an embodiment of the invention, and a method for producing the relay terminal 1 will be described with reference to the drawings. For example, the relay terminal 1 (see
As shown in
First the bus bar 10 will be described. In the embodiment, as shown in
In the viewpoint of reduction of production cost, the bus bar 10 is formed by the pre-plating process. Specifically, the plating process is first performed on the whole surface of a flat plate that is made of a metal base material constituting the bus bar 10, and that has a simple profile shape (typically, a rectangular shape). Next, a pressing process and a bending process are performed on the flat plate on which the plating process has been performed, to form the whole shape (three-dimensional shape) of the bus bar 10, whereby the bus bar 10 shown in
Next, the press fit terminal 20 will be described. In the embodiment, as shown in
Here, one of the press-insertion portions 22 will be additionally described. The following description is applicable also to the other press-insertion portion 22. In the press-insertion portion 22, as shown in
As a result, in the state where the press insertion of the press-insertion portion 22 into the through hole is completed (the state where the pair of elastic pieces 22b are at the press-insertion completion position in the through hole), a state where pressing forces due to the elastic resilient forces of the pair of elastic pieces 22b act between the pressing surfaces 23 and the inner wall of the through hole is maintained. Therefore, the press-insertion portion 22 is surely held by the through hole, and the reliability of the electrical contact between the press-insertion portion 22 (i.e., the press fit terminal 20) and the circuit board is improved.
The press fit terminal 20 is formed by the post-plating process. Specifically, first, a pressing process and a bending process are performed on a flat plate that is made of a metal base material constituting the press fit terminal 20, and that has a simple profile shape (typically, a rectangular shape), and the whole shape (three-dimensional shape) of the press fit terminal 20 is formed. The bending process is performed only in order to form the joining portion 24 that is bent in the thickness direction of the body portion 21. As a result of the pressing process, a pair of side end surfaces that extend along the extending direction of the press fit terminal 20 (more specifically, the pair of side end surfaces of each of the body portion 21, the press-insertion portions 22, and the joining portion 24) are formed as shear surfaces caused by the pressing process, and the surface of the metal base material constituting the press fit terminal 20 is exposed therefrom.
Then, the plating process is performed on the whole surface of the press fit terminal 20 on which the pressing process and the bending process have been performed, whereby the press fit terminal 20 shown in
In the above-described embodiment, after a pressing process and a bending process are performed on a flat plate, a plating process is performed. Alternatively, the press fit terminal 20 may be completed in the following manner. First, only a pressing process is performed on a flat plate, and a plurality of planer press fit terminals 20 that are coupled together by a strip-shaped carrier 25 so as to be arranged in a row as shown in
The plating process is performed collectively on the plurality of planer press fit terminals 20 that are in the stage where the bending process is not yet performed, and that are coupled together by the carrier 25 as shown in
Next, the second terminal 30 will be described. In the embodiment, as shown in
In the viewpoint of reduction of production cost, the second terminal 30 is formed by the pre-plating process similarly with the bus bar 10. Specifically, a plating process is performed on the whole surface of a flat plate that is made of a metal base material constituting the second terminal 30, and that has a simple profile shape (typically, a rectangular shape). Next, a pressing process and a bending process are performed on the flat plate on which the plating process has been performed, to form the whole shape (three-dimensional shape) of the second terminal 30, whereby the second terminal 30 shown in
The relay terminal 1 shown in
According to the relay terminal 1 of the embodiment, as described above, the relay terminal 1 is formed by joining together the press fit terminal 20 and bus bar 10 that are independent from each other. When the press fit terminal 20 is formed by the post-plating process, and the bus bar 10 is formed by the pre-plating process, therefore, it is possible to obtain the relay terminal 1 in which the plating process is performed on the pressing surfaces 23 of the press fit terminal 20 that are formed as shear surfaces caused by the pressing process, and the surface of the metal base material is exposed from the side end surfaces 14 that are formed as shear surfaces caused by the pressing process, and that extend in the extending direction of the bus bar 10. Here, the press fit terminal 20 and the bus bar 10 are independent from each other. Even when the bus bar 10 has an elongated shape, therefore, the size of the press fit terminal 20 itself is not enlarged, and hence the post-plating process can be easily performed on the press fit terminal 20.
Moreover, the configuration where the press fit terminal 20 and the bus bar 10 are independent from each other can attain the following effect. Even in the case where there are a plurality of relative positional relationships between a through hole of a circuit board and a device-side terminal, when a plurality of kinds are prepared with respect to only the bus bar 10, the press fit terminal 20 can be commonalized.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
In the embodiment, for example, the joining between the one end portion 12 of the bus bar 10 and the joining portion 24 of the press fit terminal 20 is realized by welding a place where the one end portion 12 of the bus bar 10 and the joining portion 24 of the press fit terminal 20 are stacked with each other in the thickness direction (see
Although, in the embodiment, the bus bar 10 has a shape that is obtained by bending an elongated flat plate, the whole bus bar 10 may have an elongated flat plate shape (that has not been subjected to a bending process). Similarly, although the press fit terminal 20 has a shape that is obtained by bending a flat plate, the whole press tit terminal 20 may have a flat plate shape (that has not been subjected to a bending process).
In the embodiment, the press fit terminal 20 is formed by the post-plating process, and the bus bar 10 and the second terminal 30 are formed by the pre-plating process. Alternatively, the press fit terminal 20 and the second terminal 30 may be formed by the post-plating process, and the bus bar 10 may be formed by the pre-plating process.
According to the above exemplary embodiments, the relay terminal (1) is used to electrically connect a through hole of a circuit board with a device terminal of an electric device. The relay terminal (1) comprises:
According to the relay terminal having the above-described configuration, the relay terminal is formed by joining together the press fit terminal and bus bar that are independent from each other. When the press fit terminal is formed by the post-plating process, and the bus bar is formed by the pre-plating process, therefore, it is possible to obtain a relay terminal which has the above-described configuration, and in which the plating process is performed on the pressing surfaces of the press fit terminal that are formed as shear surfaces caused by the pressing process, and the surface of the metal base material is exposed from the side end surfaces that are formed as shear surfaces caused by the pressing process, and that extend in the extending direction of the bus bar. Here, the press fit terminal and the bus bar are independent from each other. Even when the bus bar has an elongated shape, therefore, the size of the press fit terminal itself is not enlarged, and hence the post-plating process can be easily performed on the press fit terminal.
Moreover, the configuration where the press fit terminal and the bus bar are independent from each other can attain the following effect. Even in the case where there are a plurality of relative positional relationships between a through hole of a circuit board and a device-side terminal, when a plurality of kinds are prepared with respect to only the bus bar, the press fit terminal can be commonalized.
According to the above exemplary embodiments, the method for producing the relay terminal (1) comprises:
A relay terminal having the above-described configuration can be produced by employing the above-described method for producing a relay terminal. In the case where the manufacturing method is employed, when the press fit terminal is formed by the post-plating process, and the bus bar is formed by the pre-plating process, it is possible to obtain a relay terminal which has the above-described configuration, and in which the plating process is performed on the pressing surfaces of the press fit terminal that are formed as shear surfaces caused by the pressing process, and the surface of the metal base material is exposed from the side end surfaces that are formed as shear surfaces caused by the pressing process, and that extend in the extending direction of the bus bar. Here, the press fit terminal and the bus bar are independent from each other. Even when the bus bar has an elongated shape, therefore, the size of the press fit terminal itself is not enlarged, and hence the post-plating process can be easily performed on the press fit terminal.
According to the invention, it is possible to provide a relay terminal in which, even in the case where a bus bar that connects a press fit terminal and a second terminal to each other has an elongated shape, the post-plating process can be easily performed on the press fit terminal, and a method for producing the relay terminal.
Number | Date | Country | Kind |
---|---|---|---|
2019-177674 | Sep 2019 | JP | national |