Releasable attachment device for coupling to medical devices and related systems and methods

Information

  • Patent Grant
  • 11786334
  • Patent Number
    11,786,334
  • Date Filed
    Wednesday, June 17, 2020
    4 years ago
  • Date Issued
    Tuesday, October 17, 2023
    a year ago
Abstract
The various embodiments herein relate to releasable attachment devices for use with surgical tools that include a fixed jaw fixedly coupled to a joint housing, a moveable jaw rotationally coupled to the joint housing, and an actuation mechanism operably coupled to the joint housing.
Description
FIELD OF THE INVENTION

The various embodiments herein relate to support devices for supporting various types of medical devices and more specifically to releasable attachment devices for use in releasably holding a medical device on a support device.


BACKGROUND OF THE INVENTION

Known support devices firmly retain and maintain the position of a medical device before and during a surgical procedure. However, most such known devices can only fixedly retain the medical device in a position that is not adjustable.


There is a need in the art for an improved releasable attachment device for coupling a medical device to a support device.


BRIEF SUMMARY OF THE INVENTION

Discussed herein are various releasable attachment device that can be used to releasably couple a medical device to a support device.


In Example 1, a releasable attachment device for use with surgical tools comprises a fixed jaw fixedly coupled to a joint housing, a moveable jaw rotationally coupled to the joint housing, the moveable jaw comprising an open position and a closed position, an actuation mechanism operably coupled to the joint housing, wherein the actuation mechanism comprises a locked position and a released position, and an actuation structure operably coupled to the moveable jaw.


Example 2 relates to the releasable attachment device according to Example 1, further comprising a coupling component fixedly coupled to the joint housing, wherein the coupling component comprises a coupling structure constructed and arranged to couple to an external support device.


Example 3 relates to the releasable attachment device according to Example 1, further comprising a tension component operably coupled to the joint housing, wherein the tension component is constructed and arranged to urge the moveable jaw toward the closed position.


Example 4 relates to the releasable attachment device according to Example 1, further comprising a tension component operably coupled to the actuation mechanism, wherein the tension component is constructed and arranged to urge the actuation mechanism toward the locked position.


Example 5 relates to the releasable attachment device according to Example 1, wherein the fixed jaw and moveable jaw are constructed and arranged to couple with a surgical tool in a groove defined around an outer surface of the surgical tool.


Example 6 relates to the releasable attachment device according to Example 1, wherein the joint housing comprises a stationary joint structure comprising a first opening defined therethrough, a pivotable joint structure comprising a second opening defined therethrough and at least one rotational coupling mechanism defined therein, the actuation mechanism disposed through the first and second openings, wherein the actuation mechanism is rotationally coupled to the first joint structure, and a locking structure rotationally coupled to a distal end of the actuation mechanism and detachably coupleable with the at least one rotational coupling mechanism.


Example 7 relates to the releasable attachment device according to Example 6, wherein the released position comprises the actuation mechanism positioned distally in relation to the locked position.


Example 8 relates to the releasable attachment device according to Example 6, wherein the locking structure is coupled to the at least one rotational coupling mechanism when the actuation mechanism is in the locked position and wherein the locking structure is not coupled to the at least one rotational coupling mechanism when the actuation mechanism is in the released position.


Example 9 relates to the releasable attachment device according to Example 6, wherein the pivotable joint structure is rotatable in relation to the stationary joint structure when the actuation mechanism is in the released position.


In Example 10, a releasable attachment device for use with surgical tools comprises a joint housing, a fixed jaw fixedly coupled to the first joint structure, a moveable jaw fixedly coupled to the second joint structure, the moveable jaw comprising an open position and a closed position, and an actuation structure operably coupled to the moveable jaw. The joint housing has a first joint structure comprising a first opening defined therethrough, a second joint structure comprising a second opening defined therethrough and at least one rotational coupling mechanism defined therein, an actuation mechanism disposed through the first and second openings, wherein the actuation mechanism is rotationally coupled to the first joint structure and wherein the actuation mechanism comprises an undepressed axial position and a depressed axial position, and a locking structure rotationally coupled to a distal end of the actuation mechanism and detachably coupleable with the at least one rotational coupling mechanism.


Example 11 relates to the releasable attachment device according to Example 10, further comprising a coupling component fixedly coupled to the joint housing, wherein the coupling component comprises a coupling structure constructed and arranged to couple to an external support device.


Example 12 relates to the releasable attachment device according to Example 10, further comprising a tension component operably coupled to the first joint structure and the second joint structure, wherein the tension component is constructed and arranged to urge the moveable jaw toward the closed position.


Example 13 relates to the releasable attachment device according to Example 10, further comprising a tension component operably coupled to the actuation mechanism, wherein the tension component is constructed and arranged to urge the actuation mechanism toward the undepressed axial position.


Example 14 relates to the releasable attachment device according to Example 10, wherein the fixed jaw and moveable jaw are constructed and arranged to couple with a surgical tool in a groove defined around an outer surface of the surgical tool.


Example 15 relates to the releasable attachment device according to Example 10, wherein the depressed axial position comprises the actuation mechanism positioned distally in relation to the undepressed axial position.


Example 16 relates to the releasable attachment device according to Example 10, wherein the locking structure is coupled to the at least one rotational coupling mechanism when the actuation mechanism is in the undepressed axial position and wherein the locking structure is not coupled to the at least one rotational coupling mechanism when the actuation mechanism is in the depressed axial position.


Example 17 relates to the releasable attachment device according to Example 10, wherein the second joint structure is rotatable in relation to the first joint structure when the actuation mechanism is in the depressed axial position.


In Example 18, a releasable attachment device for use with surgical tools comprises a housing, a fixed jaw fixedly coupled to the first joint structure, a moveable jaw fixedly coupled to the second joint structure, the moveable jaw comprising an open position and a closed position, and an actuation structure operably coupled to the moveable jaw. The housing comprises a first joint structure and a second joint structure. The first joint structure comprises a first strut comprising a first opening, and a second strut comprising a second opening, wherein the second opening comprises a first rotational coupling mechanism. The second joint structure comprises a third strut comprising a third opening, and a fourth strut comprising a fourth opening and a second rotational coupling mechanism. The housing further comprises an actuation mechanism comprising a mechanism body and a button coupled thereto, wherein the mechanism body is disposed through the first, second, third, and fourth openings, wherein the mechanism body is coupled to the rotational coupling mechanism such that the mechanism body is rotationally constrained to the second strut, and wherein the actuation mechanism comprises an undepressed axial position and a depressed axial position. Further, the housing also comprises a locking structure rotationally coupled to a distal end of the mechanism body and detachably coupleable with the second rotational coupling mechanism, wherein the locking structure is coupled to the second rotational coupling mechanism when the actuation mechanism is in the undepressed axial position and wherein the locking structure is not coupled to the second rotational coupling mechanism when the actuation mechanism is in the depressed axial position, wherein the second joint structure is rotatable in relation to the first joint structure when the actuation mechanism is in the depressed axial position.


Example 19 relates to the releasable attachment device according to Example 18, further comprising a coupling component fixedly coupled to the housing, wherein the coupling component comprises a coupling structure constructed and arranged to couple to an external support device.


Example 20 relates to the releasable attachment device according to Example 18, further comprising a tension component operably coupled to the first and second joint structures, wherein the tension component is constructed and arranged to urge the moveable jaw toward the closed position.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of a releasable attachment device, according to one embodiment.



FIG. 1B is a perspective view of the releasable attachment device of FIG. 1A coupled to a flexible support arm, according to one embodiment.



FIG. 1C is a perspective view of the releasable attachment device of FIG. 1A coupled to a flexible support arm and having a robotic device positioned within the jaws of the device, according to one embodiment.



FIG. 1D is a perspective view of the releasable attachment device of FIG. 1A coupled to a rigid support arm and having a robotic device positioned within the jaws of the device, according to one embodiment.



FIG. 2A is a side view of a releasable attachment device, according to one embodiment.



FIG. 2B is another side view of the releasable attachment device of FIG. 2A, according to one embodiment.



FIG. 2C is another side view of the releasable attachment device of FIG. 2A in which the jaws are in the open position, according to one embodiment.



FIG. 3A is a perspective view of a releasable attachment device, according to one embodiment.



FIG. 3B is an exploded schematic view of the various components of the releasable attachment device of FIG. 3A, according to one embodiment.



FIG. 3C is a cross-sectional perspective view of the various components of the releasable attachment device of FIG. 3A, according to one embodiment.



FIG. 4A is a cross-sectional perspective view of the various components of a releasable attachment device coupled to a robotic device, according to one embodiment.



FIG. 4B is a perspective view of the releasable attachment device of FIG. 4A, according to one embodiment.



FIG. 4C is a side view of the releasable attachment device of FIG. 4A, according to one embodiment.





DETAILED DESCRIPTION

The various embodiments disclosed herein relate to a releasable attachment or retention device for stably and removably coupling to a medical device, including, for example, a robotic surgical device.


In one embodiment as shown in FIGS. 1A, 1B, and 10, the attachment device (also referred to herein as a “clamp”) 10 has a fixed or static jaw 12, a moveable or dynamic jaw 14, a hinge or joint 16, an actuation lever 18 coupled to the moveable jaw 14, a latch 40 operably coupled to the moveable jaw 14, and a coupling component or connection 20 for coupling the clamp 10 to a support arm such as a flexible support arm 22 as best shown in FIGS. 1B and 10. The moveable jaw 14 is moveably coupled to the fixed jaw 12 at the joint 16 and rotates in relation to the fixed jaw 12 via the joint 16.


The latch 40 (also referred to herein as an “actuation mechanism,” “release mechanism,” or “release button”) is coupled to the moveable jaw 14 such that the latch 40 can be actuated to release the jaw 14 such that the jaw 14 is moveable in relation to the fixed jaw 12. This relationship between the latch 40 and the moveable jaw 14 will be described in greater detail below according to one embodiment. In certain implementations, the latch 40 can be actuated by depressing the latch 40 to “release” the moveable jaw 14 such that the user can actuate the actuation lever 18 to move the moveable jaw 14 to the desirable position. Alternatively, it is understood that any latch 40 configuration or mechanism can be used such that the latch 40 can be actuated to unlock and/or lock the moveable jaw 14.


In one embodiment, the actuation lever 18 is the proximal portion of a single rod or other structure in which the moveable jaw 14 constitutes the distal end thereof, as shown. Alternatively, the actuation lever 18 can be a separate component that is coupled to the moveable jaw 14 such that actuation of the lever 18 causes movement of the moveable jaw 14.


The flexible support arm 22, according to one implementation, is a known support arm: the Mediflex Flex Arm Plus™. In use, as best shown in FIG. 10, the flexible support arm 22 is coupled at its other end to a base support 24 that is, in turn, coupled to the surgical table 26 as shown. Alternatively, as best shown in FIG. 1D, the clamp 10 can be coupled at the coupling component 20 to a known non-flexible support arm 28. In one embodiment, the non-flexible support arm 28 is a Mediflex Strong Arm™. In a further alternative, the clamp 10 can couple to any known support arm or other type of support device for use with medical devices.


As best shown in FIGS. 1C and 1D, the clamp 10 can be used to removably attach to a medical device. That is, the jaws 12, 14 define a space therebetween into which a target device can be positioned for coupling thereto. For example, in FIG. 1C, the jaws 12, 14 of the clamp 10 are positioned around the robotic device 30 as shown such that a portion of the robotic device 30 is disposed within the space defined between the jaws 12, 14 such that the jaws 12, 14 retain the device 30 therebetween. According to another example as shown in FIG. 1D, the jaws 12, 14 of the clamp 10 are positioned around a different device 32. It is understood that the various clamp embodiments herein can be used to removably attach to any medical device, including any of the various medical devices and systems disclosed in U.S. Pat. No. 8,968,332 (issued on Mar. 3, 2015 and entitled “Magnetically Coupleable Robotic Devices and Related Methods”), U.S. Pat. No. 8,834,488 (issued on Sep. 16, 2014 and entitled “Magnetically Coupleable Surgical Robotic Devices and Related Methods”), U.S. patent application Ser. No. 14/617,232 (filed on Feb. 9, 2015 and entitled “Robotic Surgical Devices and Related Methods”), U.S. Pat. No. 9,579,088 (issued on Feb. 28, 2017 and entitled “Methods, Systems, and Devices for Surgical Visualization and Device Manipulation”), U.S. Pat. No. 8,343,171 (issued on Jan. 1, 2013 and entitled “Methods and Systems of Actuation in Robotic Devices”), U.S. Pat. No. 8,828,024 (issued on Sep. 9, 2014 and entitled “Methods and Systems of Actuation in Robotic Devices”), U.S. patent application Ser. No. 14/454,035 (filed Aug. 7, 2014 and entitled “Methods and Systems of Actuation in Robotic Devices”), U.S. patent application Ser. No. 12/192,663 (filed Aug. 15, 2008 and entitled Medical Inflation, Attachment, and Delivery Devices and Related Methods”), U.S. patent application Ser. No. 15/018,530 (filed Feb. 8, 2016 and entitled “Medical Inflation, Attachment, and Delivery Devices and Related Methods”), U.S. Pat. No. 8,974,440 (issued on Mar. 10, 2015 and entitled “Modular and Cooperative Medical Devices and Related Systems and Methods”), U.S. Pat. No. 8,679,096 (issued on Mar. 25, 2014 and entitled “Multifunctional Operational Component for Robotic Devices”), U.S. Pat. No. 9,179,981 (issued on Nov. 10, 2015 and entitled “Multifunctional Operational Component for Robotic Devices”), U.S. patent application Ser. No. 14/936,234 (filed on Nov. 9, 2015 and entitled “Multifunctional Operational Component for Robotic Devices”), U.S. Pat. No. 8,894,633 (issued on Nov. 25, 2014 and entitled “Modular and Cooperative Medical Devices and Related Systems and Methods”), U.S. Pat. No. 8,968,267 (issued on Mar. 3, 2015 and entitled “Methods and Systems for Handling or Delivering Materials for Natural Orifice Surgery”), U.S. Pat. No. 9,060,781 (issued on Jun. 23, 2015 and entitled “Methods, Systems, and Devices Relating to Surgical End Effectors”), U.S. patent application Ser. No. 14/745,487 (filed on Jun. 22, 2015 and entitled “Methods, Systems, and Devices Relating to Surgical End Effectors”), U.S. Pat. No. 9,089,353 (issued on Jul. 28, 2015 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 14/800,423 (filed on Jul. 15, 2015 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 13/573,849 (filed Oct. 9, 2012 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 13/738,706 (filed Jan. 10, 2013 and entitled “Methods, Systems, and Devices for Surgical Access and Insertion”), U.S. patent application Ser. No. 13/833,605 (filed Mar. 15, 2013 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 14/661,465 (filed Mar. 18, 2015 and entitled “Methods, Systems, and Devices for Surgical Access and Insertion”), U.S. Pat. No. 9,498,292 (issued on Nov. 22, 2016 and entitled “Single Site Robotic Devices and Related Systems and Methods”), U.S. patent application Ser. No. 15/357,663 (filed Nov. 21, 2016 and entitled “Single Site Robotic Devices and Related Systems and Methods”), U.S. Pat. No. 9,010,214 (issued on Apr. 21, 2015 and entitled “Local Control Robotic Surgical Devices and Related Methods”), U.S. patent application Ser. No. 14/656,109 (filed on Mar. 12, 2015 and entitled “Local Control Robotic Surgical Devices and Related Methods”), U.S. patent application Ser. No. 14/208,515 (filed Mar. 13, 2014 and entitled “Methods, Systems, and Devices Relating to Robotic Surgical Devices, End Effectors, and Controllers”), U.S. patent application Ser. No. 14/210,934 (filed Mar. 14, 2014 and entitled “Methods, Systems, and Devices Relating to Force Control Surgical Systems), U.S. patent application Ser. No. 14/212,686 (filed Mar. 14, 2014 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 14/334,383 (filed Jul. 17, 2014 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 14/853,477 (filed Sep. 14, 2015 and entitled “Quick-Release End Effectors and Related Systems and Methods”), U.S. patent application Ser. No. 14/938,667 (filed Nov. 11, 2015 and entitled “Robotic Device with Compact Joint Design and Related Systems and Methods”), U.S. patent application Ser. No. 15/227,813 (filed Aug. 3, 2016 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 15/599,231 (filed May 18, 2017 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. patent application Ser. No. 15/691,087 (filed Aug. 30, 2017 and entitled “Robotic Device with Compact Joint Design and an Additional Degree of Freedom and Related Systems and Methods”), U.S. Patent Application 62/425,149 (filed Nov. 22, 2016 and entitled “Improved Gross Positioning Device and Related Systems and Methods”), U.S. Patent Application 62/433,837 (filed Dec. 14, 2016 and entitled “Releasable Attachment Device for Coupling to Medical Devices and Related Systems and Methods”), and U.S. Pat. No. 7,492,116 (filed on Oct. 31, 2007 and entitled “Robot for Surgical Applications”), U.S. Pat. No. 7,772,796 (filed on Apr. 3, 2007 and entitled “Robot for Surgical Applications”), and U.S. Pat. No. 8,179,073 (issued May 15, 2011, and entitled “Robotic Devices with Agent Delivery Components and Related Methods”), all of which are hereby incorporated herein by reference in their entireties.


In use, as best shown in FIGS. 2A-2C, the device 10 can be used to removably attach to a robotic surgical device (such as devices 30, 32 or any other known device that can benefit from being coupled to a support arm, such as either of arms 22, 28 or any other known support device). In certain implementations, the jaws 12, 14 are configured to be positioned in grooves or channels defined in the robotic device. For example, FIGS. 4A and 4B depict a surgical device body 44 having a groove 46 defined therein as shown. The groove 46 is sized and configured to receive the jaws 12, 14 as shown.


Returning to FIGS. 2A-2C, the jaws 12, 14 of the device 10 have three main positions or configurations. The placement/removal (or “open”) position is depicted in FIG. 2C, and it is the position in which the moveable jaw 14 is disposed at its widest configuration. That is, the moveable jaw 14 is disposed at the greatest possible distance from the fixed jaw 12 such that the space between them is the largest amount of any position. According to one embodiment, the moveable jaw 14 can be actuated to move into this open position by a user actuating both the depressable latch (or “button”) and the actuation lever 18, as will be described in further detail below.


Another position is the fixed (also referred to as “closed” or “locked”) position in which the jaws 12, 14 are at the closest possible proximity to each other. Once the device 10 is positioned with the jaws 12, 14 around the device body (such as body 44) while in the open configuration, the jaws 12, 14 can be moved into the closed position such that the jaws 12, 14 are disposed within the groove (such as groove 46) and securely disposed against the walls of the groove such that the body is held securely between the jaws 12, 14 and cannot move in relation to the jaws 12, 14. That is, the body cannot rotate or translate in relation to the jaws 12, 14. Alternatively, a device body without a groove can also be held by the jaws 12, 14 in the closed position.


The third position is the loosely closed (or “partially closed” or “relaxed”) configuration in which the jaws 12, 14 are disposed close enough to each other in order to be disposed within the channel (such as channel 46) of the device body (such as body 44) for those devices having a groove, but with the jaws 12, 14 being sufficiently moveable in relation to each other such that the device body is rotatable in relation to the jaws 12, 14. That is, the jaws 12, 14 are disposed within the channel, but are not in sufficient contact with the walls of the channel to result in the necessary friction between the jaws 12, 14 and the walls to prevent the device body from rotatably moving in relation to the jaws 12, 14. This allows the device 10 to retain the surgical device in place while also allowing the surgical device to be rotated around the longitudinal axis of the device body. In certain implementations, this loosely closed configuration allows for the device body (such as body 44) to rotate up to, including, or more than 360°.


The various components that allow for the device 10 and the jaws 12, 14 to operate as described above will now be discussed in relation to FIGS. 3A-3C, according to one embodiment. The jaws 12, 14 are moveably coupled to each other via the first 16A and second 16B joint components that are coupled to and move in relation to each other. That is, the fixed jaw 12 is coupled to the first joint component (also referred to as a “first joint structure” and a “first joint bracket”) 16A and the moveable jaw 14 is coupled to the second joint component (also referred to as a “second joint structure” and a “second joint bracket”) 16B. The first bracket 16A has first and second struts that define two openings 52A, 52B, respectively that are aligned axially with each other such that the two openings 52A, 52B can form a single opening defined by the bracket 16A. Similarly, the second bracket 16B has first and second struts that define two openings 54A, 54B, respectively, that are aligned axially with each other such that the two openings 54A, 54B can form a single opening defined by the bracket 16B. The two joint components 16A, 16B are coupled to each other such that the openings 52A, 52B, 54A, 54B in each align along a single axis 50. A spring 42 is disposed within the two joint components 16A, 16B such that the spring 42 is operably coupled to both of the components 16A, 16B. That is, the first leg 42A of the spring 42 is coupled to the first joint component 16A and the second leg 42B is coupled to the second component 16B such that the spring 42 urges the two joint components 16A, 16B such that the jaws 12, 14 are urged toward the closed position. Thus, with no other forces applied to the device 10, the jaws 12, 14 are continuously urged toward the closed configuration by the spring 42.


In certain implementations, disposed through the openings 52A, 52B, 54A, 54B of the joint components 16A, 16B is the latch 40 and related components. The latch 40 has two hex configurations 40A, 40B defined along a distal portion of its length, as best shown in FIGS. 3B and 3C. Alternatively, any shapes that allow for rotational coupling can be envisioned. The latch 40 also has a shoulder 40C defined or otherwise disposed along its length. The first hex configuration 40A can be disposed through and coupled to the hex-shaped opening 56A in the lock ring 56 such that the lock ring 56 and the latch 40 are rotationally constrained in relation to each other permanently. That is, regardless of the axial position of the latch 40, the lock ring 56 remains coupled to and rotationally constrained to the latch 40. Further, the lock ring 56 has projections 56B that can be disposed within the openings 58A, 58B defined in the second joint component 16B such that the lock ring 56 and second joint component 16B are rotationally constrained in relation to each other when the latch 40 is in its non-depressed position. However, the openings 58A, 58B are slightly larger than the projections 56B such that the projections 56B can move within the openings 58A, 58B. For example, the projections 56B can, according to certain embodiments, move within the openings 58A, 58B in relation to the second joint component 16B sufficiently to allow the jaws 12, 14 to move in relation to each other enough to allow the device body (such as body 44) to rotate in relation to the jaws 12, 14 but not so much that the jaws 12, 14 are no longer disposed in the channel (such as channel 46) in the device body. The second hex configuration 40B can be disposed through and coupled to the hex-shaped opening 52B in the first joint component 16A such that the joint component 16A and the latch 40 are rotationally constrained in relation to each other permanently. That is, the latch 40 remains rotationally constrained to the joint component 16A whether the latch 40 is in its depressed position or its non-depressed position. The latch 40 is retained in its coupling to the two joint components 16A, 16B via the attachment screw 60 that is coupled to the distal end of the latch 40. Alternatively, the latch 40 can be similarly coupled to the various components discussed above utilizing any known configurations or mechanisms.


In this specific embodiment, the latch 40 can be moved in a translational fashion (axially) by depressing the top portion (the button portion) of the latch 40. The latch 40 is continuously urged upward away from the two joint components 16A, 16B by the spring 62 that is disposed around the latch 40 and between the bottom portion of the first joint component 16A and the shoulder 40C of the latch 40. That is, the spring 62 is tensioned such that it is constantly urging the shoulder 40C and thus the latch 40 away from the bottom portion of the first joint component 16A. As such, with no outside force (such as a user's finger or thumb depressing the latch 40 downward), the default state of the latch 40 is the upward or undepressed position in which the two protrusions 56B are disposed within the openings 58A, 58B of the bottom portion of the second joint component 16B, thereby resulting in the second joint component 16B being rotationally constrained to the lock ring 56. Thus, when the latch 40 is in its undepressed position such that the second joint component 16B is rotationally constrained to the lock ring 56, the moveable jaw 14 that is coupled to the second joint component 16B is rotationally constrained as well. As a result, the default state of the device 10 is for the second joint component 16B to be rotationally constrained to the lock ring 56 and therefore only able to move in relation to the first joint component 16A by the amount of space between the protrusions 56B and the openings 58A, 58B as described above, thus resulting in the device 10 being in the relaxed configuration as described above. This relaxed configuration can be utilized by a user depressing the actuation lever 18, thereby urging the jaw 14 away from the jaw 12 by the amount of distance allowed by the additional space between the projections 56B and the openings 58A, 58B, which can eliminate the frictional force between the jaws 12, 14 and the device body, thereby allowing rotation of the body in relation to the jaws 12, 14. On the other hand, if the user is not depressing the actuation lever 18, the spring 42 is urging the jaws 12, 14 together, creating frictional force between the jaws 12, 14 and the device body, thereby resulting in the locked configuration.


To actuate the device 10 to move into the open configuration, according to one embodiment, the user can depress the latch 40, which urges the latch 40 distally, which causes the lock ring 56 to move distally, thereby urging the projections 56B out of the openings 58A, 58B, which “uncouples” the second joint component 16B from the lock ring 56. Once the projections 56B are no longer disposed within the openings 58A, 58B, the lock ring 56 is no longer rotationally constrained to the second joint component 16B, thereby allowing the second joint component 16B to rotate in relation to the first joint component 16A such that the jaw 14 can be moved into the open configuration as discussed above.


It is understood that the two jaws 12, 14 depicted can be replaced with jaws of any shape or configuration. As such, the jaws 12, 14 can couple to device bodies of any known shape or configuration.


Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims
  • 1. A releasable attachment device for use with surgical tools, the device comprising: (a) a joint housing comprising: a first joint structure comprising a first opening defined therethrough; and(ii) a second joint structure comprising a second opening defined therethrough and at least one rotational coupling mechanism defined therein;(iii) an actuation mechanism disposed through the first and second openings, wherein the actuation mechanism is rotationally coupled to the first joint structure and wherein the actuation mechanism comprises an undepressed axial position and a depressed axial position; and(iv) a locking structure rotationally coupled to a distal end of the actuation mechanism and detachably coupleable with the at least one rotational coupling mechanism;(b) a first jaw operably coupled to the first joint structure;(c) a second jaw operably coupled to the second joint structure; and(d) an actuation structure operably coupled to the second jaw.
  • 2. The releasable attachment device of claim 1, further comprising a coupling component fixedly coupled to the joint housing, wherein the coupling component comprises a coupling structure constructed and arranged to couple to an external support device.
  • 3. The releasable attachment device of claim 1, further comprising a tension component operably coupled to the first joint structure and the second joint structure, wherein the tension component is constructed and arranged to urge the second jaw toward a closed position.
  • 4. The releasable attachment device of claim 1, further comprising a tension component operably coupled to the actuation mechanism, wherein the tension component is constructed and arranged to urge the actuation mechanism toward the undepressed axial position.
  • 5. The releasable attachment device of claim 1, wherein the first jaw and second jaw are constructed and arranged to couple with a surgical tool in a groove defined around an outer surface of the surgical tool.
  • 6. The releasable attachment device of claim 1, wherein the depressed axial position comprises the actuation mechanism positioned distally in relation to the undepressed axial position.
  • 7. The releasable attachment device of claim 1, wherein the locking structure is coupled to the at least one rotational coupling mechanism when the actuation mechanism is in the undepressed axial position and wherein the locking structure is not coupled to the at least one rotational coupling mechanism when the actuation mechanism is in the depressed axial position.
  • 8. The releasable attachment device of claim 1, wherein the second joint structure is rotatable in relation to the first joint structure when the actuation mechanism is in the depressed axial position.
  • 9. A releasable attachment device for use with surgical tools, the device comprising: (a) a housing comprising: (i) a first joint structure comprising: (A) a first strut comprising a first opening; and(B) a second strut comprising a second opening, wherein the second opening comprises a first rotational coupling mechanism;(ii) a second joint structure comprising (A) a third strut comprising a third opening; and(B) a fourth strut comprising a fourth opening and a second rotational coupling mechanism;(iii) an actuation mechanism comprising a mechanism body and a button coupled thereto, wherein the mechanism body is disposed through the first, second, third, and fourth openings, wherein the mechanism body is coupled to the rotational coupling mechanism such that the mechanism body is rotationally constrained to the second strut, and wherein the actuation mechanism comprises an undepressed axial position and a depressed axial position; and(iv) a locking structure rotationally coupled to a distal end of the mechanism body and detachably coupleable with the second rotational coupling mechanism, wherein the locking structure is coupled to the second rotational coupling mechanism when the actuation mechanism is in the undepressed axial position and wherein the locking structure is not coupled to the second rotational coupling mechanism when the actuation mechanism is in the depressed axial position,wherein the second joint structure is rotatable in relation to the first joint structure when the actuation mechanism is in the depressed axial position;(b) a first jaw operably coupled to the first joint structure;(c) a second jaw operably coupled to the second joint structure; and(d) an actuation structure operably coupled to the second jaw.
  • 10. The releasable attachment device of claim 9, further comprising a coupling component fixedly coupled to the housing, wherein the coupling component comprises a coupling structure constructed and arranged to couple to an external support device.
  • 11. The releasable attachment device of claim 9, further comprising a tension component operably coupled to the first and second joint structures, wherein the tension component is constructed and arranged to urge the second jaw toward a closed position.
  • 12. A releasable attachment device for use with surgical tools, the device comprising: (a) a joint housing comprising: a stationary joint structure comprising a first opening defined therethrough;(ii) a pivotable joint structure comprising a second opening defined therethrough and at least one coupling mechanism defined therein;(iii) an actuation mechanism disposed through the first and second openings, wherein the actuation mechanism is operably coupled to the stationary joint structure; and(iv) a locking structure operably coupled to a distal end of the actuation mechanism and detachably couplable with the at least one coupling mechanism;(b) a first jaw operably coupled to the stationary joint structure;(c) a second jaw operably coupled to the pivotable joint structure; and(d) an actuation structure operably coupled to the second jaw.
  • 13. The releasable attachment device of claim 12, further comprising a coupling component fixedly coupled to the joint housing, wherein the coupling component comprises a coupling structure constructed and arranged to couple to an external support device.
  • 14. The releasable attachment device of claim 12, further comprising a tension component operably coupled to the joint housing, wherein the tension component is constructed and arranged to urge the second jaw toward a closed position.
  • 15. The releasable attachment device of claim 12, further comprising a tension component operably coupled to the actuation mechanism, wherein the tension component is constructed and arranged to urge the actuation mechanism toward the locked position.
  • 16. The releasable attachment device of claim 12, wherein the first jaw and second jaw are constructed and arranged to couple with a surgical tool in a groove defined around an outer surface of the surgical tool.
  • 17. The releasable attachment device of claim 12, wherein: (a) the at least one coupling mechanism of the pivotable joint structure is a rotational coupling mechanism;(b) the actuation mechanism is rotationally coupled to the first joint structure; and(c) the locking structure is rotationally coupled to the distal end of the actuation mechanism and detachably couplable with the at least one rotational coupling mechanism.
  • 18. The releasable attachment device of claim 12, wherein the released position comprises the actuation mechanism positioned distally in relation to the locked position.
  • 19. The releasable attachment device of claim 12, wherein the locking structure is coupled to the at least one operable coupling mechanism when the actuation mechanism is in the locked position and wherein the locking structure is not coupled to the at least one operable coupling mechanism when the actuation mechanism is in the released position.
  • 20. The releasable attachment device of claim 12, wherein the pivotable joint structure is operable in relation to the stationary joint structure when the actuation mechanism is in the released position.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority as a continuation application to U.S. application Ser. No. 15/842,230, filed on Dec. 14, 2017 and entitled “Releasable Attachment Device for Coupling to Medical Devices and Related Systems and Methods,” which claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application 62/433,837, filed Dec. 14, 2016 and entitled “Releasable Attachment Device for Coupling to Medical Devices and Related Systems and Methods,” both of which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (563)
Number Name Date Kind
3870264 Robinson Mar 1975 A
3989952 Timberlake et al. Nov 1976 A
4246661 Pinson Jan 1981 A
4258716 Sutherland Mar 1981 A
4278077 Mizumoto Jul 1981 A
4538594 Boebel et al. Sep 1985 A
4568311 Miyaki Feb 1986 A
4623183 Aomori Nov 1986 A
4736645 Zimmer Apr 1988 A
4771652 Zimmer Sep 1988 A
4852391 Ruch et al. Aug 1989 A
4896015 Taboada et al. Jan 1990 A
4897014 Tietze Jan 1990 A
4922755 Oshiro et al. May 1990 A
4922782 Kawai May 1990 A
4990050 Tsuge et al. Feb 1991 A
5007550 Avot Apr 1991 A
5019968 Wang et al. May 1991 A
5030365 Christensen et al. Jul 1991 A
5063095 Kitagawa et al. Nov 1991 A
5066090 Mayerhofer et al. Nov 1991 A
5108140 Bartholet Apr 1992 A
5139563 Astles et al. Aug 1992 A
5172639 Wiesman et al. Dec 1992 A
5176649 Wakabayashi Jan 1993 A
5178032 Zona et al. Jan 1993 A
5187796 Wang et al. Feb 1993 A
5195388 Zona et al. Mar 1993 A
5201325 McEwen et al. Apr 1993 A
5217003 Wilk Jun 1993 A
5263382 Brooks et al. Nov 1993 A
5271384 McEwen et al. Dec 1993 A
5284096 Pelrine et al. Feb 1994 A
5297443 Wentz Mar 1994 A
5297536 Wilk Mar 1994 A
5304899 Sasaki et al. Apr 1994 A
5307447 Asano et al. Apr 1994 A
5353807 DeMarco Oct 1994 A
5363935 Schempf et al. Nov 1994 A
5382885 Salcudean et al. Jan 1995 A
5441494 Oritz Jan 1995 A
5388528 Pelrine et al. Feb 1995 A
5436542 Petelin et al. Jul 1995 A
5450104 Kisa et al. Sep 1995 A
5451027 Mchenry Sep 1995 A
5454758 Tophinke et al. Oct 1995 A
5458131 Wilk Oct 1995 A
5458583 McNeely et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5459926 Perea Oct 1995 A
5463361 Allen Oct 1995 A
5468203 Okonkwo Nov 1995 A
5468265 Adams Nov 1995 A
5470236 Wissler Nov 1995 A
5471515 Fossum et al. Nov 1995 A
5491691 Shtayer et al. Feb 1996 A
5491701 Zook Feb 1996 A
5497651 Matter et al. Mar 1996 A
5515478 Wang May 1996 A
5524180 Wang et al. Jun 1996 A
5553198 Wang et al. Sep 1996 A
5562448 Mushabac Oct 1996 A
5588442 Scovil et al. Dec 1996 A
5620417 Jang et al. Apr 1997 A
5623582 Rosenberg Apr 1997 A
5624380 Takayama et al. Apr 1997 A
5624398 Smith et al. Apr 1997 A
5632761 Smith et al. May 1997 A
5645520 Nakamura et al. Jul 1997 A
5657429 Wang et al. Aug 1997 A
5657584 Hamlin Aug 1997 A
5672168 de la Torre et al. Sep 1997 A
5674030 Sigel Oct 1997 A
5728599 Rosteker et al. Mar 1998 A
5736821 Suyama et al. Apr 1998 A
5754741 Wang et al. May 1998 A
5762458 Wang et al. Jun 1998 A
5769640 Jacobus et al. Jun 1998 A
5791231 Cohn et al. Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5792663 Fry et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5807377 Madhani et al. Sep 1998 A
5808665 Green Sep 1998 A
5815640 Wang et al. Sep 1998 A
5825982 Wright et al. Oct 1998 A
5841950 Wang et al. Nov 1998 A
5845646 Lemelson Dec 1998 A
5855583 Wang et al. Jan 1999 A
5876325 Mizuno et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5878783 Smart Mar 1999 A
5895417 Pomeranz et al. Apr 1999 A
5906591 Dario et al. May 1999 A
5907664 Wang et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5911036 Wright et al. Jun 1999 A
5971976 Wang et al. Oct 1999 A
5993467 Yoon Nov 1999 A
6001108 Wang et al. Dec 1999 A
6007550 Wang et al. Dec 1999 A
6030365 Laufer Feb 2000 A
6031371 Smart Feb 2000 A
6058323 Lemelson May 2000 A
6063095 Wang et al. May 2000 A
6066090 Yoon May 2000 A
6086529 Arndt Jul 2000 A
6102850 Wang et al. Aug 2000 A
6107795 Smart Aug 2000 A
6132368 Cooper Oct 2000 A
6132441 Grace Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6156006 Brosens et al. Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6162171 Ng et al. Dec 2000 A
D438617 Cooper et al. Mar 2001 S
6206903 Ramans Mar 2001 B1
D441076 Cooper et al. Apr 2001 S
6223100 Green Apr 2001 B1
D441862 Cooper et al. May 2001 S
6238415 Sepetka et al. May 2001 B1
6240312 Alfano et al. May 2001 B1
6241730 Alby Jun 2001 B1
6244809 Wang et al. Jun 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
D444555 Cooper et al. Jul 2001 S
6286514 Lemelson Sep 2001 B1
6292678 Hall et al. Sep 2001 B1
6293282 Lemelson Sep 2001 B1
6296635 Smith et al. Oct 2001 B1
6307447 Barber et al. Oct 2001 B1
6309397 Julian et al. Oct 2001 B1
6309403 Minor et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6321106 Lemelson Nov 2001 B1
6327492 Lemelson Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6346072 Cooper Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6382885 Isaksson May 2002 B2
6388528 Buer et al. May 2002 B1
6394998 Wallace et al. May 2002 B1
6398726 Ramans et al. Jun 2002 B1
6400980 Lemelson Jun 2002 B1
6408224 Lemelson Jun 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
6432112 Brock et al. Aug 2002 B2
6436107 Wang et al. Aug 2002 B1
6441577 Blumenkranz et al. Aug 2002 B2
6450104 Grant et al. Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6454758 Thompson et al. Sep 2002 B1
6458131 Ray Oct 2002 B1
6458583 Bruhn et al. Oct 2002 B1
6459926 Nowlin et al. Oct 2002 B1
6463361 Wang et al. Oct 2002 B1
6468203 Belson Oct 2002 B2
6468265 Evans et al. Oct 2002 B1
6470236 Ohtsuki Oct 2002 B2
6491691 Morley et al. Dec 2002 B1
6491701 Nemeyer et al. Dec 2002 B2
6493608 Niemeyer et al. Dec 2002 B1
6496099 Wang et al. Dec 2002 B2
6497651 Kan et al. Dec 2002 B1
6508413 Bauer et al. Jan 2003 B2
6512345 Borenstein Jan 2003 B2
6515478 Wicklow et al. Feb 2003 B1
6522906 Salisbury, Jr. et al. Feb 2003 B1
6544276 Azizi Apr 2003 B1
6548982 Papanikolopoulos et al. Apr 2003 B1
6554790 Moll Apr 2003 B1
6562448 Chamberlain et al. May 2003 B1
6565554 Niemeyer May 2003 B1
6574355 Green Jun 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6588442 Babin Jul 2003 B2
6591239 McCall et al. Jul 2003 B1
6594552 Nowlin et al. Jul 2003 B1
6610007 Belson et al. Aug 2003 B2
6620173 Gerbi et al. Sep 2003 B2
6624398 Sherrill et al. Sep 2003 B2
6632761 Ushita et al. Oct 2003 B1
6642836 Wang et al. Nov 2003 B1
6645196 Nixon et al. Nov 2003 B1
6646541 Wang et al. Nov 2003 B1
6648814 Kim et al. Nov 2003 B2
6657584 Cavallaro et al. Dec 2003 B2
6659939 Moll et al. Dec 2003 B2
6661571 Shioda et al. Dec 2003 B1
6671581 Niemeyer et al. Dec 2003 B2
6676684 Morley et al. Jan 2004 B1
6684129 Salisbury, Jr. et al. Jan 2004 B2
6685648 Flaherty et al. Feb 2004 B2
6685698 Morley et al. Feb 2004 B2
6687571 Byrne et al. Feb 2004 B1
6692485 Brock et al. Feb 2004 B1
6699177 Wang et al. Mar 2004 B1
6699235 Wallace et al. Mar 2004 B2
6702734 Kim et al. Mar 2004 B2
6702805 Stuart Mar 2004 B1
6714839 Salisbury, Jr. et al. Mar 2004 B2
6714841 Wright et al. Mar 2004 B1
6719684 Kim et al. Apr 2004 B2
6720988 Gere et al. Apr 2004 B1
6726699 Wright et al. Apr 2004 B1
6728599 Wright et al. Apr 2004 B2
6730021 Vassiliades, Jr. et al. May 2004 B2
6731988 Green May 2004 B1
6736821 Squires et al. May 2004 B2
6746443 Morley et al. Jun 2004 B1
6754741 Alexander et al. Jun 2004 B2
6764441 Chiel et al. Jul 2004 B2
6764445 Ramans et al. Jul 2004 B2
6766204 Niemeyer et al. Jul 2004 B2
6770081 Cooper et al. Aug 2004 B1
6774597 Borenstein Aug 2004 B1
6776165 Jin Aug 2004 B2
6780184 Tanrisever Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6785593 Wang et al. Aug 2004 B2
6788018 Blumenkranz Sep 2004 B1
6791231 Chang Sep 2004 B2
6792135 Toyama Sep 2004 B1
6792663 Krzyzanowski Sep 2004 B2
6793653 Sanchez et al. Sep 2004 B2
6799065 Niemeyer Sep 2004 B1
6799088 Wang et al. Sep 2004 B2
6801325 Farr et al. Oct 2004 B2
6804581 Wang et al. Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6815640 Spear et al. Nov 2004 B1
6817972 Snow Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6817975 Farr et al. Nov 2004 B1
6820653 Schempf et al. Nov 2004 B1
6824508 Kim et al. Nov 2004 B2
6824510 Kim et al. Nov 2004 B2
6832988 Sprout Dec 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6836703 Wang et al. Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837883 Moll et al. Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6845646 Goto Jan 2005 B2
6852107 Wang et al. Feb 2005 B2
6855583 Krivokapic et al. Feb 2005 B1
6858003 Evans et al. Feb 2005 B2
6860346 Burt et al. Mar 2005 B2
6860877 Sanchez et al. Mar 2005 B1
6866671 Tierney et al. Mar 2005 B2
6870343 Borenstein et al. Mar 2005 B2
6871117 Wang et al. Mar 2005 B2
6871563 Choset et al. Mar 2005 B2
6878783 Yeager et al. Apr 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892112 Wang et al. May 2005 B2
6895417 Obara et al. May 2005 B2
6899705 Niemeyer May 2005 B2
6902560 Morley et al. Jun 2005 B1
6905460 Wang et al. Jun 2005 B2
6905491 Wang et al. Jun 2005 B1
6911036 Douk et al. Jun 2005 B2
6911916 Wang et al. Jun 2005 B1
6917176 Schempf et al. Jul 2005 B2
6933695 Blumenkranz Aug 2005 B2
6936001 Snow Aug 2005 B1
6936003 Iddan Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6943663 Wang et al. Sep 2005 B2
6949096 Davison et al. Sep 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6965812 Wang et al. Nov 2005 B2
6974411 Belson Dec 2005 B2
6974449 Niemeyer Dec 2005 B2
6979423 Moll Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6984205 Gazdzinski Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6993413 Sunaoshi Jan 2006 B2
6994703 Wang et al. Feb 2006 B2
6994708 Manzo Feb 2006 B2
6997908 Carrillo, Jr. et al. Feb 2006 B2
7025064 Wang et al. Apr 2006 B2
7027892 Wang et al. Apr 2006 B2
7033344 Imran Apr 2006 B2
7039453 Mullick May 2006 B2
7042184 Oleynikov et al. May 2006 B2
7048745 Tierney et al. May 2006 B2
7053752 Wang et al. May 2006 B2
7063682 Whayne et al. Jun 2006 B1
7066879 Fowler et al. Jun 2006 B2
7066926 Wallace et al. Jun 2006 B2
7074179 Wang et al. Jul 2006 B2
7077446 Kameda et al. Jul 2006 B2
7083571 Wang et al. Aug 2006 B2
7083615 Peterson et al. Aug 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7105000 McBrayer Sep 2006 B2
7107090 Salisbury, Jr. et al. Sep 2006 B2
7109678 Kraus et al. Sep 2006 B2
7118582 Wang et al. Oct 2006 B1
7121781 Sanchez et al. Oct 2006 B2
7125403 Julian et al. Oct 2006 B2
7126303 Farritor et al. Oct 2006 B2
7147650 Lee Dec 2006 B2
7155315 Niemeyer et al. Dec 2006 B2
7166113 Arambula et al. Jan 2007 B2
7169141 Brock et al. Jan 2007 B2
7182025 Ghorbel et al. Feb 2007 B2
7182089 Ries Feb 2007 B2
7199545 Oleynikov et al. Apr 2007 B2
7206626 Quaid, III Apr 2007 B2
7206627 Abovitz et al. Apr 2007 B2
7210364 Ghorbel et al. May 2007 B2
7214230 Brock et al. May 2007 B2
7217240 Snow May 2007 B2
7239940 Wang et al. Jul 2007 B2
7250028 Julian et al. Jul 2007 B2
7259652 Wang et al. Aug 2007 B2
7273488 Nakamura et al. Sep 2007 B2
7311107 Harel et al. Dec 2007 B2
7339341 Oleynikov et al. Mar 2008 B2
7372229 Farritor et al. May 2008 B2
7447537 Funda et al. Nov 2008 B1
7492116 Oleynikov et al. Feb 2009 B2
7566300 Devierre et al. Jul 2009 B2
7574250 Niemeyer Aug 2009 B2
7588537 Bass Sep 2009 B2
7637905 Saadat et al. Dec 2009 B2
7645230 Mikkaichi et al. Jan 2010 B2
7655004 Long Feb 2010 B2
7670329 Flaherty et al. Mar 2010 B2
7672168 Tanaka et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7731727 Sauer Jun 2010 B2
7762825 Burbank et al. Jul 2010 B2
7772796 Farritor et al. Aug 2010 B2
7785251 Wilk Aug 2010 B2
7785333 Miyamoto et al. Aug 2010 B2
7789825 Nobis et al. Sep 2010 B2
7794494 Sahatjian et al. Sep 2010 B2
7799088 Geitz Sep 2010 B2
7865266 Moll et al. Jan 2011 B2
7960935 Farritor et al. Jun 2011 B2
8021358 Doyle et al. Sep 2011 B2
8179073 Farritor et al. May 2012 B2
8182469 Anderson et al. May 2012 B2
8231510 Abdo Jul 2012 B2
8231610 Jo et al. Jul 2012 B2
8353897 Doyle et al. Jan 2013 B2
8604742 Farritor et al. Dec 2013 B2
9089353 Farritor et al. Jul 2015 B2
9649020 Finlay May 2017 B2
11357595 Reichenbach et al. Jun 2022 B2
20010018591 Brock et al. Aug 2001 A1
20010049497 Kalloo et al. Dec 2001 A1
20020003173 Bauer et al. Jan 2002 A1
20020013601 Nobles et al. Jan 2002 A1
20020026186 Woloszko et al. Feb 2002 A1
20020038077 de la Torre et al. Mar 2002 A1
20020065507 Zando-Azizi May 2002 A1
20020091374 Cooper Jun 2002 A1
20020103417 Gazdzinski Aug 2002 A1
20020111535 Kim et al. Aug 2002 A1
20020120254 Julian et al. Aug 2002 A1
20020128552 Nowlin et al. Sep 2002 A1
20020140392 Borenstein et al. Oct 2002 A1
20020147487 Sundquist et al. Oct 2002 A1
20020151906 Demarais et al. Oct 2002 A1
20020156347 Kim et al. Oct 2002 A1
20020171385 Kim et al. Nov 2002 A1
20020173700 Kim et al. Nov 2002 A1
20020190682 Schempf et al. Dec 2002 A1
20030020810 Takizawa et al. Jan 2003 A1
20030045888 Brock et al. Mar 2003 A1
20030065250 Chiel et al. Apr 2003 A1
20030089267 Ghorbel et al. May 2003 A1
20030092964 Kim et al. May 2003 A1
20030097129 Davison et al. May 2003 A1
20030100817 Wang et al. May 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030135203 Wang et al. Jun 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030144656 Deel et al. Jul 2003 A1
20030159535 Grover et al. Aug 2003 A1
20030167000 Mullick Sep 2003 A1
20030172871 Scherer Sep 2003 A1
20030179308 Zamorano et al. Sep 2003 A1
20030181788 Yokoi et al. Sep 2003 A1
20030191455 Sanchez et al. Oct 2003 A1
20030229268 Uchiyama et al. Dec 2003 A1
20030229338 Irion et al. Dec 2003 A1
20030230372 Schmidt Dec 2003 A1
20040024311 Quaid Feb 2004 A1
20040034282 Quaid Feb 2004 A1
20040034283 Quaid Feb 2004 A1
20040034302 Abovitz et al. Feb 2004 A1
20040050394 Jin Mar 2004 A1
20040070822 Shioda et al. Apr 2004 A1
20040099175 Perrot et al. May 2004 A1
20040102772 Baxter et al. May 2004 A1
20040106916 Quaid et al. Jun 2004 A1
20040111113 Nakamura et al. Jun 2004 A1
20040117032 Roth Jun 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138552 Harel et al. Jul 2004 A1
20040140786 Borenstein Jul 2004 A1
20040153057 Davison Aug 2004 A1
20040173116 Ghorbel et al. Sep 2004 A1
20040176664 Iddan Sep 2004 A1
20040215331 Chew et al. Oct 2004 A1
20040225229 Viola Nov 2004 A1
20040254680 Sunaoshi Dec 2004 A1
20040267326 Ocel et al. Dec 2004 A1
20050014994 Fowler et al. Jan 2005 A1
20050021069 Feuer et al. Jan 2005 A1
20050029978 Oleynikov et al. Feb 2005 A1
20050043583 Killmann et al. Feb 2005 A1
20050049462 Kanazawa Mar 2005 A1
20050054901 Yoshino Mar 2005 A1
20050054902 Konno Mar 2005 A1
20050064378 Toly Mar 2005 A1
20050065400 Banik et al. Mar 2005 A1
20050083460 Hattori et al. Apr 2005 A1
20050095650 Julius et al. May 2005 A1
20050096502 Khalili May 2005 A1
20050143644 Gilad et al. Jun 2005 A1
20050154376 Riviere et al. Jul 2005 A1
20050165449 Cadeddu et al. Jul 2005 A1
20050234435 Layer Oct 2005 A1
20050283137 Doyle et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20050288665 Woloszko Dec 2005 A1
20060020272 Gildenberg Jan 2006 A1
20060046226 Bergler et al. Mar 2006 A1
20060100501 Berkelman et al. May 2006 A1
20060119304 Farritor et al. Jun 2006 A1
20060149135 Paz Jul 2006 A1
20060152591 Lin Jul 2006 A1
20060155263 Lipow Jul 2006 A1
20060195015 Mullick et al. Aug 2006 A1
20060196301 Oleynikov et al. Sep 2006 A1
20060198619 Oleynikov et al. Sep 2006 A1
20060241570 Wilk Oct 2006 A1
20060241732 Denker Oct 2006 A1
20060253109 Chu Nov 2006 A1
20060258954 Timberlake et al. Nov 2006 A1
20070032701 Fowler et al. Feb 2007 A1
20070043397 Ocel et al. Feb 2007 A1
20070055342 Wu et al. Mar 2007 A1
20070080658 Farritor et al. Apr 2007 A1
20070106113 Ravo May 2007 A1
20070123748 Meglan May 2007 A1
20070135803 Belson Jun 2007 A1
20070142725 Hardin et al. Jun 2007 A1
20070156019 Larkin et al. Jul 2007 A1
20070156211 Ferren et al. Jul 2007 A1
20070167955 De La Menardiere et al. Jul 2007 A1
20070225633 Ferren et al. Sep 2007 A1
20070225634 Ferren et al. Sep 2007 A1
20070241714 Oleynikov et al. Oct 2007 A1
20070244520 Ferren et al. Oct 2007 A1
20070250064 Darois et al. Oct 2007 A1
20070255273 Fernandez et al. Nov 2007 A1
20080004634 Farritor et al. Jan 2008 A1
20080015565 Davison Jan 2008 A1
20080015566 Livneh Jan 2008 A1
20080033569 Ferren et al. Feb 2008 A1
20080045803 Williams et al. Feb 2008 A1
20080058835 Farritor et al. Mar 2008 A1
20080058989 Oleynikov et al. Mar 2008 A1
20080103440 Ferren et al. May 2008 A1
20080109014 de la Pena May 2008 A1
20080111513 Farritor et al. May 2008 A1
20080119870 Williams et al. May 2008 A1
20080132890 Woloszko et al. Jun 2008 A1
20080161804 Rioux et al. Jun 2008 A1
20080164079 Ferren et al. Jul 2008 A1
20080183033 Bern et al. Jul 2008 A1
20080221591 Farritor et al. Sep 2008 A1
20080269557 Marescaux et al. Oct 2008 A1
20080269562 Marescaux et al. Oct 2008 A1
20090012532 Quaid et al. Jan 2009 A1
20090020724 Paffrath Jan 2009 A1
20090024142 Ruiz Morales Jan 2009 A1
20090048612 Farritor et al. Feb 2009 A1
20090054909 Farritor et al. Feb 2009 A1
20090069821 Farritor et al. Mar 2009 A1
20090076536 Rentschler et al. Mar 2009 A1
20090137952 Ramamurthy et al. May 2009 A1
20090143787 De La Pena Jun 2009 A9
20090163929 Yeung et al. Jun 2009 A1
20090171373 Farritor et al. Jul 2009 A1
20090234369 Bax et al. Sep 2009 A1
20090236400 Cole et al. Sep 2009 A1
20090240246 Devill et al. Sep 2009 A1
20090247821 Rogers Oct 2009 A1
20090248038 Blumenkranz et al. Oct 2009 A1
20090281377 Newell et al. Nov 2009 A1
20090305210 Guru et al. Dec 2009 A1
20100010294 Conlon et al. Jan 2010 A1
20100016659 Weitzner et al. Jan 2010 A1
20100016853 Burbank Jan 2010 A1
20100042097 Newton et al. Feb 2010 A1
20100056863 Dejima et al. Mar 2010 A1
20100069710 Yamatani et al. Mar 2010 A1
20100069940 Miller et al. Mar 2010 A1
20100081875 Fowler et al. Apr 2010 A1
20100139436 Kawashima et al. Jun 2010 A1
20100185212 Sholev Jul 2010 A1
20100198231 Manzo et al. Aug 2010 A1
20100204713 Ruiz Morales Aug 2010 A1
20100245549 Allen et al. Sep 2010 A1
20100250000 Blumenkranz et al. Sep 2010 A1
20100262162 Omori Oct 2010 A1
20100292691 Brogna Nov 2010 A1
20100318059 Farritor et al. Dec 2010 A1
20110015569 Kirschenman et al. Jan 2011 A1
20110020779 Hannaford et al. Jan 2011 A1
20110071347 Rogers et al. Mar 2011 A1
20110071544 Steger et al. Mar 2011 A1
20110077478 Freeman et al. Mar 2011 A1
20110082365 Mcgrogan et al. Apr 2011 A1
20110098529 Ostrovsky et al. Apr 2011 A1
20110152615 Schostek et al. Jun 2011 A1
20110224605 Farritor et al. Sep 2011 A1
20110230894 Simaan et al. Sep 2011 A1
20110237890 Farritor et al. Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110264078 Lipow et al. Oct 2011 A1
20110270443 Kamiya et al. Nov 2011 A1
20110276046 Heimbecker et al. Nov 2011 A1
20120029277 Sholev Feb 2012 A1
20120029727 Sholev Feb 2012 A1
20120035582 Nelson et al. Feb 2012 A1
20120109150 Quaid et al. May 2012 A1
20120116362 Kieturakis May 2012 A1
20120179168 Farritor et al. Jul 2012 A1
20120253515 Coste-Maniere et al. Oct 2012 A1
20130041360 Farritor et al. Feb 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130345717 Markvicka et al. Dec 2013 A1
20140039515 Mondry et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140058205 Frederick et al. Feb 2014 A1
20140100587 Farritor et al. Apr 2014 A1
20140249546 Shvartsberg et al. Sep 2014 A1
20140303434 Farritor et al. Oct 2014 A1
20150051446 Farritor et al. Feb 2015 A1
20150297299 Yeung et al. Oct 2015 A1
20160015461 Farritor et al. Jan 2016 A1
20160074055 Ravikumar Mar 2016 A1
20160228154 Mickiewicz et al. Aug 2016 A1
20170035526 Arritor et al. Feb 2017 A1
20170354470 Farritor et al. Dec 2017 A1
20180140377 Reichenbach et al. May 2018 A1
20210045836 Farritor et al. Feb 2021 A1
Foreign Referenced Citations (64)
Number Date Country
102821918 Dec 2012 CN
102010040405 Mar 2012 DE
0105656 Apr 1984 EP
0279591 Aug 1988 EP
1354670 Oct 2003 EP
2286756 Feb 2011 EP
2286756 Feb 2011 EP
2329787 Jun 2011 EP
2563261 Mar 2013 EP
2684528 Jan 2014 EP
2123225 Dec 2014 EP
2815705 Dec 2014 EP
2881046 Oct 2015 EP
2937047 Oct 2015 EP
H04-144533 May 1992 JP
05-115425 May 1993 JP
2006508049 Sep 1994 JP
H06-507809 Sep 1994 JP
H06-508049 Sep 1994 JP
07-016235 Jan 1995 JP
07-136173 May 1995 JP
7306155 Nov 1995 JP
08-224248 Sep 1996 JP
2001500510 Jan 2001 JP
2001505810 May 2001 JP
2002000524 Jan 2002 JP
2003220065 Aug 2003 JP
2004144533 May 2004 JP
2004-180781 Jul 2004 JP
2004322310 Nov 2004 JP
2004329292 Nov 2004 JP
2006507809 Mar 2006 JP
2009106606 May 2009 JP
2010533045 Oct 2010 JP
2010536436 Dec 2010 JP
2011504794 Feb 2011 JP
2011045500 Mar 2011 JP
2011115591 Jun 2011 JP
199221291 May 1991 WO
2001089405 Nov 2001 WO
2002082979 Oct 2002 WO
2002100256 Dec 2002 WO
2005009211 Jul 2004 WO
2005044095 May 2005 WO
2006052927 Aug 2005 WO
2006005075 Jan 2006 WO
2006079108 Jan 2006 WO
2006079108 Jul 2006 WO
2007011654 Jan 2007 WO
2007111571 Oct 2007 WO
2007149559 Dec 2007 WO
2009023851 Feb 2009 WO
2009144729 Dec 2009 WO
2010042611 Apr 2010 WO
2010046823 Apr 2010 WO
2010050771 May 2010 WO
2011075693 Jun 2011 WO
2011118646 Sep 2011 WO
2011135503 Nov 2011 WO
2013009887 Jan 2013 WO
2014011238 Jan 2014 WO
2014160086 Oct 2014 WO
2015088655 Jun 2015 WO
2015132549 Sep 2015 WO
Non-Patent Literature Citations (147)
Entry
Abbott et al., “Design of an Endoluminal NOTES Robotic System,” from the Proceedings of the 2007 IEEE/RSJ Int'l Conf. on Intelligent Robot Systems, San Diego, CA, Oct. 29-Nov. 2, 2007, pp. 410-416.
Allendorf et al., “Postoperative Immune Function Varies Inversely with the Degree of Surgical Trauma in a Murine Model,” Surgical Endoscopy 1997; 11:427-430.
Ang, “Active Tremor Compensation in Handheld Instrument for Microsurgery,” Doctoral Dissertation, tech report CMU-RI-TR-04-28, Robotics Institute, Carnegie Mellon Unviersity, May 2004, 167pp.
Atmel 80C5X2 Core, http://www.atmel.com, 2006, 186pp.
Bailey et al., “Complications of Laparoscopic Surgery,” Quality Medical Publishers, Inc., 1995, 25pp.
Ballantyne, “Robotic Surgery, Telerobotic Surgery, Telepresence, and Telementoring,” Surgical Endoscopy, 2002; 16: 1389-1402.
Bauer et al., “Case Report: Remote Percutaneous Renal Percutaneous Renal Access Using a New Automated Telesurgical Robotic System,” Telemedicine Journal and e-Health 2001; (4): 341-347.
Begos et al., “Laparoscopic Cholecystectomy: From Gimmick to Gold Standard,” J Clin Gastroenterol, 1994; 19(4): 325-330.
Berg et al., “Surgery with Cooperative Robots,” Medicine Meets Virtual Reality, Feb. 2007, 1 pg.
Breda et al., “Future developments and perspectives in laparoscopy,” Eur. Urology 2001; 40(1): 84-91.
Breedveld et al., “Design of Steerable Endoscopes to Improve the Visual Perception of Depth During Laparoscopic Surgery,” ASME, Jan. 2004; vol. 126, pp. 1-5.
Breedveld et al., “Locomotion through the Intestine by means of Rolling Stents,” Proceedings of the ASME Design Engineering Technical Conferences, 2004, pp. 1-7.
Calafiore et al., Multiple Arterial Conduits Without Cardiopulmonary Bypass: Early Angiographic Results,: Ann Thorac Surg, 1999; 67: 450-456.
Camarillo et al., “Robotic Technology in Surgery: Past, Present and Future,” The American Journal of Surgery, 2004; 188: 2S-15.
Cavusoglu et al., “Telesurgery and Surgical Simulation: Haptic Interfaces to Real and Virtual Surgical Environments,” In McLaughliin, M.L., Hespanha, J.P., and Sukhatme, G., editors. Touch in virtual environments, IMSC Series in Multimedia 2001, 28pp.
Dumpert et al., “Stereoscopic In Vivo Surgical Robots,” IEEE Sensors Special Issue on In Vivo Sensors for Medicine, Jan. 2007, 10 pp.
Green, “Telepresence Surgery”, Jan. 1, 1995, Publisher: IEEE Engineering in Medicine and Biology.
Cleary et al., “State of the Art in Surgical Rooties: Clinical Applications and Technology Challenges”, “Computer Aided Surgery”, Jan. 1, 2002, pp. 312-328, vol. 6.
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Jan. 1, 2002, pp. 1-17.
Franzino, “The Laprotek Surgical System and the Next Generation of Robotics,” Surg Clin North Am, 2003 83(6): 1317-1320.
Franklin et al., “Prospective Comparison of Open vs. Laparoscopic Colon Surgery for Carcinoma: Five-Year Results,” Dis Colon Rectum, 1996; 39: S35-S46.
Flynn et al., “Tomorrow's surgery: micromotors and microrobots for minimally invasive procedures,” Minimally Invasive Surgery & Allied Technologies, 1998; 7(4): 343-352.
Fireman et al., “Diagnosing small bowel Crohn's desease with wireless capsule endoscopy,” Gut 2003; 52: 390-392.
Fearing et al., “Wing Transmission for a Micromechanical Flying Insect,” Proceedings of the 2000 IEEE International Conference to Robotics & Automation, Apr. 2000; 1509-1516.
Faraz et al., “Engineering Approaches to Mechanical and Robotic Design for Minimaly Invasive Surgery (MIS),” Kluwer Academic Publishers (Boston), 2000, 13pp.
Falcone et al., “Robotic Surgery,” Clin. Obstet. Gynecol. 2003, 46(1): 37-13.
Fraulob et al., “Miniature assistance module for robot-assisted heart surgery,” Biomed. Tech. 2002, 47 Suppl. 1, Pt. 1: 12-15.
Fukuda et al., “Mechanism and Swimming Experiment of Micro Mobile Robot in Water,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994: 814-819.
Fukuda et al., “Micro Active Catheter System with Multi Degrees of Freedom,” Proceedings of the IEEE International Conference on Robotics and Automation, May 1994, pp. 2290-2295.
Fuller et al., “Laparoscopic Trocar Injuries: A Report from a U.S. Food and Drug Administration (FDA) Center for Devices and Radiological Health (CDRH) Systematic Technology Assessment of Medical Products (STAMP) Committe,” U.S. Food and Drug Adminstration, available at http://www.fdaJ:?;ov, Finalized: Nov. 7, 2003 Updated: Jun. 24, 2005, 11 pp.
Dumpert et al., “Improving in Vivo Robot Visioin Quality,” from the Proceedings of Medicine Meets Virtual Realtiy, Long Beach, CA, Jan. 26-29, 2005. 1 pg.
Dakin et al., “Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems,” Surg Endosc., 2003; 17: 574-579.
Cuschieri, “Technology for Minimal Access Surgery,” BMJ, 1999, 319: 1-6.
Grady, “Doctors Try New Surgery for Gallbladder Removal,” The New York Times, Apr. 20, 2007, 3 pp.
Choi et al., “Flexure-based Manipulator for Active Handheld Microsurgical Instrument,” Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Sep. 2005, 4pp.
Chanthasopeephan et al., (2003), “Measuring Forces in Liver Cutting: New Equipment and Experimenal Results,” Annals of Biomedical Engineering 31:1372-1382.
Cavusoglu et al.,“ Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications,” Industrial Robot: An International Journal, 2003; 30(1): 22-29.
Guber et al., “Miniaturized Instrument Systems for Minimally Invasive Diagnosis and Therapy,” Biomedizinische Technic 2002, Band 47, Erganmngsband 1: 198-201.
Phee et al., “Analysis and Development of Locomotion Devices for the Gastrointestinal Tract,” IEEE Transaction on Biomedical Engineering, vol. 49, No. 6, Jun. 2002, pp. 613-616.
Phee et al., “Development of Microrobotic Devices for Locomotion in the Human Gastrointestinal Tract,” International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS 2001), November 28-30, (2001), Singapore.
Platt et al., “In Vivo Robotic Cameras can Enhance Imaging Capability During Laparoscopic Surgery,” in the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. auderdale, FL, Apr. 13-16, 2005, 1 PG.
Rentschler et al., “An In Vivo Mobile Robot for Surgical Vision and Task Assistance,” Journal of Medical Devices, Mar. 2007, vol. 1: 23-29.
Rentschler et al., “In vivo Mobile Surgical Robotic Task Assistance,” 1 pg.
Rentschler et al., “In vivo Robotics during the NEEMO 9 Mission,” Medicine Meets Virtual Reality, Feb. 17, 2007, 1 pg.
Rentschler et al., “Mechanical Design of Robotic In Vivo Wheeled Mobility,” ASME Journal of Mechanical Design, 2006a, pp. 1-11.
Rentschler et al., “Miniature in vivo Robots for Remote and Harsh Environments,” IEEE Transactions on Information Technology in Biomedicine, Jan. 2006; 12{1): 66-75.
Rentschler et al., “Mobile In Vivo Biopsy and Camera Robot,” Studies in Health and Infonnatics Medicine Meets Virtual Reality, vol. 119, pp. 449-454, IOS Press, Long Beach, CA, 2006e.
Rentschler et al., “Mobile In Vivo Camera Robots Provide Sole Visual Feedback for Abdominal Exploration and Cholecystectomy,” Journal of Surgical Endoscopy, 20-1: 135-138, 2006b.
Rentschler et al., “Mobile In Vivo Robots Can Assist in Abdominal Exploration,” from the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, April 13-16, 2005b.
Rentschler et al., “Modeling, Analysis, and Experimental Study of In Vivo Wheeled Robotic Mobility,” IEEE Transactions on Robotics, 22 (2): 308-321, 2005c.
Rentschler et al., “Natural Orifice Surgery with an Endoluminal Mobile Robot,” The Society of American Gastrointestinal Endoscopic Surgeons, Dallas, TX, April 2006d, 14 pp.
Rentschler et al., “Theoretical and Experimental Analysis of In Vivo Wheeled Mobility,” ASME Design Engineering Technical Conferences: 28th Biennial Mechanisms and Robotics Conference, Salt Lake City, Utah, Sep. 28-Oct. 2, 2004, pp. 1-9.
Rentschler et al., “Toward In Vivo Mobility,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, ISO Press, Long Beach, CA, 2005a, III: 397-403.
Rentschler et al., Mobile In Vivo Biopsy Robot, IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006, pp. 4155-4160.
Rentschler et al., “In Vivo Robots for Laparoscopic Surgery,” Studies in Health Technology and Infonnatics - Medicine Meets Virtual Reality, ISO Press, Newport Beach, CA, 2004a, 98: 316-322.
Riviere et al., “Toward Active Tremor Canceling in Handheld Microsurgical Instruments,” IEEE Transactions on Robotics and Automation, Oct. 2003, 19(5): 793-800.
Rosen et al., “Force Controlled and Teleoperated Endoscopic, Grasper for Minimally Invasive Surgery—Experimental Performance Evaluation,” IEEE Transactions of Biomedical Engineering, Oct. 1999; 46(10): 1212-1221.
Rosen et al., “Objective Laparoscopic Skills Assessments of Surgical Residents Using Hidden Markov Models Based on Haptic Information and Tool/Tissue Interactions,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, Jan. 2001, 7 pp.
Rosen et al., “Spherical Mechanism Analysis of a Surgical Robot for Minimally Invasive Surgery—Analytical and Experimental Approaches,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, pp. 442-448, Jan. 2005.
Rosen et al., “The Blue DRAGON—A System of Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proc. of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1876-1881, May 2002.
Rosen et al., “Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents' Learning Curve Using Hidden Markov Model,” Computer Aided Surgery, vol. 7, pp. 49-61, 2002.
Ruurda et al., “Feasibility of Robot-Assisted Laparoscopic Surgery,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1 ):41-45.
Ruurda et al., “Robot-Assisted surgical systems: a new era in laparoscopic surgery,” Ann R. Coll Surg Engl., 2002; 34: 223-226.
Sackier et al., “Robotically assisted laparoscopic surgery,” Surgical Endoscopy, 1994; 8: 63-66.
Salky, “What is the Penetration of Endoscopic Techniques into Surgical Practice?” Digestive Surgery, 2000; 17:422-426.
Satava, “Surgical Robotics: The Early Chronicles,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1): 6-16.
Schippers et al., (1996) “Requirements and Possibilities of Computer-Assisted Endoscopic Surgery,” In: Computer Integrated Surgery: Technology and Clinical Applications, pp. 561-565.
Schurr et al., “Robotics and Telemanipulation Technologies for Endoscopic Surgery,” Surgical Endoscopy, 2000; 14: 375-381.
Schwartz, “In the Lab: Robots that Slink and Squirm,” The New York Times, Mar. 27, 2007, 4 pp.
Sharp LL-151-3O, http://www.sharp3d.com, 2006, 2 pp.
Slatkin et al., “The Development of a Robotic Endoscope,” Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 162-171, 1995.
Smart Pill “Fastastic Voyage: Smart Pill to Expand Testing,” http://www.smartpilldiagnostics.com, Apr. 13, 2005, 1 pg.
Southern Surgeons Club (1991), “A prospective analysis of 1518 laparoscopic cholecystectomies,” N. Eng. 1 Med. 324 (16): 1073-1078.
Stefanini et al., “Modeling and Experiments on a Legged Microrobot Locomoting in a Tubular Compliant and Slippery Environment,” Int. Journal of Robotics Research, vol. 25, No. 5-6, pp. 551-560, May-Jun. 2006.
Stiff et al., “Long-term Pain: Less Common After Laparoscopic than Open Cholecystectomy,” British Journal of Surgery, 1994; 81: 1368-1370.
Strong, et al., “Efficacy of Novel Robotic Camera vs. a Standard Laproscopic Camera,” Surgical Innovation vol. 12, No. 4, Dec. 2005, Westminster Publications, Inc., pp. 315-318.
Suzumori et al., “Development of Flexible Microactuator and its Applications to Robotics Mechanisms,” Proceedings of the IEEE International Conference on Robotics and Automation, 1991: 1622-1627.
Taylor et al., “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Eng Med Biol, 1995; 279-287.
Tendick et al., “Applications of Micromechatronics in Minimally Invasive Surgery,” IEEE/AS ME Transactions on Mechatronics, 1998; 3(1): 34-42.
Tendick et al. (1993), “Sensing and Manipulation Problems in Endoscopic Surgery: Experiment, Analysis, and Observation,” Presence 2(1): 66-81.
Thomann et al., “The Design of a new type of Micro Robot for the Intestinal Inspection,” Proceedings of the 2002 IEEE Intl. Conference on Intelligent Robots and Systems, Oct. 2002: 1385-1390.
U.S. Appl. No. 60/180,960, filed Feb. 2000.
U.S. Appl. No. 60/956,032, filed Aug. 15, 2007.
U.S. Appl. No. 60/983,445, filed Oct. 29, 2007.
U.S. Appl. No. 60/990,106, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,062, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,076, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,086, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,470, filed Nov. 27, 2007.
U.S. Appl. No. 61/025,346, filed Feb. 1, 2008.
U.S. Appl. No. 61/030,588, filed Feb. 22, 2008.
U.S. Appl. No. 61/030,617, filed Feb. 22, 2008.
Way et al., (editors), “Fundamentals of Laparoscopic Surgery,” Churchill Livingstone Inc., 1995, 14 pp.
Wolfe et al., “Endoscopic Cholecystectomy: An analysis of Complications,” Arch. Surg. Oct. 1991; 126: 1192-1196.
Worn et al., “Espirit Project No. 33915: Miniaturised Robot for Micro Manipulation (MINIMAN)”, Nov. 1998; http://www.ipr.ira.ujka.de/-microbot/miniman.
Yu et al., “Microrobotic Cell Injection,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, May 2001; 620-625.
Yu, BSN, RN, “M2ATM Capsule Endoscopy A Breakthrough Diagnostic Tool for Small Intestine Imaging,” vol. 25, No. 1, 2002, Gastroenterology Nursing, pp. 24-27.
Abbou et al., “Laparoscopic Radical Prostatectomy with a Remote Controlled Robot,” The Journal of Urology, Jun. 2001, 165: 1964-1966.
Glukhovsky et al., “The development and application of wireless capsule endoscopy,” Int. J. Med. Robot. Comput. Assist. Surgery, 2004; I (1): 114-123.
Gong et al., Wireless endoscopy, Gastrointestinal Endoscopy 2000; 51(6): 725-729.
Guo et al., “Fish-like Underwater Microrobot with 3 DOF,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002: 738-743.
Guo et al., “Micro Active Guide Wire Catheter System - Characteristic Evaluation, Electrical Model and Operability Evaluation of Micro Active Catheter,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Apr. 1996: 2226-2231.
Hanly et al., “Robotic Abdominal Surgery,” The American Journal of Surgery 188 (Suppl.to Oct. 1994): 19S-26S, 2004.
Hanly et al., “Value of the SAGES Learning Center in introducing new technology,” Surgical Endoscopy, 2004; 19(4): 477-483.
Heikkinen et al., “Comparison of laparoscopic and open Nissen fundoplication two years after operation: A prospective randomized trial,” Surgical Endoscopy, 2000; 14: 1019-1023.
Hissink, “Olympus Medical develops capsule camera technology,” Dec. 2004, accessed Aug. 29, 2007, http://www.letsgodigital.org , 3 pp.
Horgan et al., “Technical Report: Robots in Laparoscopic Surgery,” Journal of Laparoendoscopic & Advanced Surgical Techniques, 2001; 11(6): 415-419.
Ishiyama et al., “Spiral-type Micro-machine for Medical Applications,” 2000 International Symposium on Micromechatronics and Human Science, 2000: 65-69.
Jagannath et al., “Peroral transgastric endoscopic ligation of fallopian tubes with long-term survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 61(3): 449-453.
Kalloo et al., “Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity,” Gastrointestinal Endoscopy, 2004; 60(1): 114-117.
Kang et al., “Robotic Assistants Aid Surgeons During Minimally Invasive Procedures,” IEEE Engineering in Medicine and Biology, Jan.- Feb. 2001; pp. 94-104.
Kantsevoy et al., “Endoscopic gastrojejunostomy with survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 62(2): 287-292.
Kantsevoy et al., “Transgastric endoscopic splenectomy,” Surgical Endoscopy, 2006; 20: 522-525.
Kazemier et al. (1998), “Vascular Injuries During Laparoscopy,” J. Am. Coli. Surg. 186(5): 604-5.
Kim, “Early Experience with Telemanipulative Robot-Assisted Laparoscopic Cholecystectomy Using da Vinci,” Surgical aparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):33-40.
Ko et al., “Per-Oral transgastric abdominal surgery,” Chinese Journal of Digestive Diseases, 2006; 7: 67-70.
Lafullarde et al., “Laparoscopic Nissen Fundoplication: Five-year Results and Beyond,” Arch/Surg, Feb. 2001; 136: 180-184.
Leggett et al. (2002), “Aortic injury during laparoscopic fundoplication,” Surg. Endoscopy 16(2): 362.
Li et al. (2000), “Microvascular Anastomoses Performed in Rats Using a Microsurgical Telemanipulator,” Comp. Aid. Surg. 5: 326-332.
Liem et al., “Comparison of Conventional Anterior Surgery and Laparoscopic Surgery for Inguinal-hernia Repair,” New England Journal of Medicine, 1997; 336 (22): 1541-1547.
Macfarlane et al., “Force-Feedback Grasper Helps Restore the Sense of Touch in Minimally Invasive Surgery,” Journal of Gastrointestinal Surgery, 1999; 3: 278-285.
Mack et al., “Present Role of Thoracoscopy in the Diagnosis and Treatment of Diseases of the Chest,” Ann Thorac Surgery, 1992; 54: 403-409.
Mack, “Minimally Invasive and Robotic Surgery,” JAMA, Feb. 2001; 285(5): 568-572.
Mei et al., “Wireless Drive and Control of a Swimming Microrobot,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002: 1131-1136.
Melvin et al., “Computer-Enhanced vs. Standard Laparoscopic Antireflux Surgery,” J Gastrointest Surg 2002; 6: 11-16.
Menciassi et al., “Locomotion of a Leffed Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results,” IEEE Int. Conf. on Engineering in Medicine and Biology, San Francisco, CA, pp. 2767-2770, Sep. 2004.
Menciassi et al., “Robotic Solutions and Mechanisms for a Semi-Autonomous Endoscope,” Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Oct. 2002; 1379-1384.
Menciassi et al., “Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract,” J. Micromech. Microeng, 2005, 15: 2045-2055.
Meron, “The development of the swallowable video capsule (M2A),” Gastrointestinal Endoscopy 2000; 52 6: 317-819.
Micron, http://www.micron.com, 2006, ¼-inch VGA NTSC/PAL CMOS Digital Image Sensor, 98 pp.
Midday Jeff et al., “Material Handling System for Robotic natural Orifice Surgery”, Proceedings of the 2011 Design of medical Devices Conference, Apr. 12-14, 2011, Minneapolis, MN, 4 pages.
Miller, Ph.D., et al., “In-Vivo Stereoscopic Imaging System with 5 Degrees of-Freedom for Minimal Access Surgery,” Dept. of Computer Science and Dept. of Surgery, Columbia University, New York, NY, 2004, 7 pp.
Munro (2002), “Laparoscopic access: complications, technologies, and techniques,” Curro Opin. Obstet. Gynecol., 14(4): 365-74.
Nio et al., “Efficiency of manual vs robotical (Zeus) assisted laparoscopic surgery in the performance of standardized tasks,” Surg Endosc, 2002; 16: 412-415.
Oleynikov et al., “In Vivo Camera Robots Provide Improved Vision for Laparoscopic Surgery,” Computer Assisted Radiology and Surgery (CARS), Chicago, IL, Jun. 23-26, 2004b.
Oleynikov et al., “In Vivo Robotic Laparoscopy,” Surgical Innovation, Jun. 2005, 12(2): 177-181.
Oleynikov et al., “Miniature Robots Can Assist in Laparoscopic Cholecystectomy,” Journal of Surgical Endoscopy, 19-4: 473-476, 2005.
O'Neill, “Surgeon takes new route to gallbladder,” The Oregonian, Jun. 2007, 2 pp.
Orlando et al., (2003), “Needle and Trocar Injuries in Diagnostic Laparoscopy under Local Anesthesia: What Is the True Incidence of These Complications?” Journal of Laparoendoscopic & Advanced Surgical Techniques 13(3):181-184.
Palm, William, “Rapid Prototyping Primer” May 1998 (revised Jul. 30, 2002) (http://www.me.psu.edu/lamancusa/rapidpro/primer/chapter2.htm).
Park et al., “Experimental studies of transgastric gallbladder surgery: cholecystectomy and cholecystogastric anastomosis (videos),” Gastrointestinal Endoscopy, 2005; 61 (4): 601-606.
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-abdominal Camera and Retractor,” Ann Surg, Mar. 2007; 245(3): 379-384.
Patronik et al., “Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions,” MICCAI, 2004, pp. 9-16.
Patronik et al., “Development of a Tethered Epicardial Crawler for Minimally Invasive Cardiac Therapies,” IEEE, 2004, pp. 239-240.
Patronik et al., “Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart,” Computer Aided Surgery, 10(4): 225-232, Jul. 2005.
Peirs et al., “A miniature manipulator for integration in a self-propelling endoscope,” Sensors and Actuators A, 2001, 92: 343-349.
Peters, “Minimally Invasive Colectomy: Are the Potential Benefits Realized?” Dis Colon Rectum 1993; 36: 751-756.
Related Publications (1)
Number Date Country
20200315739 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
62433837 Dec 2016 US
Continuations (1)
Number Date Country
Parent 15842230 Dec 2017 US
Child 16904101 US