The various embodiments herein relate to support devices for supporting various types of medical devices and more specifically to releasable attachment devices for use in releasably holding a medical device on a support device.
Known support devices firmly retain and maintain the position of a medical device before and during a surgical procedure. However, most such known devices can only fixedly retain the medical device in a position that is not adjustable.
There is a need in the art for an improved releasable attachment device for coupling a medical device to a support device.
Discussed herein are various releasable attachment device that can be used to releasably couple a medical device to a support device.
In Example 1, a releasable attachment device for use with surgical tools comprises a fixed jaw fixedly coupled to a joint housing, a moveable jaw rotationally coupled to the joint housing, the moveable jaw comprising an open position and a closed position, an actuation mechanism operably coupled to the joint housing, wherein the actuation mechanism comprises a locked position and a released position, and an actuation structure operably coupled to the moveable jaw.
Example 2 relates to the releasable attachment device according to Example 1, further comprising a coupling component fixedly coupled to the joint housing, wherein the coupling component comprises a coupling structure constructed and arranged to couple to an external support device.
Example 3 relates to the releasable attachment device according to Example 1, further comprising a tension component operably coupled to the joint housing, wherein the tension component is constructed and arranged to urge the moveable jaw toward the closed position.
Example 4 relates to the releasable attachment device according to Example 1, further comprising a tension component operably coupled to the actuation mechanism, wherein the tension component is constructed and arranged to urge the actuation mechanism toward the locked position.
Example 5 relates to the releasable attachment device according to Example 1, wherein the fixed jaw and moveable jaw are constructed and arranged to couple with a surgical tool in a groove defined around an outer surface of the surgical tool.
Example 6 relates to the releasable attachment device according to Example 1, wherein the joint housing comprises a stationary joint structure comprising a first opening defined therethrough, a pivotable joint structure comprising a second opening defined therethrough and at least one rotational coupling mechanism defined therein, the actuation mechanism disposed through the first and second openings, wherein the actuation mechanism is rotationally coupled to the first joint structure, and a locking structure rotationally coupled to a distal end of the actuation mechanism and detachably coupleable with the at least one rotational coupling mechanism.
Example 7 relates to the releasable attachment device according to Example 6, wherein the released position comprises the actuation mechanism positioned distally in relation to the locked position.
Example 8 relates to the releasable attachment device according to Example 6, wherein the locking structure is coupled to the at least one rotational coupling mechanism when the actuation mechanism is in the locked position and wherein the locking structure is not coupled to the at least one rotational coupling mechanism when the actuation mechanism is in the released position.
Example 9 relates to the releasable attachment device according to Example 6, wherein the pivotable joint structure is rotatable in relation to the stationary joint structure when the actuation mechanism is in the released position.
In Example 10, a releasable attachment device for use with surgical tools comprises a joint housing, a fixed jaw fixedly coupled to the first joint structure, a moveable jaw fixedly coupled to the second joint structure, the moveable jaw comprising an open position and a closed position, and an actuation structure operably coupled to the moveable jaw. The joint housing has a first joint structure comprising a first opening defined therethrough, a second joint structure comprising a second opening defined therethrough and at least one rotational coupling mechanism defined therein, an actuation mechanism disposed through the first and second openings, wherein the actuation mechanism is rotationally coupled to the first joint structure and wherein the actuation mechanism comprises an undepressed axial position and a depressed axial position, and a locking structure rotationally coupled to a distal end of the actuation mechanism and detachably coupleable with the at least one rotational coupling mechanism.
Example 11 relates to the releasable attachment device according to Example 10, further comprising a coupling component fixedly coupled to the joint housing, wherein the coupling component comprises a coupling structure constructed and arranged to couple to an external support device.
Example 12 relates to the releasable attachment device according to Example 10, further comprising a tension component operably coupled to the first joint structure and the second joint structure, wherein the tension component is constructed and arranged to urge the moveable jaw toward the closed position.
Example 13 relates to the releasable attachment device according to Example 10, further comprising a tension component operably coupled to the actuation mechanism, wherein the tension component is constructed and arranged to urge the actuation mechanism toward the undepressed axial position.
Example 14 relates to the releasable attachment device according to Example 10, wherein the fixed jaw and moveable jaw are constructed and arranged to couple with a surgical tool in a groove defined around an outer surface of the surgical tool.
Example 15 relates to the releasable attachment device according to Example 10, wherein the depressed axial position comprises the actuation mechanism positioned distally in relation to the undepressed axial position.
Example 16 relates to the releasable attachment device according to Example 10, wherein the locking structure is coupled to the at least one rotational coupling mechanism when the actuation mechanism is in the undepressed axial position and wherein the locking structure is not coupled to the at least one rotational coupling mechanism when the actuation mechanism is in the depressed axial position.
Example 17 relates to the releasable attachment device according to Example 10, wherein the second joint structure is rotatable in relation to the first joint structure when the actuation mechanism is in the depressed axial position.
In Example 18, a releasable attachment device for use with surgical tools comprises a housing, a fixed jaw fixedly coupled to the first joint structure, a moveable jaw fixedly coupled to the second joint structure, the moveable jaw comprising an open position and a closed position, and an actuation structure operably coupled to the moveable jaw. The housing comprises a first joint structure and a second joint structure. The first joint structure comprises a first strut comprising a first opening, and a second strut comprising a second opening, wherein the second opening comprises a first rotational coupling mechanism. The second joint structure comprises a third strut comprising a third opening, and a fourth strut comprising a fourth opening and a second rotational coupling mechanism. The housing further comprises an actuation mechanism comprising a mechanism body and a button coupled thereto, wherein the mechanism body is disposed through the first, second, third, and fourth openings, wherein the mechanism body is coupled to the rotational coupling mechanism such that the mechanism body is rotationally constrained to the second strut, and wherein the actuation mechanism comprises an undepressed axial position and a depressed axial position. Further, the housing also comprises a locking structure rotationally coupled to a distal end of the mechanism body and detachably coupleable with the second rotational coupling mechanism, wherein the locking structure is coupled to the second rotational coupling mechanism when the actuation mechanism is in the undepressed axial position and wherein the locking structure is not coupled to the second rotational coupling mechanism when the actuation mechanism is in the depressed axial position, wherein the second joint structure is rotatable in relation to the first joint structure when the actuation mechanism is in the depressed axial position.
Example 19 relates to the releasable attachment device according to Example 18, further comprising a coupling component fixedly coupled to the housing, wherein the coupling component comprises a coupling structure constructed and arranged to couple to an external support device.
Example 20 relates to the releasable attachment device according to Example 18, further comprising a tension component operably coupled to the first and second joint structures, wherein the tension component is constructed and arranged to urge the moveable jaw toward the closed position.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
The various embodiments disclosed herein relate to a releasable attachment or retention device for stably and removably coupling to a medical device, including, for example, a robotic surgical device.
In one embodiment as shown in
The latch 40 (also referred to herein as an “actuation mechanism,” “release mechanism,” or “release button”) is coupled to the moveable jaw 14 such that the latch 40 can be actuated to release the jaw 14 such that the jaw 14 is moveable in relation to the fixed jaw 12. This relationship between the latch 40 and the moveable jaw 14 will be described in greater detail below according to one embodiment. In certain implementations, the latch 40 can be actuated by depressing the latch 40 to “release” the moveable jaw 14 such that the user can actuate the actuation lever 18 to move the moveable jaw 14 to the desirable position. Alternatively, it is understood that any latch 40 configuration or mechanism can be used such that the latch 40 can be actuated to unlock and/or lock the moveable jaw 14.
In one embodiment, the actuation lever 18 is the proximal portion of a single rod or other structure in which the moveable jaw 14 constitutes the distal end thereof, as shown. Alternatively, the actuation lever 18 can be a separate component that is coupled to the moveable jaw 14 such that actuation of the lever 18 causes movement of the moveable jaw 14.
The flexible support arm 22, according to one implementation, is a known support arm: the Mediflex Flex Arm Plus™. In use, as best shown in
As best shown in
In use, as best shown in
Returning to
Another position is the fixed (also referred to as “closed” or “locked”) position in which the jaws 12, 14 are at the closest possible proximity to each other. Once the device 10 is positioned with the jaws 12, 14 around the device body (such as body 44) while in the open configuration, the jaws 12, 14 can be moved into the closed position such that the jaws 12, 14 are disposed within the groove (such as groove 46) and securely disposed against the walls of the groove such that the body is held securely between the jaws 12, 14 and cannot move in relation to the jaws 12, 14. That is, the body cannot rotate or translate in relation to the jaws 12, 14. Alternatively, a device body without a groove can also be held by the jaws 12, 14 in the closed position.
The third position is the loosely closed (or “partially closed” or “relaxed”) configuration in which the jaws 12, 14 are disposed close enough to each other in order to be disposed within the channel (such as channel 46) of the device body (such as body 44) for those devices having a groove, but with the jaws 12, 14 being sufficiently moveable in relation to each other such that the device body is rotatable in relation to the jaws 12, 14. That is, the jaws 12, 14 are disposed within the channel, but are not in sufficient contact with the walls of the channel to result in the necessary friction between the jaws 12, 14 and the walls to prevent the device body from rotatably moving in relation to the jaws 12, 14. This allows the device 10 to retain the surgical device in place while also allowing the surgical device to be rotated around the longitudinal axis of the device body. In certain implementations, this loosely closed configuration allows for the device body (such as body 44) to rotate up to, including, or more than 360°.
The various components that allow for the device 10 and the jaws 12, 14 to operate as described above will now be discussed in relation to
In certain implementations, disposed through the openings 52A, 52B, 54A, 54B of the joint components 16A, 16B is the latch 40 and related components. The latch 40 has two hex configurations 40A, 40B defined along a distal portion of its length, as best shown in
In this specific embodiment, the latch 40 can be moved in a translational fashion (axially) by depressing the top portion (the button portion) of the latch 40. The latch 40 is continuously urged upward away from the two joint components 16A, 16B by the spring 62 that is disposed around the latch 40 and between the bottom portion of the first joint component 16A and the shoulder 40C of the latch 40. That is, the spring 62 is tensioned such that it is constantly urging the shoulder 40C and thus the latch 40 away from the bottom portion of the first joint component 16A. As such, with no outside force (such as a user's finger or thumb depressing the latch 40 downward), the default state of the latch 40 is the upward or undepressed position in which the two protrusions 56B are disposed within the openings 58A, 58B of the bottom portion of the second joint component 16B, thereby resulting in the second joint component 16B being rotationally constrained to the lock ring 56. Thus, when the latch 40 is in its undepressed position such that the second joint component 16B is rotationally constrained to the lock ring 56, the moveable jaw 14 that is coupled to the second joint component 16B is rotationally constrained as well. As a result, the default state of the device 10 is for the second joint component 16B to be rotationally constrained to the lock ring 56 and therefore only able to move in relation to the first joint component 16A by the amount of space between the protrusions 56B and the openings 58A, 58B as described above, thus resulting in the device 10 being in the relaxed configuration as described above. This relaxed configuration can be utilized by a user depressing the actuation lever 18, thereby urging the jaw 14 away from the jaw 12 by the amount of distance allowed by the additional space between the projections 56B and the openings 58A, 58B, which can eliminate the frictional force between the jaws 12, 14 and the device body, thereby allowing rotation of the body in relation to the jaws 12, 14. On the other hand, if the user is not depressing the actuation lever 18, the spring 42 is urging the jaws 12, 14 together, creating frictional force between the jaws 12, 14 and the device body, thereby resulting in the locked configuration.
To actuate the device 10 to move into the open configuration, according to one embodiment, the user can depress the latch 40, which urges the latch 40 distally, which causes the lock ring 56 to move distally, thereby urging the projections 56B out of the openings 58A, 58B, which “uncouples” the second joint component 16B from the lock ring 56. Once the projections 56B are no longer disposed within the openings 58A, 58B, the lock ring 56 is no longer rotationally constrained to the second joint component 16B, thereby allowing the second joint component 16B to rotate in relation to the first joint component 16A such that the jaw 14 can be moved into the open configuration as discussed above.
It is understood that the two jaws 12, 14 depicted can be replaced with jaws of any shape or configuration. As such, the jaws 12, 14 can couple to device bodies of any known shape or configuration.
Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
This application claims priority as a continuation application to U.S. application Ser. No. 15/842,230, filed on Dec. 14, 2017 and entitled “Releasable Attachment Device for Coupling to Medical Devices and Related Systems and Methods,” which claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application 62/433,837, filed Dec. 14, 2016 and entitled “Releasable Attachment Device for Coupling to Medical Devices and Related Systems and Methods,” both of which are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3870264 | Robinson | Mar 1975 | A |
3989952 | Timberlake et al. | Nov 1976 | A |
4246661 | Pinson | Jan 1981 | A |
4258716 | Sutherland | Mar 1981 | A |
4278077 | Mizumoto | Jul 1981 | A |
4538594 | Boebel et al. | Sep 1985 | A |
4568311 | Miyaki | Feb 1986 | A |
4623183 | Aomori | Nov 1986 | A |
4736645 | Zimmer | Apr 1988 | A |
4771652 | Zimmer | Sep 1988 | A |
4852391 | Ruch et al. | Aug 1989 | A |
4896015 | Taboada et al. | Jan 1990 | A |
4897014 | Tietze | Jan 1990 | A |
4922755 | Oshiro et al. | May 1990 | A |
4922782 | Kawai | May 1990 | A |
4990050 | Tsuge et al. | Feb 1991 | A |
5007550 | Avot | Apr 1991 | A |
5019968 | Wang et al. | May 1991 | A |
5030365 | Christensen et al. | Jul 1991 | A |
5063095 | Kitagawa et al. | Nov 1991 | A |
5066090 | Mayerhofer et al. | Nov 1991 | A |
5108140 | Bartholet | Apr 1992 | A |
5139563 | Astles et al. | Aug 1992 | A |
5172639 | Wiesman et al. | Dec 1992 | A |
5176649 | Wakabayashi | Jan 1993 | A |
5178032 | Zona et al. | Jan 1993 | A |
5187796 | Wang et al. | Feb 1993 | A |
5195388 | Zona et al. | Mar 1993 | A |
5201325 | McEwen et al. | Apr 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5263382 | Brooks et al. | Nov 1993 | A |
5271384 | McEwen et al. | Dec 1993 | A |
5284096 | Pelrine et al. | Feb 1994 | A |
5297443 | Wentz | Mar 1994 | A |
5297536 | Wilk | Mar 1994 | A |
5304899 | Sasaki et al. | Apr 1994 | A |
5307447 | Asano et al. | Apr 1994 | A |
5353807 | DeMarco | Oct 1994 | A |
5363935 | Schempf et al. | Nov 1994 | A |
5382885 | Salcudean et al. | Jan 1995 | A |
5441494 | Oritz | Jan 1995 | A |
5388528 | Pelrine et al. | Feb 1995 | A |
5436542 | Petelin et al. | Jul 1995 | A |
5450104 | Kisa et al. | Sep 1995 | A |
5451027 | Mchenry | Sep 1995 | A |
5454758 | Tophinke et al. | Oct 1995 | A |
5458131 | Wilk | Oct 1995 | A |
5458583 | McNeely et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5459926 | Perea | Oct 1995 | A |
5463361 | Allen | Oct 1995 | A |
5468203 | Okonkwo | Nov 1995 | A |
5468265 | Adams | Nov 1995 | A |
5470236 | Wissler | Nov 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5491691 | Shtayer et al. | Feb 1996 | A |
5491701 | Zook | Feb 1996 | A |
5497651 | Matter et al. | Mar 1996 | A |
5515478 | Wang | May 1996 | A |
5524180 | Wang et al. | Jun 1996 | A |
5553198 | Wang et al. | Sep 1996 | A |
5562448 | Mushabac | Oct 1996 | A |
5588442 | Scovil et al. | Dec 1996 | A |
5620417 | Jang et al. | Apr 1997 | A |
5623582 | Rosenberg | Apr 1997 | A |
5624380 | Takayama et al. | Apr 1997 | A |
5624398 | Smith et al. | Apr 1997 | A |
5632761 | Smith et al. | May 1997 | A |
5645520 | Nakamura et al. | Jul 1997 | A |
5657429 | Wang et al. | Aug 1997 | A |
5657584 | Hamlin | Aug 1997 | A |
5672168 | de la Torre et al. | Sep 1997 | A |
5674030 | Sigel | Oct 1997 | A |
5728599 | Rosteker et al. | Mar 1998 | A |
5736821 | Suyama et al. | Apr 1998 | A |
5754741 | Wang et al. | May 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5769640 | Jacobus et al. | Jun 1998 | A |
5791231 | Cohn et al. | Aug 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792663 | Fry et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5807377 | Madhani et al. | Sep 1998 | A |
5808665 | Green | Sep 1998 | A |
5815640 | Wang et al. | Sep 1998 | A |
5825982 | Wright et al. | Oct 1998 | A |
5841950 | Wang et al. | Nov 1998 | A |
5845646 | Lemelson | Dec 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5878783 | Smart | Mar 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5906591 | Dario et al. | May 1999 | A |
5907664 | Wang et al. | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5911036 | Wright et al. | Jun 1999 | A |
5971976 | Wang et al. | Oct 1999 | A |
5993467 | Yoon | Nov 1999 | A |
6001108 | Wang et al. | Dec 1999 | A |
6007550 | Wang et al. | Dec 1999 | A |
6030365 | Laufer | Feb 2000 | A |
6031371 | Smart | Feb 2000 | A |
6058323 | Lemelson | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6066090 | Yoon | May 2000 | A |
6086529 | Arndt | Jul 2000 | A |
6102850 | Wang et al. | Aug 2000 | A |
6107795 | Smart | Aug 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6132441 | Grace | Oct 2000 | A |
6139563 | Cosgrove, III et al. | Oct 2000 | A |
6156006 | Brosens et al. | Dec 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6162171 | Ng et al. | Dec 2000 | A |
D438617 | Cooper et al. | Mar 2001 | S |
6206903 | Ramans | Mar 2001 | B1 |
D441076 | Cooper et al. | Apr 2001 | S |
6223100 | Green | Apr 2001 | B1 |
D441862 | Cooper et al. | May 2001 | S |
6238415 | Sepetka et al. | May 2001 | B1 |
6240312 | Alfano et al. | May 2001 | B1 |
6241730 | Alby | Jun 2001 | B1 |
6244809 | Wang et al. | Jun 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
D444555 | Cooper et al. | Jul 2001 | S |
6286514 | Lemelson | Sep 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6293282 | Lemelson | Sep 2001 | B1 |
6296635 | Smith et al. | Oct 2001 | B1 |
6307447 | Barber et al. | Oct 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6309403 | Minor et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6321106 | Lemelson | Nov 2001 | B1 |
6327492 | Lemelson | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6346072 | Cooper | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6382885 | Isaksson | May 2002 | B2 |
6388528 | Buer et al. | May 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6398726 | Ramans et al. | Jun 2002 | B1 |
6400980 | Lemelson | Jun 2002 | B1 |
6408224 | Lemelson | Jun 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6432112 | Brock et al. | Aug 2002 | B2 |
6436107 | Wang et al. | Aug 2002 | B1 |
6441577 | Blumenkranz et al. | Aug 2002 | B2 |
6450104 | Grant et al. | Sep 2002 | B1 |
6451027 | Cooper et al. | Sep 2002 | B1 |
6454758 | Thompson et al. | Sep 2002 | B1 |
6458131 | Ray | Oct 2002 | B1 |
6458583 | Bruhn et al. | Oct 2002 | B1 |
6459926 | Nowlin et al. | Oct 2002 | B1 |
6463361 | Wang et al. | Oct 2002 | B1 |
6468203 | Belson | Oct 2002 | B2 |
6468265 | Evans et al. | Oct 2002 | B1 |
6470236 | Ohtsuki | Oct 2002 | B2 |
6491691 | Morley et al. | Dec 2002 | B1 |
6491701 | Nemeyer et al. | Dec 2002 | B2 |
6493608 | Niemeyer et al. | Dec 2002 | B1 |
6496099 | Wang et al. | Dec 2002 | B2 |
6497651 | Kan et al. | Dec 2002 | B1 |
6508413 | Bauer et al. | Jan 2003 | B2 |
6512345 | Borenstein | Jan 2003 | B2 |
6515478 | Wicklow et al. | Feb 2003 | B1 |
6522906 | Salisbury, Jr. et al. | Feb 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6548982 | Papanikolopoulos et al. | Apr 2003 | B1 |
6554790 | Moll | Apr 2003 | B1 |
6562448 | Chamberlain et al. | May 2003 | B1 |
6565554 | Niemeyer | May 2003 | B1 |
6574355 | Green | Jun 2003 | B2 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6588442 | Babin | Jul 2003 | B2 |
6591239 | McCall et al. | Jul 2003 | B1 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6610007 | Belson et al. | Aug 2003 | B2 |
6620173 | Gerbi et al. | Sep 2003 | B2 |
6624398 | Sherrill et al. | Sep 2003 | B2 |
6632761 | Ushita et al. | Oct 2003 | B1 |
6642836 | Wang et al. | Nov 2003 | B1 |
6645196 | Nixon et al. | Nov 2003 | B1 |
6646541 | Wang et al. | Nov 2003 | B1 |
6648814 | Kim et al. | Nov 2003 | B2 |
6657584 | Cavallaro et al. | Dec 2003 | B2 |
6659939 | Moll et al. | Dec 2003 | B2 |
6661571 | Shioda et al. | Dec 2003 | B1 |
6671581 | Niemeyer et al. | Dec 2003 | B2 |
6676684 | Morley et al. | Jan 2004 | B1 |
6684129 | Salisbury, Jr. et al. | Jan 2004 | B2 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6685698 | Morley et al. | Feb 2004 | B2 |
6687571 | Byrne et al. | Feb 2004 | B1 |
6692485 | Brock et al. | Feb 2004 | B1 |
6699177 | Wang et al. | Mar 2004 | B1 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6702734 | Kim et al. | Mar 2004 | B2 |
6702805 | Stuart | Mar 2004 | B1 |
6714839 | Salisbury, Jr. et al. | Mar 2004 | B2 |
6714841 | Wright et al. | Mar 2004 | B1 |
6719684 | Kim et al. | Apr 2004 | B2 |
6720988 | Gere et al. | Apr 2004 | B1 |
6726699 | Wright et al. | Apr 2004 | B1 |
6728599 | Wright et al. | Apr 2004 | B2 |
6730021 | Vassiliades, Jr. et al. | May 2004 | B2 |
6731988 | Green | May 2004 | B1 |
6736821 | Squires et al. | May 2004 | B2 |
6746443 | Morley et al. | Jun 2004 | B1 |
6754741 | Alexander et al. | Jun 2004 | B2 |
6764441 | Chiel et al. | Jul 2004 | B2 |
6764445 | Ramans et al. | Jul 2004 | B2 |
6766204 | Niemeyer et al. | Jul 2004 | B2 |
6770081 | Cooper et al. | Aug 2004 | B1 |
6774597 | Borenstein | Aug 2004 | B1 |
6776165 | Jin | Aug 2004 | B2 |
6780184 | Tanrisever | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6785593 | Wang et al. | Aug 2004 | B2 |
6788018 | Blumenkranz | Sep 2004 | B1 |
6791231 | Chang | Sep 2004 | B2 |
6792135 | Toyama | Sep 2004 | B1 |
6792663 | Krzyzanowski | Sep 2004 | B2 |
6793653 | Sanchez et al. | Sep 2004 | B2 |
6799065 | Niemeyer | Sep 2004 | B1 |
6799088 | Wang et al. | Sep 2004 | B2 |
6801325 | Farr et al. | Oct 2004 | B2 |
6804581 | Wang et al. | Oct 2004 | B2 |
6810281 | Brock et al. | Oct 2004 | B2 |
6815640 | Spear et al. | Nov 2004 | B1 |
6817972 | Snow | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6817975 | Farr et al. | Nov 2004 | B1 |
6820653 | Schempf et al. | Nov 2004 | B1 |
6824508 | Kim et al. | Nov 2004 | B2 |
6824510 | Kim et al. | Nov 2004 | B2 |
6832988 | Sprout | Dec 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6836703 | Wang et al. | Dec 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6837883 | Moll et al. | Jan 2005 | B2 |
6839612 | Sanchez et al. | Jan 2005 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6845646 | Goto | Jan 2005 | B2 |
6852107 | Wang et al. | Feb 2005 | B2 |
6855583 | Krivokapic et al. | Feb 2005 | B1 |
6858003 | Evans et al. | Feb 2005 | B2 |
6860346 | Burt et al. | Mar 2005 | B2 |
6860877 | Sanchez et al. | Mar 2005 | B1 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6870343 | Borenstein et al. | Mar 2005 | B2 |
6871117 | Wang et al. | Mar 2005 | B2 |
6871563 | Choset et al. | Mar 2005 | B2 |
6878783 | Yeager et al. | Apr 2005 | B2 |
6879880 | Nowlin et al. | Apr 2005 | B2 |
6892112 | Wang et al. | May 2005 | B2 |
6895417 | Obara et al. | May 2005 | B2 |
6899705 | Niemeyer | May 2005 | B2 |
6902560 | Morley et al. | Jun 2005 | B1 |
6905460 | Wang et al. | Jun 2005 | B2 |
6905491 | Wang et al. | Jun 2005 | B1 |
6911036 | Douk et al. | Jun 2005 | B2 |
6911916 | Wang et al. | Jun 2005 | B1 |
6917176 | Schempf et al. | Jul 2005 | B2 |
6933695 | Blumenkranz | Aug 2005 | B2 |
6936001 | Snow | Aug 2005 | B1 |
6936003 | Iddan | Aug 2005 | B2 |
6936042 | Wallace et al. | Aug 2005 | B2 |
6943663 | Wang et al. | Sep 2005 | B2 |
6949096 | Davison et al. | Sep 2005 | B2 |
6951535 | Ghodoussi et al. | Oct 2005 | B2 |
6965812 | Wang et al. | Nov 2005 | B2 |
6974411 | Belson | Dec 2005 | B2 |
6974449 | Niemeyer | Dec 2005 | B2 |
6979423 | Moll | Dec 2005 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984205 | Gazdzinski | Jan 2006 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6993413 | Sunaoshi | Jan 2006 | B2 |
6994703 | Wang et al. | Feb 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6997908 | Carrillo, Jr. et al. | Feb 2006 | B2 |
7025064 | Wang et al. | Apr 2006 | B2 |
7027892 | Wang et al. | Apr 2006 | B2 |
7033344 | Imran | Apr 2006 | B2 |
7039453 | Mullick | May 2006 | B2 |
7042184 | Oleynikov et al. | May 2006 | B2 |
7048745 | Tierney et al. | May 2006 | B2 |
7053752 | Wang et al. | May 2006 | B2 |
7063682 | Whayne et al. | Jun 2006 | B1 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066926 | Wallace et al. | Jun 2006 | B2 |
7074179 | Wang et al. | Jul 2006 | B2 |
7077446 | Kameda et al. | Jul 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7087049 | Nowlin et al. | Aug 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7097640 | Wang et al. | Aug 2006 | B2 |
7105000 | McBrayer | Sep 2006 | B2 |
7107090 | Salisbury, Jr. et al. | Sep 2006 | B2 |
7109678 | Kraus et al. | Sep 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7121781 | Sanchez et al. | Oct 2006 | B2 |
7125403 | Julian et al. | Oct 2006 | B2 |
7126303 | Farritor et al. | Oct 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7155315 | Niemeyer et al. | Dec 2006 | B2 |
7166113 | Arambula et al. | Jan 2007 | B2 |
7169141 | Brock et al. | Jan 2007 | B2 |
7182025 | Ghorbel et al. | Feb 2007 | B2 |
7182089 | Ries | Feb 2007 | B2 |
7199545 | Oleynikov et al. | Apr 2007 | B2 |
7206626 | Quaid, III | Apr 2007 | B2 |
7206627 | Abovitz et al. | Apr 2007 | B2 |
7210364 | Ghorbel et al. | May 2007 | B2 |
7214230 | Brock et al. | May 2007 | B2 |
7217240 | Snow | May 2007 | B2 |
7239940 | Wang et al. | Jul 2007 | B2 |
7250028 | Julian et al. | Jul 2007 | B2 |
7259652 | Wang et al. | Aug 2007 | B2 |
7273488 | Nakamura et al. | Sep 2007 | B2 |
7311107 | Harel et al. | Dec 2007 | B2 |
7339341 | Oleynikov et al. | Mar 2008 | B2 |
7372229 | Farritor et al. | May 2008 | B2 |
7447537 | Funda et al. | Nov 2008 | B1 |
7492116 | Oleynikov et al. | Feb 2009 | B2 |
7566300 | Devierre et al. | Jul 2009 | B2 |
7574250 | Niemeyer | Aug 2009 | B2 |
7588537 | Bass | Sep 2009 | B2 |
7637905 | Saadat et al. | Dec 2009 | B2 |
7645230 | Mikkaichi et al. | Jan 2010 | B2 |
7655004 | Long | Feb 2010 | B2 |
7670329 | Flaherty et al. | Mar 2010 | B2 |
7672168 | Tanaka et al. | Mar 2010 | B2 |
7678043 | Gilad | Mar 2010 | B2 |
7731727 | Sauer | Jun 2010 | B2 |
7762825 | Burbank et al. | Jul 2010 | B2 |
7772796 | Farritor et al. | Aug 2010 | B2 |
7785251 | Wilk | Aug 2010 | B2 |
7785333 | Miyamoto et al. | Aug 2010 | B2 |
7789825 | Nobis et al. | Sep 2010 | B2 |
7794494 | Sahatjian et al. | Sep 2010 | B2 |
7799088 | Geitz | Sep 2010 | B2 |
7865266 | Moll et al. | Jan 2011 | B2 |
7960935 | Farritor et al. | Jun 2011 | B2 |
8021358 | Doyle et al. | Sep 2011 | B2 |
8179073 | Farritor et al. | May 2012 | B2 |
8182469 | Anderson et al. | May 2012 | B2 |
8231510 | Abdo | Jul 2012 | B2 |
8231610 | Jo et al. | Jul 2012 | B2 |
8353897 | Doyle et al. | Jan 2013 | B2 |
8604742 | Farritor et al. | Dec 2013 | B2 |
9089353 | Farritor et al. | Jul 2015 | B2 |
9649020 | Finlay | May 2017 | B2 |
11357595 | Reichenbach et al. | Jun 2022 | B2 |
20010018591 | Brock et al. | Aug 2001 | A1 |
20010049497 | Kalloo et al. | Dec 2001 | A1 |
20020003173 | Bauer et al. | Jan 2002 | A1 |
20020013601 | Nobles et al. | Jan 2002 | A1 |
20020026186 | Woloszko et al. | Feb 2002 | A1 |
20020038077 | de la Torre et al. | Mar 2002 | A1 |
20020065507 | Zando-Azizi | May 2002 | A1 |
20020091374 | Cooper | Jun 2002 | A1 |
20020103417 | Gazdzinski | Aug 2002 | A1 |
20020111535 | Kim et al. | Aug 2002 | A1 |
20020120254 | Julian et al. | Aug 2002 | A1 |
20020128552 | Nowlin et al. | Sep 2002 | A1 |
20020140392 | Borenstein et al. | Oct 2002 | A1 |
20020147487 | Sundquist et al. | Oct 2002 | A1 |
20020151906 | Demarais et al. | Oct 2002 | A1 |
20020156347 | Kim et al. | Oct 2002 | A1 |
20020171385 | Kim et al. | Nov 2002 | A1 |
20020173700 | Kim et al. | Nov 2002 | A1 |
20020190682 | Schempf et al. | Dec 2002 | A1 |
20030020810 | Takizawa et al. | Jan 2003 | A1 |
20030045888 | Brock et al. | Mar 2003 | A1 |
20030065250 | Chiel et al. | Apr 2003 | A1 |
20030089267 | Ghorbel et al. | May 2003 | A1 |
20030092964 | Kim et al. | May 2003 | A1 |
20030097129 | Davison et al. | May 2003 | A1 |
20030100817 | Wang et al. | May 2003 | A1 |
20030114731 | Cadeddu et al. | Jun 2003 | A1 |
20030135203 | Wang et al. | Jun 2003 | A1 |
20030139742 | Wampler et al. | Jul 2003 | A1 |
20030144656 | Deel et al. | Jul 2003 | A1 |
20030159535 | Grover et al. | Aug 2003 | A1 |
20030167000 | Mullick | Sep 2003 | A1 |
20030172871 | Scherer | Sep 2003 | A1 |
20030179308 | Zamorano et al. | Sep 2003 | A1 |
20030181788 | Yokoi et al. | Sep 2003 | A1 |
20030191455 | Sanchez et al. | Oct 2003 | A1 |
20030229268 | Uchiyama et al. | Dec 2003 | A1 |
20030229338 | Irion et al. | Dec 2003 | A1 |
20030230372 | Schmidt | Dec 2003 | A1 |
20040024311 | Quaid | Feb 2004 | A1 |
20040034282 | Quaid | Feb 2004 | A1 |
20040034283 | Quaid | Feb 2004 | A1 |
20040034302 | Abovitz et al. | Feb 2004 | A1 |
20040050394 | Jin | Mar 2004 | A1 |
20040070822 | Shioda et al. | Apr 2004 | A1 |
20040099175 | Perrot et al. | May 2004 | A1 |
20040102772 | Baxter et al. | May 2004 | A1 |
20040106916 | Quaid et al. | Jun 2004 | A1 |
20040111113 | Nakamura et al. | Jun 2004 | A1 |
20040117032 | Roth | Jun 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138552 | Harel et al. | Jul 2004 | A1 |
20040140786 | Borenstein | Jul 2004 | A1 |
20040153057 | Davison | Aug 2004 | A1 |
20040173116 | Ghorbel et al. | Sep 2004 | A1 |
20040176664 | Iddan | Sep 2004 | A1 |
20040215331 | Chew et al. | Oct 2004 | A1 |
20040225229 | Viola | Nov 2004 | A1 |
20040254680 | Sunaoshi | Dec 2004 | A1 |
20040267326 | Ocel et al. | Dec 2004 | A1 |
20050014994 | Fowler et al. | Jan 2005 | A1 |
20050021069 | Feuer et al. | Jan 2005 | A1 |
20050029978 | Oleynikov et al. | Feb 2005 | A1 |
20050043583 | Killmann et al. | Feb 2005 | A1 |
20050049462 | Kanazawa | Mar 2005 | A1 |
20050054901 | Yoshino | Mar 2005 | A1 |
20050054902 | Konno | Mar 2005 | A1 |
20050064378 | Toly | Mar 2005 | A1 |
20050065400 | Banik et al. | Mar 2005 | A1 |
20050083460 | Hattori et al. | Apr 2005 | A1 |
20050095650 | Julius et al. | May 2005 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050143644 | Gilad et al. | Jun 2005 | A1 |
20050154376 | Riviere et al. | Jul 2005 | A1 |
20050165449 | Cadeddu et al. | Jul 2005 | A1 |
20050234435 | Layer | Oct 2005 | A1 |
20050283137 | Doyle et al. | Dec 2005 | A1 |
20050288555 | Binmoeller | Dec 2005 | A1 |
20050288665 | Woloszko | Dec 2005 | A1 |
20060020272 | Gildenberg | Jan 2006 | A1 |
20060046226 | Bergler et al. | Mar 2006 | A1 |
20060100501 | Berkelman et al. | May 2006 | A1 |
20060119304 | Farritor et al. | Jun 2006 | A1 |
20060149135 | Paz | Jul 2006 | A1 |
20060152591 | Lin | Jul 2006 | A1 |
20060155263 | Lipow | Jul 2006 | A1 |
20060195015 | Mullick et al. | Aug 2006 | A1 |
20060196301 | Oleynikov et al. | Sep 2006 | A1 |
20060198619 | Oleynikov et al. | Sep 2006 | A1 |
20060241570 | Wilk | Oct 2006 | A1 |
20060241732 | Denker | Oct 2006 | A1 |
20060253109 | Chu | Nov 2006 | A1 |
20060258954 | Timberlake et al. | Nov 2006 | A1 |
20070032701 | Fowler et al. | Feb 2007 | A1 |
20070043397 | Ocel et al. | Feb 2007 | A1 |
20070055342 | Wu et al. | Mar 2007 | A1 |
20070080658 | Farritor et al. | Apr 2007 | A1 |
20070106113 | Ravo | May 2007 | A1 |
20070123748 | Meglan | May 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070142725 | Hardin et al. | Jun 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070156211 | Ferren et al. | Jul 2007 | A1 |
20070167955 | De La Menardiere et al. | Jul 2007 | A1 |
20070225633 | Ferren et al. | Sep 2007 | A1 |
20070225634 | Ferren et al. | Sep 2007 | A1 |
20070241714 | Oleynikov et al. | Oct 2007 | A1 |
20070244520 | Ferren et al. | Oct 2007 | A1 |
20070250064 | Darois et al. | Oct 2007 | A1 |
20070255273 | Fernandez et al. | Nov 2007 | A1 |
20080004634 | Farritor et al. | Jan 2008 | A1 |
20080015565 | Davison | Jan 2008 | A1 |
20080015566 | Livneh | Jan 2008 | A1 |
20080033569 | Ferren et al. | Feb 2008 | A1 |
20080045803 | Williams et al. | Feb 2008 | A1 |
20080058835 | Farritor et al. | Mar 2008 | A1 |
20080058989 | Oleynikov et al. | Mar 2008 | A1 |
20080103440 | Ferren et al. | May 2008 | A1 |
20080109014 | de la Pena | May 2008 | A1 |
20080111513 | Farritor et al. | May 2008 | A1 |
20080119870 | Williams et al. | May 2008 | A1 |
20080132890 | Woloszko et al. | Jun 2008 | A1 |
20080161804 | Rioux et al. | Jun 2008 | A1 |
20080164079 | Ferren et al. | Jul 2008 | A1 |
20080183033 | Bern et al. | Jul 2008 | A1 |
20080221591 | Farritor et al. | Sep 2008 | A1 |
20080269557 | Marescaux et al. | Oct 2008 | A1 |
20080269562 | Marescaux et al. | Oct 2008 | A1 |
20090012532 | Quaid et al. | Jan 2009 | A1 |
20090020724 | Paffrath | Jan 2009 | A1 |
20090024142 | Ruiz Morales | Jan 2009 | A1 |
20090048612 | Farritor et al. | Feb 2009 | A1 |
20090054909 | Farritor et al. | Feb 2009 | A1 |
20090069821 | Farritor et al. | Mar 2009 | A1 |
20090076536 | Rentschler et al. | Mar 2009 | A1 |
20090137952 | Ramamurthy et al. | May 2009 | A1 |
20090143787 | De La Pena | Jun 2009 | A9 |
20090163929 | Yeung et al. | Jun 2009 | A1 |
20090171373 | Farritor et al. | Jul 2009 | A1 |
20090234369 | Bax et al. | Sep 2009 | A1 |
20090236400 | Cole et al. | Sep 2009 | A1 |
20090240246 | Devill et al. | Sep 2009 | A1 |
20090247821 | Rogers | Oct 2009 | A1 |
20090248038 | Blumenkranz et al. | Oct 2009 | A1 |
20090281377 | Newell et al. | Nov 2009 | A1 |
20090305210 | Guru et al. | Dec 2009 | A1 |
20100010294 | Conlon et al. | Jan 2010 | A1 |
20100016659 | Weitzner et al. | Jan 2010 | A1 |
20100016853 | Burbank | Jan 2010 | A1 |
20100042097 | Newton et al. | Feb 2010 | A1 |
20100056863 | Dejima et al. | Mar 2010 | A1 |
20100069710 | Yamatani et al. | Mar 2010 | A1 |
20100069940 | Miller et al. | Mar 2010 | A1 |
20100081875 | Fowler et al. | Apr 2010 | A1 |
20100139436 | Kawashima et al. | Jun 2010 | A1 |
20100185212 | Sholev | Jul 2010 | A1 |
20100198231 | Manzo et al. | Aug 2010 | A1 |
20100204713 | Ruiz Morales | Aug 2010 | A1 |
20100245549 | Allen et al. | Sep 2010 | A1 |
20100250000 | Blumenkranz et al. | Sep 2010 | A1 |
20100262162 | Omori | Oct 2010 | A1 |
20100292691 | Brogna | Nov 2010 | A1 |
20100318059 | Farritor et al. | Dec 2010 | A1 |
20110015569 | Kirschenman et al. | Jan 2011 | A1 |
20110020779 | Hannaford et al. | Jan 2011 | A1 |
20110071347 | Rogers et al. | Mar 2011 | A1 |
20110071544 | Steger et al. | Mar 2011 | A1 |
20110077478 | Freeman et al. | Mar 2011 | A1 |
20110082365 | Mcgrogan et al. | Apr 2011 | A1 |
20110098529 | Ostrovsky et al. | Apr 2011 | A1 |
20110152615 | Schostek et al. | Jun 2011 | A1 |
20110224605 | Farritor et al. | Sep 2011 | A1 |
20110230894 | Simaan et al. | Sep 2011 | A1 |
20110237890 | Farritor et al. | Sep 2011 | A1 |
20110238080 | Ranjit et al. | Sep 2011 | A1 |
20110264078 | Lipow et al. | Oct 2011 | A1 |
20110270443 | Kamiya et al. | Nov 2011 | A1 |
20110276046 | Heimbecker et al. | Nov 2011 | A1 |
20120029277 | Sholev | Feb 2012 | A1 |
20120029727 | Sholev | Feb 2012 | A1 |
20120035582 | Nelson et al. | Feb 2012 | A1 |
20120109150 | Quaid et al. | May 2012 | A1 |
20120116362 | Kieturakis | May 2012 | A1 |
20120179168 | Farritor et al. | Jul 2012 | A1 |
20120253515 | Coste-Maniere et al. | Oct 2012 | A1 |
20130041360 | Farritor et al. | Feb 2013 | A1 |
20130131695 | Scarfogliero et al. | May 2013 | A1 |
20130345717 | Markvicka et al. | Dec 2013 | A1 |
20140039515 | Mondry et al. | Feb 2014 | A1 |
20140046340 | Wilson et al. | Feb 2014 | A1 |
20140058205 | Frederick et al. | Feb 2014 | A1 |
20140100587 | Farritor et al. | Apr 2014 | A1 |
20140249546 | Shvartsberg et al. | Sep 2014 | A1 |
20140303434 | Farritor et al. | Oct 2014 | A1 |
20150051446 | Farritor et al. | Feb 2015 | A1 |
20150297299 | Yeung et al. | Oct 2015 | A1 |
20160015461 | Farritor et al. | Jan 2016 | A1 |
20160074055 | Ravikumar | Mar 2016 | A1 |
20160228154 | Mickiewicz et al. | Aug 2016 | A1 |
20170035526 | Arritor et al. | Feb 2017 | A1 |
20170354470 | Farritor et al. | Dec 2017 | A1 |
20180140377 | Reichenbach et al. | May 2018 | A1 |
20210045836 | Farritor et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
102821918 | Dec 2012 | CN |
102010040405 | Mar 2012 | DE |
0105656 | Apr 1984 | EP |
0279591 | Aug 1988 | EP |
1354670 | Oct 2003 | EP |
2286756 | Feb 2011 | EP |
2286756 | Feb 2011 | EP |
2329787 | Jun 2011 | EP |
2563261 | Mar 2013 | EP |
2684528 | Jan 2014 | EP |
2123225 | Dec 2014 | EP |
2815705 | Dec 2014 | EP |
2881046 | Oct 2015 | EP |
2937047 | Oct 2015 | EP |
H04-144533 | May 1992 | JP |
05-115425 | May 1993 | JP |
2006508049 | Sep 1994 | JP |
H06-507809 | Sep 1994 | JP |
H06-508049 | Sep 1994 | JP |
07-016235 | Jan 1995 | JP |
07-136173 | May 1995 | JP |
7306155 | Nov 1995 | JP |
08-224248 | Sep 1996 | JP |
2001500510 | Jan 2001 | JP |
2001505810 | May 2001 | JP |
2002000524 | Jan 2002 | JP |
2003220065 | Aug 2003 | JP |
2004144533 | May 2004 | JP |
2004-180781 | Jul 2004 | JP |
2004322310 | Nov 2004 | JP |
2004329292 | Nov 2004 | JP |
2006507809 | Mar 2006 | JP |
2009106606 | May 2009 | JP |
2010533045 | Oct 2010 | JP |
2010536436 | Dec 2010 | JP |
2011504794 | Feb 2011 | JP |
2011045500 | Mar 2011 | JP |
2011115591 | Jun 2011 | JP |
199221291 | May 1991 | WO |
2001089405 | Nov 2001 | WO |
2002082979 | Oct 2002 | WO |
2002100256 | Dec 2002 | WO |
2005009211 | Jul 2004 | WO |
2005044095 | May 2005 | WO |
2006052927 | Aug 2005 | WO |
2006005075 | Jan 2006 | WO |
2006079108 | Jan 2006 | WO |
2006079108 | Jul 2006 | WO |
2007011654 | Jan 2007 | WO |
2007111571 | Oct 2007 | WO |
2007149559 | Dec 2007 | WO |
2009023851 | Feb 2009 | WO |
2009144729 | Dec 2009 | WO |
2010042611 | Apr 2010 | WO |
2010046823 | Apr 2010 | WO |
2010050771 | May 2010 | WO |
2011075693 | Jun 2011 | WO |
2011118646 | Sep 2011 | WO |
2011135503 | Nov 2011 | WO |
2013009887 | Jan 2013 | WO |
2014011238 | Jan 2014 | WO |
2014160086 | Oct 2014 | WO |
2015088655 | Jun 2015 | WO |
2015132549 | Sep 2015 | WO |
Entry |
---|
Abbott et al., “Design of an Endoluminal NOTES Robotic System,” from the Proceedings of the 2007 IEEE/RSJ Int'l Conf. on Intelligent Robot Systems, San Diego, CA, Oct. 29-Nov. 2, 2007, pp. 410-416. |
Allendorf et al., “Postoperative Immune Function Varies Inversely with the Degree of Surgical Trauma in a Murine Model,” Surgical Endoscopy 1997; 11:427-430. |
Ang, “Active Tremor Compensation in Handheld Instrument for Microsurgery,” Doctoral Dissertation, tech report CMU-RI-TR-04-28, Robotics Institute, Carnegie Mellon Unviersity, May 2004, 167pp. |
Atmel 80C5X2 Core, http://www.atmel.com, 2006, 186pp. |
Bailey et al., “Complications of Laparoscopic Surgery,” Quality Medical Publishers, Inc., 1995, 25pp. |
Ballantyne, “Robotic Surgery, Telerobotic Surgery, Telepresence, and Telementoring,” Surgical Endoscopy, 2002; 16: 1389-1402. |
Bauer et al., “Case Report: Remote Percutaneous Renal Percutaneous Renal Access Using a New Automated Telesurgical Robotic System,” Telemedicine Journal and e-Health 2001; (4): 341-347. |
Begos et al., “Laparoscopic Cholecystectomy: From Gimmick to Gold Standard,” J Clin Gastroenterol, 1994; 19(4): 325-330. |
Berg et al., “Surgery with Cooperative Robots,” Medicine Meets Virtual Reality, Feb. 2007, 1 pg. |
Breda et al., “Future developments and perspectives in laparoscopy,” Eur. Urology 2001; 40(1): 84-91. |
Breedveld et al., “Design of Steerable Endoscopes to Improve the Visual Perception of Depth During Laparoscopic Surgery,” ASME, Jan. 2004; vol. 126, pp. 1-5. |
Breedveld et al., “Locomotion through the Intestine by means of Rolling Stents,” Proceedings of the ASME Design Engineering Technical Conferences, 2004, pp. 1-7. |
Calafiore et al., Multiple Arterial Conduits Without Cardiopulmonary Bypass: Early Angiographic Results,: Ann Thorac Surg, 1999; 67: 450-456. |
Camarillo et al., “Robotic Technology in Surgery: Past, Present and Future,” The American Journal of Surgery, 2004; 188: 2S-15. |
Cavusoglu et al., “Telesurgery and Surgical Simulation: Haptic Interfaces to Real and Virtual Surgical Environments,” In McLaughliin, M.L., Hespanha, J.P., and Sukhatme, G., editors. Touch in virtual environments, IMSC Series in Multimedia 2001, 28pp. |
Dumpert et al., “Stereoscopic In Vivo Surgical Robots,” IEEE Sensors Special Issue on In Vivo Sensors for Medicine, Jan. 2007, 10 pp. |
Green, “Telepresence Surgery”, Jan. 1, 1995, Publisher: IEEE Engineering in Medicine and Biology. |
Cleary et al., “State of the Art in Surgical Rooties: Clinical Applications and Technology Challenges”, “Computer Aided Surgery”, Jan. 1, 2002, pp. 312-328, vol. 6. |
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Jan. 1, 2002, pp. 1-17. |
Franzino, “The Laprotek Surgical System and the Next Generation of Robotics,” Surg Clin North Am, 2003 83(6): 1317-1320. |
Franklin et al., “Prospective Comparison of Open vs. Laparoscopic Colon Surgery for Carcinoma: Five-Year Results,” Dis Colon Rectum, 1996; 39: S35-S46. |
Flynn et al., “Tomorrow's surgery: micromotors and microrobots for minimally invasive procedures,” Minimally Invasive Surgery & Allied Technologies, 1998; 7(4): 343-352. |
Fireman et al., “Diagnosing small bowel Crohn's desease with wireless capsule endoscopy,” Gut 2003; 52: 390-392. |
Fearing et al., “Wing Transmission for a Micromechanical Flying Insect,” Proceedings of the 2000 IEEE International Conference to Robotics & Automation, Apr. 2000; 1509-1516. |
Faraz et al., “Engineering Approaches to Mechanical and Robotic Design for Minimaly Invasive Surgery (MIS),” Kluwer Academic Publishers (Boston), 2000, 13pp. |
Falcone et al., “Robotic Surgery,” Clin. Obstet. Gynecol. 2003, 46(1): 37-13. |
Fraulob et al., “Miniature assistance module for robot-assisted heart surgery,” Biomed. Tech. 2002, 47 Suppl. 1, Pt. 1: 12-15. |
Fukuda et al., “Mechanism and Swimming Experiment of Micro Mobile Robot in Water,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994: 814-819. |
Fukuda et al., “Micro Active Catheter System with Multi Degrees of Freedom,” Proceedings of the IEEE International Conference on Robotics and Automation, May 1994, pp. 2290-2295. |
Fuller et al., “Laparoscopic Trocar Injuries: A Report from a U.S. Food and Drug Administration (FDA) Center for Devices and Radiological Health (CDRH) Systematic Technology Assessment of Medical Products (STAMP) Committe,” U.S. Food and Drug Adminstration, available at http://www.fdaJ:?;ov, Finalized: Nov. 7, 2003 Updated: Jun. 24, 2005, 11 pp. |
Dumpert et al., “Improving in Vivo Robot Visioin Quality,” from the Proceedings of Medicine Meets Virtual Realtiy, Long Beach, CA, Jan. 26-29, 2005. 1 pg. |
Dakin et al., “Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems,” Surg Endosc., 2003; 17: 574-579. |
Cuschieri, “Technology for Minimal Access Surgery,” BMJ, 1999, 319: 1-6. |
Grady, “Doctors Try New Surgery for Gallbladder Removal,” The New York Times, Apr. 20, 2007, 3 pp. |
Choi et al., “Flexure-based Manipulator for Active Handheld Microsurgical Instrument,” Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Sep. 2005, 4pp. |
Chanthasopeephan et al., (2003), “Measuring Forces in Liver Cutting: New Equipment and Experimenal Results,” Annals of Biomedical Engineering 31:1372-1382. |
Cavusoglu et al.,“ Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications,” Industrial Robot: An International Journal, 2003; 30(1): 22-29. |
Guber et al., “Miniaturized Instrument Systems for Minimally Invasive Diagnosis and Therapy,” Biomedizinische Technic 2002, Band 47, Erganmngsband 1: 198-201. |
Phee et al., “Analysis and Development of Locomotion Devices for the Gastrointestinal Tract,” IEEE Transaction on Biomedical Engineering, vol. 49, No. 6, Jun. 2002, pp. 613-616. |
Phee et al., “Development of Microrobotic Devices for Locomotion in the Human Gastrointestinal Tract,” International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS 2001), November 28-30, (2001), Singapore. |
Platt et al., “In Vivo Robotic Cameras can Enhance Imaging Capability During Laparoscopic Surgery,” in the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. auderdale, FL, Apr. 13-16, 2005, 1 PG. |
Rentschler et al., “An In Vivo Mobile Robot for Surgical Vision and Task Assistance,” Journal of Medical Devices, Mar. 2007, vol. 1: 23-29. |
Rentschler et al., “In vivo Mobile Surgical Robotic Task Assistance,” 1 pg. |
Rentschler et al., “In vivo Robotics during the NEEMO 9 Mission,” Medicine Meets Virtual Reality, Feb. 17, 2007, 1 pg. |
Rentschler et al., “Mechanical Design of Robotic In Vivo Wheeled Mobility,” ASME Journal of Mechanical Design, 2006a, pp. 1-11. |
Rentschler et al., “Miniature in vivo Robots for Remote and Harsh Environments,” IEEE Transactions on Information Technology in Biomedicine, Jan. 2006; 12{1): 66-75. |
Rentschler et al., “Mobile In Vivo Biopsy and Camera Robot,” Studies in Health and Infonnatics Medicine Meets Virtual Reality, vol. 119, pp. 449-454, IOS Press, Long Beach, CA, 2006e. |
Rentschler et al., “Mobile In Vivo Camera Robots Provide Sole Visual Feedback for Abdominal Exploration and Cholecystectomy,” Journal of Surgical Endoscopy, 20-1: 135-138, 2006b. |
Rentschler et al., “Mobile In Vivo Robots Can Assist in Abdominal Exploration,” from the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, April 13-16, 2005b. |
Rentschler et al., “Modeling, Analysis, and Experimental Study of In Vivo Wheeled Robotic Mobility,” IEEE Transactions on Robotics, 22 (2): 308-321, 2005c. |
Rentschler et al., “Natural Orifice Surgery with an Endoluminal Mobile Robot,” The Society of American Gastrointestinal Endoscopic Surgeons, Dallas, TX, April 2006d, 14 pp. |
Rentschler et al., “Theoretical and Experimental Analysis of In Vivo Wheeled Mobility,” ASME Design Engineering Technical Conferences: 28th Biennial Mechanisms and Robotics Conference, Salt Lake City, Utah, Sep. 28-Oct. 2, 2004, pp. 1-9. |
Rentschler et al., “Toward In Vivo Mobility,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, ISO Press, Long Beach, CA, 2005a, III: 397-403. |
Rentschler et al., Mobile In Vivo Biopsy Robot, IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006, pp. 4155-4160. |
Rentschler et al., “In Vivo Robots for Laparoscopic Surgery,” Studies in Health Technology and Infonnatics - Medicine Meets Virtual Reality, ISO Press, Newport Beach, CA, 2004a, 98: 316-322. |
Riviere et al., “Toward Active Tremor Canceling in Handheld Microsurgical Instruments,” IEEE Transactions on Robotics and Automation, Oct. 2003, 19(5): 793-800. |
Rosen et al., “Force Controlled and Teleoperated Endoscopic, Grasper for Minimally Invasive Surgery—Experimental Performance Evaluation,” IEEE Transactions of Biomedical Engineering, Oct. 1999; 46(10): 1212-1221. |
Rosen et al., “Objective Laparoscopic Skills Assessments of Surgical Residents Using Hidden Markov Models Based on Haptic Information and Tool/Tissue Interactions,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, Jan. 2001, 7 pp. |
Rosen et al., “Spherical Mechanism Analysis of a Surgical Robot for Minimally Invasive Surgery—Analytical and Experimental Approaches,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, pp. 442-448, Jan. 2005. |
Rosen et al., “The Blue DRAGON—A System of Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proc. of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1876-1881, May 2002. |
Rosen et al., “Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents' Learning Curve Using Hidden Markov Model,” Computer Aided Surgery, vol. 7, pp. 49-61, 2002. |
Ruurda et al., “Feasibility of Robot-Assisted Laparoscopic Surgery,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1 ):41-45. |
Ruurda et al., “Robot-Assisted surgical systems: a new era in laparoscopic surgery,” Ann R. Coll Surg Engl., 2002; 34: 223-226. |
Sackier et al., “Robotically assisted laparoscopic surgery,” Surgical Endoscopy, 1994; 8: 63-66. |
Salky, “What is the Penetration of Endoscopic Techniques into Surgical Practice?” Digestive Surgery, 2000; 17:422-426. |
Satava, “Surgical Robotics: The Early Chronicles,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1): 6-16. |
Schippers et al., (1996) “Requirements and Possibilities of Computer-Assisted Endoscopic Surgery,” In: Computer Integrated Surgery: Technology and Clinical Applications, pp. 561-565. |
Schurr et al., “Robotics and Telemanipulation Technologies for Endoscopic Surgery,” Surgical Endoscopy, 2000; 14: 375-381. |
Schwartz, “In the Lab: Robots that Slink and Squirm,” The New York Times, Mar. 27, 2007, 4 pp. |
Sharp LL-151-3O, http://www.sharp3d.com, 2006, 2 pp. |
Slatkin et al., “The Development of a Robotic Endoscope,” Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 162-171, 1995. |
Smart Pill “Fastastic Voyage: Smart Pill to Expand Testing,” http://www.smartpilldiagnostics.com, Apr. 13, 2005, 1 pg. |
Southern Surgeons Club (1991), “A prospective analysis of 1518 laparoscopic cholecystectomies,” N. Eng. 1 Med. 324 (16): 1073-1078. |
Stefanini et al., “Modeling and Experiments on a Legged Microrobot Locomoting in a Tubular Compliant and Slippery Environment,” Int. Journal of Robotics Research, vol. 25, No. 5-6, pp. 551-560, May-Jun. 2006. |
Stiff et al., “Long-term Pain: Less Common After Laparoscopic than Open Cholecystectomy,” British Journal of Surgery, 1994; 81: 1368-1370. |
Strong, et al., “Efficacy of Novel Robotic Camera vs. a Standard Laproscopic Camera,” Surgical Innovation vol. 12, No. 4, Dec. 2005, Westminster Publications, Inc., pp. 315-318. |
Suzumori et al., “Development of Flexible Microactuator and its Applications to Robotics Mechanisms,” Proceedings of the IEEE International Conference on Robotics and Automation, 1991: 1622-1627. |
Taylor et al., “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Eng Med Biol, 1995; 279-287. |
Tendick et al., “Applications of Micromechatronics in Minimally Invasive Surgery,” IEEE/AS ME Transactions on Mechatronics, 1998; 3(1): 34-42. |
Tendick et al. (1993), “Sensing and Manipulation Problems in Endoscopic Surgery: Experiment, Analysis, and Observation,” Presence 2(1): 66-81. |
Thomann et al., “The Design of a new type of Micro Robot for the Intestinal Inspection,” Proceedings of the 2002 IEEE Intl. Conference on Intelligent Robots and Systems, Oct. 2002: 1385-1390. |
U.S. Appl. No. 60/180,960, filed Feb. 2000. |
U.S. Appl. No. 60/956,032, filed Aug. 15, 2007. |
U.S. Appl. No. 60/983,445, filed Oct. 29, 2007. |
U.S. Appl. No. 60/990,106, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,062, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,076, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,086, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,470, filed Nov. 27, 2007. |
U.S. Appl. No. 61/025,346, filed Feb. 1, 2008. |
U.S. Appl. No. 61/030,588, filed Feb. 22, 2008. |
U.S. Appl. No. 61/030,617, filed Feb. 22, 2008. |
Way et al., (editors), “Fundamentals of Laparoscopic Surgery,” Churchill Livingstone Inc., 1995, 14 pp. |
Wolfe et al., “Endoscopic Cholecystectomy: An analysis of Complications,” Arch. Surg. Oct. 1991; 126: 1192-1196. |
Worn et al., “Espirit Project No. 33915: Miniaturised Robot for Micro Manipulation (MINIMAN)”, Nov. 1998; http://www.ipr.ira.ujka.de/-microbot/miniman. |
Yu et al., “Microrobotic Cell Injection,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, May 2001; 620-625. |
Yu, BSN, RN, “M2ATM Capsule Endoscopy A Breakthrough Diagnostic Tool for Small Intestine Imaging,” vol. 25, No. 1, 2002, Gastroenterology Nursing, pp. 24-27. |
Abbou et al., “Laparoscopic Radical Prostatectomy with a Remote Controlled Robot,” The Journal of Urology, Jun. 2001, 165: 1964-1966. |
Glukhovsky et al., “The development and application of wireless capsule endoscopy,” Int. J. Med. Robot. Comput. Assist. Surgery, 2004; I (1): 114-123. |
Gong et al., Wireless endoscopy, Gastrointestinal Endoscopy 2000; 51(6): 725-729. |
Guo et al., “Fish-like Underwater Microrobot with 3 DOF,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002: 738-743. |
Guo et al., “Micro Active Guide Wire Catheter System - Characteristic Evaluation, Electrical Model and Operability Evaluation of Micro Active Catheter,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Apr. 1996: 2226-2231. |
Hanly et al., “Robotic Abdominal Surgery,” The American Journal of Surgery 188 (Suppl.to Oct. 1994): 19S-26S, 2004. |
Hanly et al., “Value of the SAGES Learning Center in introducing new technology,” Surgical Endoscopy, 2004; 19(4): 477-483. |
Heikkinen et al., “Comparison of laparoscopic and open Nissen fundoplication two years after operation: A prospective randomized trial,” Surgical Endoscopy, 2000; 14: 1019-1023. |
Hissink, “Olympus Medical develops capsule camera technology,” Dec. 2004, accessed Aug. 29, 2007, http://www.letsgodigital.org , 3 pp. |
Horgan et al., “Technical Report: Robots in Laparoscopic Surgery,” Journal of Laparoendoscopic & Advanced Surgical Techniques, 2001; 11(6): 415-419. |
Ishiyama et al., “Spiral-type Micro-machine for Medical Applications,” 2000 International Symposium on Micromechatronics and Human Science, 2000: 65-69. |
Jagannath et al., “Peroral transgastric endoscopic ligation of fallopian tubes with long-term survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 61(3): 449-453. |
Kalloo et al., “Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity,” Gastrointestinal Endoscopy, 2004; 60(1): 114-117. |
Kang et al., “Robotic Assistants Aid Surgeons During Minimally Invasive Procedures,” IEEE Engineering in Medicine and Biology, Jan.- Feb. 2001; pp. 94-104. |
Kantsevoy et al., “Endoscopic gastrojejunostomy with survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 62(2): 287-292. |
Kantsevoy et al., “Transgastric endoscopic splenectomy,” Surgical Endoscopy, 2006; 20: 522-525. |
Kazemier et al. (1998), “Vascular Injuries During Laparoscopy,” J. Am. Coli. Surg. 186(5): 604-5. |
Kim, “Early Experience with Telemanipulative Robot-Assisted Laparoscopic Cholecystectomy Using da Vinci,” Surgical aparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):33-40. |
Ko et al., “Per-Oral transgastric abdominal surgery,” Chinese Journal of Digestive Diseases, 2006; 7: 67-70. |
Lafullarde et al., “Laparoscopic Nissen Fundoplication: Five-year Results and Beyond,” Arch/Surg, Feb. 2001; 136: 180-184. |
Leggett et al. (2002), “Aortic injury during laparoscopic fundoplication,” Surg. Endoscopy 16(2): 362. |
Li et al. (2000), “Microvascular Anastomoses Performed in Rats Using a Microsurgical Telemanipulator,” Comp. Aid. Surg. 5: 326-332. |
Liem et al., “Comparison of Conventional Anterior Surgery and Laparoscopic Surgery for Inguinal-hernia Repair,” New England Journal of Medicine, 1997; 336 (22): 1541-1547. |
Macfarlane et al., “Force-Feedback Grasper Helps Restore the Sense of Touch in Minimally Invasive Surgery,” Journal of Gastrointestinal Surgery, 1999; 3: 278-285. |
Mack et al., “Present Role of Thoracoscopy in the Diagnosis and Treatment of Diseases of the Chest,” Ann Thorac Surgery, 1992; 54: 403-409. |
Mack, “Minimally Invasive and Robotic Surgery,” JAMA, Feb. 2001; 285(5): 568-572. |
Mei et al., “Wireless Drive and Control of a Swimming Microrobot,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002: 1131-1136. |
Melvin et al., “Computer-Enhanced vs. Standard Laparoscopic Antireflux Surgery,” J Gastrointest Surg 2002; 6: 11-16. |
Menciassi et al., “Locomotion of a Leffed Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results,” IEEE Int. Conf. on Engineering in Medicine and Biology, San Francisco, CA, pp. 2767-2770, Sep. 2004. |
Menciassi et al., “Robotic Solutions and Mechanisms for a Semi-Autonomous Endoscope,” Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Oct. 2002; 1379-1384. |
Menciassi et al., “Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract,” J. Micromech. Microeng, 2005, 15: 2045-2055. |
Meron, “The development of the swallowable video capsule (M2A),” Gastrointestinal Endoscopy 2000; 52 6: 317-819. |
Micron, http://www.micron.com, 2006, ¼-inch VGA NTSC/PAL CMOS Digital Image Sensor, 98 pp. |
Midday Jeff et al., “Material Handling System for Robotic natural Orifice Surgery”, Proceedings of the 2011 Design of medical Devices Conference, Apr. 12-14, 2011, Minneapolis, MN, 4 pages. |
Miller, Ph.D., et al., “In-Vivo Stereoscopic Imaging System with 5 Degrees of-Freedom for Minimal Access Surgery,” Dept. of Computer Science and Dept. of Surgery, Columbia University, New York, NY, 2004, 7 pp. |
Munro (2002), “Laparoscopic access: complications, technologies, and techniques,” Curro Opin. Obstet. Gynecol., 14(4): 365-74. |
Nio et al., “Efficiency of manual vs robotical (Zeus) assisted laparoscopic surgery in the performance of standardized tasks,” Surg Endosc, 2002; 16: 412-415. |
Oleynikov et al., “In Vivo Camera Robots Provide Improved Vision for Laparoscopic Surgery,” Computer Assisted Radiology and Surgery (CARS), Chicago, IL, Jun. 23-26, 2004b. |
Oleynikov et al., “In Vivo Robotic Laparoscopy,” Surgical Innovation, Jun. 2005, 12(2): 177-181. |
Oleynikov et al., “Miniature Robots Can Assist in Laparoscopic Cholecystectomy,” Journal of Surgical Endoscopy, 19-4: 473-476, 2005. |
O'Neill, “Surgeon takes new route to gallbladder,” The Oregonian, Jun. 2007, 2 pp. |
Orlando et al., (2003), “Needle and Trocar Injuries in Diagnostic Laparoscopy under Local Anesthesia: What Is the True Incidence of These Complications?” Journal of Laparoendoscopic & Advanced Surgical Techniques 13(3):181-184. |
Palm, William, “Rapid Prototyping Primer” May 1998 (revised Jul. 30, 2002) (http://www.me.psu.edu/lamancusa/rapidpro/primer/chapter2.htm). |
Park et al., “Experimental studies of transgastric gallbladder surgery: cholecystectomy and cholecystogastric anastomosis (videos),” Gastrointestinal Endoscopy, 2005; 61 (4): 601-606. |
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-abdominal Camera and Retractor,” Ann Surg, Mar. 2007; 245(3): 379-384. |
Patronik et al., “Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions,” MICCAI, 2004, pp. 9-16. |
Patronik et al., “Development of a Tethered Epicardial Crawler for Minimally Invasive Cardiac Therapies,” IEEE, 2004, pp. 239-240. |
Patronik et al., “Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart,” Computer Aided Surgery, 10(4): 225-232, Jul. 2005. |
Peirs et al., “A miniature manipulator for integration in a self-propelling endoscope,” Sensors and Actuators A, 2001, 92: 343-349. |
Peters, “Minimally Invasive Colectomy: Are the Potential Benefits Realized?” Dis Colon Rectum 1993; 36: 751-756. |
Number | Date | Country | |
---|---|---|---|
20200315739 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62433837 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15842230 | Dec 2017 | US |
Child | 16904101 | US |