Embodiments of the present disclosure generally relate to the field of network connectivity, and more particularly, to providing break-away connectors and couplers for communications network components.
In a communications network, multiple devices may be connected with each other and other entities via different cable- or cord-based (e.g. structured copper or optical fiber cabling; copper or optical fiber patch cables; copper or optical fiber patch cords; copper and optical fiber power cords and the like (collectively “cable” or “cables”)) connections and corresponding mating elements (e.g. outlets, plugs, jacks, copper or optical fiber connectors and the like (collectively “connectors”). In some instances, such cables may be damaged. For example, a connectorized cable may be plugged into a piece of equipment, to connect the equipment with a power or data connector disposed on the wall of a facility space.
In some instances, the equipment, such as a computing device or other type of machine, may be movable. For example, the equipment may be disposed on a medical cart or table in a hospital room. When the cart or table is rolled or moved away from the connector in the wall, to which a machine is connected, a pulling force to the cable may be applied. In the absence of a release mechanism, the equipment may be pulled off the cart or table and damaged. In another example, a connector may be pulled out of the wall plate, which may result in costly damage to the connector or wall plate. In either instance, costly damage of the network infrastructure may occur.
Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
Some embodiments of the present disclosure include techniques and configurations for a connector to releasably couple two cables. In one instance, a connector may include a first housing to couple to a first cable. The housing may include a mating surface to mate with a mating surface of a second housing, to couple to a second cable. The transmission components of the first cable may extend to the mating surface, to provide connectivity with respective transmission components of the second cable, in response to a coupling of the first and second mating surfaces. The connector may further include a retention mechanism, to provide for releasable coupling of the cables. The retention mechanism may include a magnet component disposed on or in proximity to the mating surface, to interact with a corresponding magnet component of the second housing. A magnetic force produced in response to the interaction may provide the releasable coupling of the first and second cables.
In embodiments, the connection 100 may comprise a connector that may include a first housing 102 to couple to a first cable 106, and a complementary second housing 104 to couple to a second cable 108. For ease of understanding, only parts of the first and second cables 106 and 108 are shown in
First and second cables 106 and 108 may include one or more set of first transmission components 116 and set of second transmission components 118 (e.g. twisted wire pair or optical fibers), respectively, disposed inside a first cable jacket 114 and second cable jacket 115. The number of transmission components inside the jacket 114 may vary, depending on technical requirements of the first and second cables 106 and 108. The first and second transmission components 116, 118 are shown in
In embodiments, the connector 100 may include a retention mechanism, to retain the first housing 102 in contact with the second housing 104, and provide a break-away release of the first and second housings 102 and 104 in response to application of a pulling force (indicated by arrow 136). The retention mechanism may include a first magnet component 138 disposed on or inside the first housing 102. For example, the first magnet component 138 may be disposed on, or in proximity to, the first mating surface 124. The retention mechanism may further include a second mating magnet component 140 disposed on or inside the second housing 104, such as on, or in proximity to, the second mating surface 126. The first and second magnet components 138 and 140 may have reverse polarities to produce a magnetic force (indicated by arrows 142 and 144 respectively) in response to interaction between the magnet components 138 and 140. The first and second magnetic components 138 and 140 may be selected to produce the magnetic force 142, 144, with desired magnitude, to provide for releasable mating of the first and second housings 102 and 104 and the corresponding releasable mating of the first and second cables 106 and 108. In some embodiments, the retention mechanism may include only one magnet (e.g., 138 or 140) disposed on or in proximity to a mating surface, while another mating surface may comprise a magnetizable material (e.g., metal) responsive to the magnetic field provided by the magnet.
In order to provide desired retention force, the first mating surface 220 may be defined by a first portion 236 mated with a second portion 238. As schematically shown in a side view 260 of the first connectable portion 202, the first portion 236 of the first mating surface 220 may be formed substantially orthogonally to the housing longitudinal axis 240. The second portion 238 of the first housing 206 may be formed under an angle A (e.g., oblique angle) to the axis 240. In some embodiments, the first mating surface 220 may comprise only a first portion 236 formed substantially orthogonally to the axis 240. In some embodiments, the first mating surface 220 may comprise only a portion having a mating face 237 that may be formed under an angle B (e.g., oblique angle) to the axis 240. For example, the first mating surface 220 may be formed by cutting the first tubular housing 206 to provide the shape of the mating surface 220. The second mating surface 222 may conform to the first mating surface 220 to provide for coupling of the first and second housings 206 and 208, as shown in view 270. The functional advantage of the described geometry may include the ability for male and female connectors to mate, while disallowing a male-male mating. For the purposes of this embodiment, a male connector may be 208 and female connector may be 206.
The transmission components of the first and second cables 232, 234 (transmission components not shown in
In the example embodiment of
A retention mechanism 210 may be disposed around the housings 206 and 208. In this embodiment, the retention mechanism 210 may include magnetic components disposed inside respective covers 212 and 214. As shown, the covers 212 and 214 may comprise perimeter rings and may be disposed adjacent to, and around, respective mating surfaces of the housings 206 and 208.
As shown, the transmission component 320 may have a contacting surface 342. In the illustrated embodiment, the contacting surface 342 may be formed by cutting the pin or fiber 340 under a substantially direct angle to a longitudinal axis 326 of the housing 308. (The contacting surface of the transmission component 318 may be formed in a similar fashion.) In some embodiments, discussed in reference to
In embodiments, the connection 300 may include a retention mechanism, to retain the first and second connectable portions 302 and 304 in a connected position. The retention mechanism may provide a break-away release of the first and second connectable portions 302 and 304 in response to application of a pulling force to at least one of the connectable portions. In some embodiments, the retention mechanism may include one or more magnet components. For example, one of the mating surfaces 314 or 316 may comprise a magnet, while another may be made of a magnetizable (e.g., metallic) material. In another example, both mating surfaces may comprise magnets with reverse polarities, to provide a retaining force for the first and second connectable portions 302 and 304.
In some embodiments, the mating surfaces 314 and 316 may be formed under a direct angle to respective longitudinal axes 324 and 326 of the housings 306 and 308. In some embodiments, the respective mating surfaces 334 and 336 (indicated by dotted lines) may be formed under a oblique (e.g., acute) angles relative to the axes 324 and 326 of the housings 306 and 308.
The mating surfaces 434 and 436 of the first and second connectable portions 402 and 404 are shown as formed under a substantially direct angle to the axes 430 and 432. In some embodiments, the mating surfaces 434 and 436 may be provided under oblique angles to the axes 430 and 432, similar to the embodiments described in reference to
More specifically, the electrical contacts 620, 622, 624, and 626 (and corresponding wires) may be coupled to the housing 306 and respective mating components to be equidistant from each other. In other words, as shown in view 604, distances D1, D2, and D3 between the contacts may be equal. In some embodiments, each pair of contacts (e.g., 620 and 622, and 624 and 626) and corresponding wires may be coupled to the housing 306 to have equal distance between each contact in a pair, e.g., the distance between 620 and 622 may be equal to the distance between 624 and 626. In other words, distance D1 may be equal to distance D3.
In some embodiments, some of the mating components may be movable longitudinally inside the housing 306. For example, components 610 and 614 may comprise plungers, which may be loaded (e.g., spring-loaded or otherwise configured) to be extended in a default (disconnected) state, shown in view 602. In some embodiments, the contacts 620, 622 extending inside the plunger 610 (and similarly contacts extending inside the plunger 614) may comprise pins, such as pogo pins or other types of pins. As shown, in the default (extended) state of the plunger 610, the contacts (pins) 620, 622 may be disposed to be underneath a surface 630 of the plunger 610. Thus, in a disconnected state of the connectable portions 302, 304 (view 602), the contacts (pins) may be protected by virtue of being fully disposed inside the plungers 610 and 614.
The plungers 610 and 614 (and other plungers of the connectable portions 502, 504) may mate with respective non-plunger components 640, 642, in response to application of a force 586, shown in view 570 of
View 604 illustrates the connectable portions 502 and 504 with the plunger components shown in positions corresponding to the connected state of the connectable portions 502 and 504. The plungers 610 and 614 may be pushed inside the housing 306 (at least partially), in response to a contact with mating components 640 and 642 of the connectable portion 304. As a result, electrical contacts (pins) 620 and 622 of the plunger 610 (and respective contacts disposed inside the plunger 614) may be exposed, as shown in view 604. Such exposure of contacts (pins) 620 and 622 may provide sufficient electrical contact with mating electrical contacts 644, 646 of the mating component 640. Similar effect may be achieved with respect to the plunger 614, as well as with respect to the plungers of the connectable portion 304.
The contacts 624 and 626 of the mating component 616 (as well as the contacts of the mating component 612 and contacts 644 and 646 referenced above) may comprise conductive pads. In some embodiments, the pads 624 and 626 may be disposed inside the mating component 616, e.g., underneath a surface 632 of the component 616. Similarly, the contacts of the mating component 612 may be disposed inside the mating component 612, underneath the surface of the mating component.
In embodiments, the connector 300 may include a retention mechanism, to retain the connectable portions 502 and 504 in a connected position, illustrated in view 570. The retention mechanism may provide a break-away release of the connectable portions 302 and 304 in response to application of a pulling force (indicated by arrow 554 in
In some embodiments, the retention mechanism may include multiple magnet components disposed around mating surfaces of the connectable portions of the releasable connector. Some example retention mechanisms with multiple magnets will be described in reference to
As discussed above, the retention mechanism of the connector may include multiple magnets. At least some of these magnets may be disposed, e.g., embedded in or attached to, the mating components of the connector 500.
For example, a magnet may be disposed inside a plunger. In the example shown in view 706, the magnet 716 may be disposed inside the plunger 712 of the connectable portion 504. More specifically, the plunger 712 may be at least partially hollow inside, to allow a disposition of a magnet inside the plunger 712 (in addition to contacts, not visible in view 706). Such disposition of a magnet may allow for a free movement of the plunger 712 down the housing 508 from its default (extended) position, in response to a contact with a respective mating component 714 of the connectable portion 502.
For example, the magnet 716 may be disposed at a distance from the top of the plunger 712 (e.g., underneath the imaginary line 718), to allow for a movement of the plunger 712 (indicated by arrow 720) in response to a contact with the mating (non-plunger) component 714. Accordingly, the magnet 716 disposed inside the plunger 712 may interact with a mating magnet (not shown) disposed inside the mating component 714 (or magnetizable material of the mating component 714). At the same time, the disposition of the magnet 716 may allow for a movement of the plunger 712 from its default position down, and subsequent exposure of the contacts disposed inside the plunger 712. In other words, the plunger 712 may not be released from its extended position unless the mating magnetic connector surface is proximal to it.
In some embodiments, the magnet 716 may be disposed inside the housing 508 in the area 722, underneath the plunger 712, to allow for a movement of the plunger 712 down from its default (loaded) position. Other plungers of the connectable portions 502 and 504 may be configured in a way similar to one described in reference to view 706.
In some embodiments, the plungers (e.g., 712) may be made of a magnetizable material, and their respective mating components (e.g., 714) may include magnets, to interact with the magnetizable material of respective plungers, and provide a retention force to retain the connectable portions 502 and 504 together.
In some embodiments, the magnets of a retention mechanism of the releasable connector may comprise electromagnets, whose polarities may be controlled, e.g., remotely. For example, the magnets of the connectable portion 502 may have one polarity, while the magnets of the connectable portion 504 may have a reverse polarity, to provide retention forces for the connectable portions in the connected state. In order to disconnect the connectable portions remotely, the polarities of the magnets of one portion (e.g., 502) may be reversed, to assume the same polarity as the magnets of another portion (e.g., 504), in order to provide a repulsion force to disconnect the connectable portions.
In some embodiments, as may be seen in view 706, mating surfaces of the mating components may be disposed under an oblique (e.g., acute) angle A relative to a longitudinal axis 724 of the housing 508. In some embodiments, the mating surfaces (e.g., mating surface 726) may have a combination surface comprising a first portion 728 disposed under the angle A and a second portion 730 disposed under an oblique angle B relative to the axis 724, as shown.
As described in reference to
In some embodiments, the connectable portions 502 and 504 may be configured in a substantially similar manner Accordingly, in some embodiments, the releasable connector 500 of
In some embodiments the releasable connector 500 may comprise a connector with male-female connectable portions. For example, as discussed above, in some embodiments, the magnets 552 and 558 comprising a retention mechanism for the connectable portions 502, 504 may be disposed substantially at the center of respective housings 506 and 508. Accordingly, the connectable portions 502, 504 may comprise male and female connectors due to reverse polarities of the magnets 552 and 558.
As shown, the signal or power transmission elements (e.g., contacts, pins; optical fibers) 820 (and mating signal or power transmission elements 822) may be disposed on respective first and second mating surfaces 810 and 816. As shown, the signal or power transmission elements 820 may protrude from the first mating surface 810, to be received by respective apertures of the second mating surface 816, to meet with signal or power transmission elements 822. The mating signal or power transmission elements 822 may be disposed inside respective apertures similar to the embodiments of the housing 406 of
The connection of the first and second connectable portions 802 and 804 may be achieved by inserting the signal or power transmission elements of the first mating surface 810 in the corresponding apertures of the second mating surface 816. The protrusion of the signal or power transmission elements inside corresponding apertures may provide additional means for retaining the first and second connectable portions 802 and 804 in a connected state.
In some embodiments, the first and second connectable portions 802 and 804 may comprise a hermaphroditic connection. For example, half of the signal or power transmission elements of the first mating surface 810 may comprise protruding signal or power transmission elements, and another half may comprise signal or power transmission elements disposed inside the apertures. The mating surface 816 may be configured in a similar fashion, to mate the signal or power transmission elements of the mating surface 810. For example, in view 860, respective half of the signal or power transmission elements of the mating surface 816 (e.g., to the left of imaginary line 830) may comprise apertures, and another half (e.g., to the right of imaginary line 830) may comprise protruding signal or power transmission elements (e.g. pins; optical fibers).
The process 900 may begin at block 902, and include providing a first housing of the releasable connection, to couple to at least a portion of a first cable. Providing the first housing may include forming a first mating surface on the first housing, and disposing one or more first signal or power transmission elements of the first cable in the first housing to extend to the first mating surface.
At block 904, the process 900 may include providing a second housing of the releasable connection, to couple to at least a portion of a second cable. Providing the second housing may include forming a second mating surface on the second housing, to mate with the mating surface of the first housing, and disposing one or more second signal or power transmission elements of the second cable in the second housing, to extend to the second mating surface. The second signal or power transmission elements may provide a reversible connection with respective first signal or power transmission elements, in response to a coupling of the first and second mating surfaces.
At block 906, the process 900 may include providing a retention mechanism for releasable coupling of the first and second housings. This may include disposing at least one first magnet component on or in proximity to the first mating surface, and disposing at least one second magnet component on or in proximity to the second mating surface, to interact with the first magnet component in response to the mating of the first and second mating surfaces. A magnetic force produced in response to the interaction of the first and second magnet components may provide the releasable coupling of the first and second housings.
Various operations are described as multiple discrete operations in turn, in a manner that is most helpful in understanding the claimed subject matter. However, the order of description should not be construed as to imply that these operations are necessarily order dependent. Embodiments of the present disclosure may be implemented into a system using any suitable hardware and/or software to configure as desired.
Although certain embodiments have been illustrated and described herein for purposes of description, a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments described herein be limited only by the claims and the equivalents thereof.
The subject application claims priority to U.S. Provisional Patent Appln. No. 62/430,305, filed Dec. 5, 2016, and entitled, “A RELEASABLE CONNECTION FOR CABLES,” the entirety of which application is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62430305 | Dec 2016 | US |