This disclosure relates to releasable attachment devices of the type used to fasten, retain, or latch together components of an apparatus or a structure that are to be separated or released under controlled conditions.
Hook and loop type separable fasteners are well known and are used to join two members detachably to each other. These types of fasteners generally have two components disposed on opposing member surfaces. One component typically includes a plurality of resilient hooks while the other component typically includes a plurality of loops. When the two components are pressed together they interlock to form a releasable engagement. The resulting joint created by the engagement is relatively resistant to shear and pull forces, and weak in peel strength forces. As such, peeling one component from the other component can be used to separate the components with a minimal applied force. As used herein, the term “shear” refers to an action or stress resulting from applied forces that causes or tends to cause two contiguous parts of a body to slide relatively to each other in a direction parallel to their plane of contact. The term “pull force” refers to an action or stress resulting from applied forces that causes or tends to cause two contiguous parts of a body to move relative to each other in a direction perpendicular to their plane of contact.
Disclosed herein is a releasable fastener system that provides for a controlled release or separation of a joint in a shear and/or pull direction. The releasable fastener system comprises a loop portion comprising a loop support and a loop material attached or supported by the support; a hook portion comprising a support, at least one hook element attached to the support, wherein the at least one hook element comprises a hollow interior region in fluid communication with the at least one perforation; and means for increasing or decreasing a pressure within the hollow interior region upon receipt of an activation signal to provide the at least one hook element with a change in shape orientation, a change in flexural modulus property, or a combination of a change in the shape orientation and the flexural modulus property.
In another embodiment, a releasable fastener system comprises a loop portion comprising a loop support and a loop material attached or supported by the loop support; a hook portion comprising a support, at least one hook element attached to an upper surface of the support, a containment vessel coupled to a lower surface of the support, and at least one perforation through the support, wherein the at least one hook element comprises a hollow interior region in fluid communication with the at least one perforation, and wherein the containment vessel comprises a slidably engageable plunger; and an activation device in operative communication with the hook portion, the activation device being operable to selectively provide an activation signal to slidably engage the plunger within the containment vessel and cause a pressure change in the at least one hook element.
A process for operating a releasable fastener system comprises contacting a loop portion to a hook portion to form a releasable engagement, wherein the loop portion comprises a support and a loop material disposed on a surface thereon, and wherein a hook portion comprising a support, at least one hook element attached to the support, wherein the at least one hook element comprises a hollow interior region in fluid communication with at least one perforation and is adapted to change a shape orientation, a flexural modulus property, or a combination thereof, upon receipt of an activation signal; maintaining constant shear and pull forces in the releasable engagement without introducing the activation signal; selectively introducing the activation signal to the hook portion, wherein the activation signal is effective to change the shape orientation, the flexural modulus property, or the combination thereof to the plurality of hook elements; and reducing shear and/or pull forces in the releasable engagement.
A hook portion for a releasable fastener system comprises a support comprising an upper surface, a lower surface and at least one perforation through the support; at least one hook element attached to the upper surface of the support, wherein the at least one hook element comprises a hollow interior region in fluid communication with the at least one perforation; and a containment vessel coupled to the lower surface of the support, and wherein the containment vessel comprises a slidably engageable plunger.
The above described and other features are exemplified by the following figures and detailed description.
Referring now to the figures, which are exemplary embodiments and wherein the like elements are numbered, alike:
As shown in
During engagement, the two portions 12, 14 are pressed together to create a joint that is relatively strong in shear and pull directions, and weak in a peel direction. For example, when the two portions 12, 14 are pressed into face-to-face engagement, the hook elements 22 become engaged with the loop material 18 and the close spacing of the hook elements 22 resists substantial lateral movement when subjected to shearing forces in the plane of engagement. Similarly, when the engaged joint is subjected to a force perpendicular to this plane, (i.e., pull forces), the hook elements 22 resist substantial separation of the two portions 12, 14. However, when the hook elements 22 are subjected to a peeling force, the hook elements 22 can become disengaged from the loop material 18. It should be noted that separating the two portions 12, 14 using the peeling force generally requires that one or both of the supports forming the hook portion and loop portion be flexible.
To reduce shear and pull forces resulting from the engagement, the shape orientation and/or flexural modulus of the hook elements 22 is altered upon receipt of the activation signal from the activation device 24 to provide a remote releasing mechanism of the engaged joint. As a result of changing the shape orientation and/or flexural modulus of the hook elements 22, a marked reduction in shear and pull forces is observed, thereby allowing the joint to separate in directions normally associated with pull and shear. That is, the change in shape orientation and/or flexural modulus reduces the shearing forces in the plane of engagement, and reduces the pull forces perpendicular to the plane of engagement. For example, the plurality of hook elements 22 can have inverted J-shaped orientations (as shown in
The hook elements 22 may be formed integrally with support 20, or more preferably, may be attached to the support 20. In practice, spacing between adjacent hook elements 22 is an amount effective to provide sufficient shear and pull resistance desired for the particular application during engagement with the loop material 18. Depending on the desired application, the amounts of shear and pull force required for effective engagement can vary significantly. Generally, the closer the spacing and the greater amount of hook elements employed will result in increased shear and pull forces upon engagement.
Materials suitable for manufacturing the hook elements 22 include thermoplastics such as polypropylene, polyethylene, polyamide, polyester, polystyrene, polyvinyl chloride, acetal, acrylic, polycarbonate, polyphenylene oxide, polyurethane, polysulfone, and the like. Preferably, the material as well as the dimensions of the hook elements provides sufficient resiliency and/or flexibility to provide an effective change in shape orientation and/or flexural modulus property upon receipt of the activation signal from the activation device 24. Other suitable materials will be apparent to those skilled in the art in view of this disclosure.
The hook elements 22 preferably have a shape configured to become engaged with the loop material 18 upon pressing contact of the loop portion 12 with the hook portion 14, and vice versa. In this engaged mode, the hook elements 22 can have an inverted J-shaped orientation, a mushroom shape, a knob shape, a multi-tined anchor, T-shape, spirals, or any other mechanical form of a hook-like element used for separable hook and loop fasteners. Such elements are referred to herein as “hook-like”, “hook-type”, or “hook” elements whether or not they are in the shape of a hook. Likewise, the loop material may comprise a plurality of loops or pile, a shape complementary to the hook element (e.g., a key and lock type engagement), or any other mechanical form of a loop-like element used for separable hook and loop fasteners.
The loop material 18 generally comprises a random or ordered looped pattern or pile of a material. The loop material is often referred to as the “soft”, the “fuzzy”, the “pile”, the “female”, or the “carpet”. Suitable loop materials are commercially available under the trademark VELCRO from the Velcro Industries B.V. Materials suitable for manufacturing the loop material include thermoplastics such as polypropylene, polyethylene, polyamide, polyester, polystyrene, polyvinyl chloride, acetal, acrylic, polycarbonate, polyphenylene oxide, polyurethane, polysulfone, and the like. The loop material 18 may be integrated with the support or may be attached to the support.
The supports 16 (loop portion 12) or 20 (hook portion 14) maybe rigid or flexible depending on the intended application. Suitable materials for fabricating the support include plastics, fabrics, metals, combinations comprising at least one of the foregoing materials, and the like. For example, suitable plastics include thermoplastics such as for example polypropylene, polyethylene, polyamide, polyester, polystyrene, polyvinyl chloride, acetal, acrylic, polycarbonate, polyphenylene oxide, polyurethane, polysulfone, and other like termoplastic polymers. An adhesive may be applied to the backside surface of the support (the surface free from the hook elements 22 or loop material) for application of the releasable fastener system to an apparatus or structure. Alternatively, the releasable fastener system 10 may be secured to an apparatus or structure by bolts, by welding, or any other mechanical securement means. It should be noted that, unlike traditional hook and loop fasteners, both supports 16, 20 could be fabricated from a rigid or inflexible material in view of the remote releasing capability provided. Traditional hook and loop fasteners typically require at least one support to be flexible so that a peeling force can be applied for separation of the hook and loop, fastener.
The system 30 further comprises a containment vessel 40 coupled to the support 34 in which a plunger 42 can be slidably engaged against the walls of the containment vessel 40. Inward movement of the plunger 42 causes pressurization of fluid within a reservoir 44 formed in the containment vessel 40, which subsequently causes pressurization of fluid within the hook element 36. The increase of pressure within the hook elements 36 can be utilized to cause a change in the shape orientation and/or flexural modulus. The activation device 24 (shown in
Alternatively, the releasable fastener systems shown in
The movement of the plunger 92 within the containment vessel 96 can be effected through numerous direct and remote means including, but not limited to, movement of a solenoid, flexing of a diaphragm, direct loading of the plunger such as by an operator's finger, fabricating the springs from a shape memory material effective to exert a load upon receipt of an activation signal, and the like. Alternatively, the diaphragm may be made of a shape memory material responsive to applied heat or the like for pressurizing and depressurizing the containment vessel and hook elements.
Advantageously, the releasable fastener systems described herein are extremely versatile and can be used in a variety of different applications. For example, the releasable fastener system can be employed to releasably attach two automotive structural elements together to provide a mechanism that delivers different load paths in the event of an impact sufficient to activate the release mechanism. Welded and adhesively bonded “rigid” joints provide fixed load paths. The use of the remote release mechanism can be used to alter the load path. Other examples include providing a mechanism for opening and closing apparatus such as trunks, doors, glove box, and the like. The releasable fastener system may also be employed for releasable on-demand attachment mechanisms such as for releasable attachment for batteries, fuels cells, cargo containers, vehicle interior and exterior components, and the like. Moreover, the releasable fastener systems can be configured such that an energy source is not required to maintain engagement of the joint. Energy, i.e., the activation signal, can be used to provide separation, thereby minimizing the impact on energy sources during use of the releasable fastener system.
While the disclosure has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims.
This application is a continuation in part application and claims priority to U.S. patent application Ser. No. 10/273,691 filed Oct. 19, 2002 incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2717437 | De Mestral | Sep 1955 | A |
2994117 | McMullin | Aug 1961 | A |
3101517 | Fox et al. | Aug 1963 | A |
3128514 | Parker et al. | Apr 1964 | A |
3138749 | Slibitz | Jun 1964 | A |
3176364 | Dritz | Apr 1965 | A |
3292019 | Hsu et al. | Dec 1966 | A |
3365757 | Billarant | Jan 1968 | A |
3469289 | Whitacre | Sep 1969 | A |
3490107 | Brumlik | Jan 1970 | A |
3550311 | Fouquart | Dec 1970 | A |
3808648 | Billarant et al. | May 1974 | A |
4169303 | Lemelson | Oct 1979 | A |
4382243 | Babitzka et al. | May 1983 | A |
4391147 | Krempl et al. | Jul 1983 | A |
4634636 | Yoshino et al. | Jan 1987 | A |
4637944 | Walker | Jan 1987 | A |
4642254 | Walker | Feb 1987 | A |
4693921 | Billarant et al. | Sep 1987 | A |
4752537 | Das | Jun 1988 | A |
4775310 | Fischer | Oct 1988 | A |
4794028 | Fischer | Dec 1988 | A |
4931344 | Ogawa et al. | Jun 1990 | A |
5037178 | Stoy et al. | Aug 1991 | A |
5071363 | Reylek et al. | Dec 1991 | A |
5133112 | Gomez-Acevedo | Jul 1992 | A |
5136201 | Culp | Aug 1992 | A |
5182484 | Culp | Jan 1993 | A |
5191166 | Smirlock et al. | Mar 1993 | A |
5212855 | McGanty | May 1993 | A |
5284330 | Carlson et al. | Feb 1994 | A |
5312456 | Reed et al. | May 1994 | A |
5319257 | McIntyre | Jun 1994 | A |
5328337 | Kunta | Jul 1994 | A |
5474227 | Krengel et al. | Dec 1995 | A |
5486676 | Aleshin | Jan 1996 | A |
5492534 | Athayde et al. | Feb 1996 | A |
5497861 | Brotz | Mar 1996 | A |
5547049 | Weiss et al. | Aug 1996 | A |
5611122 | Torigoe et al. | Mar 1997 | A |
5656351 | Donaruma | Aug 1997 | A |
5657516 | Berg et al. | Aug 1997 | A |
5669120 | Wessels et al. | Sep 1997 | A |
5671498 | Martin et al. | Sep 1997 | A |
5712524 | Suga | Jan 1998 | A |
5725928 | Kenney | Mar 1998 | A |
5797170 | Akeno | Aug 1998 | A |
5798188 | Mukohyama et al. | Aug 1998 | A |
5814999 | Elie et al. | Sep 1998 | A |
5816587 | Stewart et al. | Oct 1998 | A |
5817380 | Tanaka | Oct 1998 | A |
5885652 | Abbott et al. | Mar 1999 | A |
5945193 | Pollard et al. | Aug 1999 | A |
5969518 | Merklein et al. | Oct 1999 | A |
5974856 | Elie et al. | Nov 1999 | A |
5979744 | Brigleb | Nov 1999 | A |
5983467 | Duffy | Nov 1999 | A |
6029783 | Wirthlin | Feb 2000 | A |
6086599 | Lee | Jul 2000 | A |
6102912 | Cazin et al. | Aug 2000 | A |
6102933 | Lee et al. | Aug 2000 | A |
6129970 | Kenney et al. | Oct 2000 | A |
6148487 | Billarant | Nov 2000 | A |
6156842 | Hoenig et al. | Dec 2000 | A |
6203717 | Munoz et al. | Mar 2001 | B1 |
6257133 | Anderson | Jul 2001 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6454923 | Dodgson et al. | Sep 2002 | B1 |
6460230 | Shimamura et al. | Oct 2002 | B1 |
6502290 | Tseng | Jan 2003 | B1 |
6544245 | Neeb et al. | Apr 2003 | B1 |
6546602 | Eipper et al. | Apr 2003 | B1 |
6593540 | Baker et al. | Jul 2003 | B1 |
6598274 | Marmaropoulos | Jul 2003 | B1 |
6605795 | Arcella et al. | Aug 2003 | B1 |
6628542 | Hayashi et al. | Sep 2003 | B1 |
6681849 | Goodson | Jan 2004 | B1 |
6740094 | Maitland et al. | May 2004 | B1 |
6742227 | Ulicny et al. | Jun 2004 | B1 |
6766566 | Cheng et al. | Jul 2004 | B1 |
6797914 | Speranza et al. | Sep 2004 | B1 |
6815873 | Johnson et al. | Nov 2004 | B1 |
20020007884 | Schuster | Jan 2002 | A1 |
20020050045 | Chiodo | May 2002 | A1 |
20020062547 | Chiodo et al. | May 2002 | A1 |
20020076520 | Neeb et al. | Jun 2002 | A1 |
20020142119 | Seward et al. | Oct 2002 | A1 |
20030120300 | Porter | Jun 2003 | A1 |
20040025639 | Shahinpoor et al. | Feb 2004 | A1 |
20040033336 | Schulte | Feb 2004 | A1 |
20040074061 | Ottaviani et al. | Apr 2004 | A1 |
20040074062 | Stanford et al. | Apr 2004 | A1 |
20040074063 | Golden et al. | Apr 2004 | A1 |
20040074064 | Powell et al. | Apr 2004 | A1 |
20040074067 | Browne et al. | Apr 2004 | A1 |
20040074069 | Browne et al. | Apr 2004 | A1 |
20040074070 | Momoda et al. | Apr 2004 | A1 |
20040074071 | Golden et al. | Apr 2004 | A1 |
20040117955 | Barvosa-Carter et al. | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
199 56 011 | Jun 2001 | DE |
0385443 | Sep 1990 | EP |
0673709 | Sep 1995 | EP |
401162587 | Jun 1989 | JP |
4-314446 | Apr 1992 | JP |
4-266970 | Sep 1992 | JP |
08260748 | Oct 1996 | JP |
WO 9942528 | Aug 1999 | WO |
WO 0062637 | Oct 2000 | WO |
WO 0184002 | Feb 2001 | WO |
WO 0245536 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040074068 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10273691 | Oct 2002 | US |
Child | 10358997 | US |