The present invention in general relates to a hinge assembly and, more particularly to a tool-free releasable hinge assembly for vehicle windows.
Various vehicle components are pivotally coupled to a vehicle body using hinges. Given the limitations of existing hinges, many of these vehicle components only open 90° or less and are otherwise permanently attached to the vehicle body unless the hinge is removed from the vehicle body, the vehicle component, or both using tools and risking damage. Accordingly, the use of such hinges on vehicle components is generally limited to applications such as vehicle doors, hoods, and trunks.
However, as vehicles with increased configurability, modularity, and functionality, especially for sport utility vehicles (SUV), trucks, and vans become increasingly popular, hinged vehicle components offer a substantial opportunity for increased vehicle configurability, modularity, and functionality as well as vehicle weight savings which leads to increased fuel efficiency; however, the limitations of existing hinges currently stand in the way of such advancements.
Thus, there exists a need for an improved hinge, such as a releasable hinge for vehicle components that facilitates increased vehicle configurability, modularity, and functionality.
The present invention provides a releasable hinge assembly that includes a mounting bracket, a hinge bracket, and at least one spring biased locking mechanism. The releasable hinge assembly configured to pivotally couple components together while also allowing the components to be totally separated from one another when desired. According to embodiments, the releasable hinge assembly pivotally couples a vehicle component to a vehicle body while allowing the vehicle component to be entirely removed from the vehicle body when desired without the use of tools, thereby providing increased vehicle configurability, modularity, and functionality. Furthermore, the releasable hinge assembly, once installed, is easily operated by a single user without the use of tools.
According to embodiments, the mounting bracket includes a first mounting plate and two pin tabs extending from the first mounting plate, a first of the two pin tabs having a first pin extending therefrom and a second of the two pin tabs defining a through hole therein. The hinge bracket includes a second mounting plate and a knuckle extending therefrom, the knuckle having a wall that defines a pin channel therein, the wall of the knuckle defining a first cutout at a first end of the knuckle configured to receive the first pin into the pin channel, the wall of the knuckle further defining a second cutout near a second end of the knuckle, the second cutout being L-shaped. The spring biased locking mechanism includes a pawl arm and a second pin, the locking mechanism positioned within the pin channel of the hinge bracket with the pawl arm positioned within and projecting from the second cutout and the second pin being coaxial within the pin channel, the pawl arm configured to move within the second cutout to push the second pin beyond the second end of the knuckle and through the through hole defined in the second pin tab of the mounting bracket.
According to embodiments, the mounting bracket includes a first mounting plate and two pin tabs extending from the first mounting plate, the two pin tabs each defining a through hole therein. The hinge bracket includes a second mounting plate and a knuckle extending therefrom, the knuckle having a wall that defines a first cutout near a first end of the knuckle and a second cutout near a second end of the knuckle, the first cutout and the second cutout each being L-shaped. The plurality of spring biased locking mechanisms each having a pawl arm and a pin, the plurality of locking mechanisms positioned within a pin channel of the hinge bracket with the pawl arm of a first of the spring biased locking mechanisms positioned within and projecting from the first cutout and the pin thereof being coaxial within the pin channel and with the pawl arm of a second of the spring biased locking mechanisms positioned within and projecting from the second cutout and the pin thereof being coaxial within the pin channel, the pawl arm of the first spring biased locking mechanisms configured to move within the first cutout to push the pin thereof beyond the first end of the knuckle and through the through hole defined in the first pin tab of the mounting bracket and the pawl arm of the second spring biased locking mechanisms configured to move within the second cutout to push the pin thereof beyond the second end of the knuckle and through the through hole defined in the second pin tab of the mounting bracket.
The present invention is further detailed with respect to the following drawings that are intended to show certain aspects of the present invention but should not be construed as a limit on the practice of the present invention.
The present invention has utility as a releasable hinge assembly for pivotally coupling components together while also allowing the components to be totally separated from one another when desired. According to embodiments, the inventive releasable hinge assembly pivotally couples a vehicle component to a vehicle body while allowing the vehicle component to be entirely removed from the vehicle body when desired without the use of tools, thereby providing increased vehicle configurability, modularity, and functionality. The inventive releasable hinge assembly, once installed, is easily operated by a single user without the use of tools.
The present invention will now be described with reference to the following embodiments. As is apparent by these descriptions, this invention can be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. For example, features illustrated with respect to one embodiment can be incorporated into other embodiments, and features illustrated with respect to a particular embodiment may be deleted from the embodiment. In addition, numerous variations and additions to the embodiments suggested herein will be apparent to those skilled in the art in light of the instant disclosure, which do not depart from the instant invention. Hence, the following specification is intended to illustrate some particular embodiments of the invention, and not to exhaustively specify all permutations, combinations, and variations thereof.
It is to be understood that in instances where a range of values are provided that the range is intended to encompass not only the end point values of the range but also intermediate values of the range as explicitly being included within the range and varying by the last significant figure of the range. By way of example, a recited range of from 1 to 4 is intended to include 1-2, 1-3, 2-4, 3-4, and 1-4.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.
Unless indicated otherwise, explicitly or by context, the following terms are used herein as set forth below.
As used in the description of the invention and the appended claims, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
Also as used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well as the lack of combinations when interpreted in the alternative (“or”).
Referring now to the figures, embodiments of a releasable hinge assembly 10 include a mounting bracket 20, a hinge bracket 40, and at least one spring biased locking mechanism 60, 60′. According to embodiments, the mounting bracket 20 is configured to be attached to a fixed surface while the hinge bracket 40 is configured to be attached to a component designed to be pivotally coupled to the fixed surface. In
As shown throughout the figures, the mounting bracket 20 includes a first mounting plate 22 and two pin tabs 24, 26 extending from the first mounting plate 22. According to embodiments, the first mounting plate 22 defines a plurality of through holes 23 therein, which are configured to receive fasteners (not shown) for securing the mounting bracket 20 to a surface. According to further embodiments, the first mounting plate 22 of the mounting bracket 20 is secured to a surface by an adhesive, by welding, or any other suitable means. According to embodiments, the first mounting plate 22 is planar, however, other configurations are contemplated. According to embodiments, the pin tabs 24, 26 extend perpendicularly from the first mounting plate 22, but other angles are also contemplated. According to further embodiments, the pin tabs 24, 26 are positioned parallel to one another, however other relative positions are also contemplated. According to embodiments, the first pin tab 24 defines a through hole 25 therethrough. The second pin tab 26 defines a through hole 32 therethrough. According to embodiments, the through hole 32 defined in the second pin tab 26 is coaxial with the through hole 25 that is defined in the first pin tab 24.
According to embodiments, the first mounting plate 22 and the two pin tabs 24, 26 are integrally formed, for example by stamping and bending processes, by injection molding, by a casting process, or by additive manufacturing such as 3D printing. According to further embodiments, the first mounting plate 22 and the two pin tabs 24, 26 are separately formed and subsequently attached together, for example by an adhesive, by fusing, or by welding. According to embodiments, the mounting bracket 20 is formed of a metal material, such as steel, aluminum, brass, bronze, or other metal alloys, or a polymer material, such as nylon (polyamide), acrylic, polycarbonate, polyoxymethylene (POM), polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), polypropylene (PP), polyethylene (PE), or combinations thereof.
According to embodiments, such as those shown in
According to embodiments, a collar 34 is seated within the through hole 32 defined in the second pin tab 26. As shown in the figures, the collar 34 defines a through hole 36 therein. According to embodiments, the collar 34 is coaxial with the through hole 32 defined in the second pin tab 26. According to embodiments, the collar 34 is formed of a metal material, a polymer material, or a rubber material.
According to embodiments such as those shown in
According to embodiments, the second mounting plate 42 defines a plurality of through holes 43 therein, which are configured to receive fasteners (not shown) for securing the hinge bracket 40 to a surface. According to further embodiments, the second mounting plate 42 of the hinge bracket 40 is secured to a surface by an adhesive, by welding, or any other suitable means. According to embodiments, the second mounting plate 42 is planar, however, other configurations are contemplated. According to embodiments, the second mounting plate 42 includes two flanges 45 extending therefrom.
According to embodiments, the second mounting plate 42 and the knuckle 44 are integrally formed, for example by stamping and bending processes, by injection molding, or by additive manufacturing such as 3D printing. According to further embodiments, the second mounting plate 42 and the knuckle 44 are separately formed and subsequently attached together, for example by an adhesive, by fusing, or by welding. According to embodiments, the hinge bracket 40 is formed of a metal material, such as steel, aluminum, brass, bronze, or other metal alloys, or a polymer material, such as nylon (polyamide), acrylic, polycarbonate, polyoxymethylene (POM), polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), polypropylene (PP), polyethylene (PE), or combinations thereof.
The spring biased locking mechanism 60 of the inventive releasable hinge assembly 10 includes a pawl arm 62 and a second pin 64. According to embodiments, pawl arm 62 and the second pin 64 of the spring biased locking mechanism 60 are integrally formed, while according to other embodiments, the pawl arm 62 and the second pin 64 of the spring biased locking mechanism 60 are formed as two separate parts. According to embodiments, the spring biased locking mechanism 60 is formed of a metal material, such as steel, aluminum, brass, bronze, or other metal alloys, or a polymer material, such as nylon (polyamide), acrylic, polycarbonate, polyoxymethylene (POM), polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), polypropylene (PP), polyethylene (PE), or combinations thereof. As shown throughout the figures, the locking mechanism 60 is positioned within the pin channel 48 of the hinge bracket 40 with the pawl arm 62 positioned within and projecting from the second cutout 58 and the second pin 64 being coaxial within the pin channel 48. The pawl arm 62 is configured to move within the second cutout 58 to push the second pin 64 beyond the second end 53 of the knuckle 44 and through the through hole 32 defined in the second pin tab 26 of the mounting bracket 20 and through the through hole 36 defined in the collar 34. According to embodiments, the spring biased locking mechanism 60 is biased to push the second pin 64 toward the second end 53 of the knuckle 44.
As shown in
In
Next, as shown in
To release the components of the releasable hinge assembly 10, the pawl arm 62 is pushed within the L-shaped second cutout 58 in the knuckle 44 toward the first pin tab 24 and into the released position within the L-shaped second cutout 58 wherein the L-shaped second cutout 58 holds the pawl arm 62 in resistance to the spring bias. Then the hinge bracket 40 may be separated from the mounting bracket 20. According to embodiments, the pawl arm 62 of the locking mechanism 60 is hidden from view and inaccessible when a window to which it is attached is closed, thus providing a security feature. According to embodiments, the releasable hinge assembly 10 includes a cover 68, as shown in
According to further embodiments, such as those shown in
According to embodiments, such as those shown in
According to embodiments, the first mounting plate 22, the two pin tabs 24, 26, and the fork 70 are integrally formed, for example by stamping and bending processes, by injection molding, by a casting process, or by additive manufacturing such as 3D printing. According to further embodiments, the first mounting plate 22, the two pin tabs 24, 26, and the fork 70 are separately formed and subsequently attached together, for example by an adhesive, by fusing, or by welding. According to embodiments, the mounting bracket 20 is formed of a metal material, such as steel, aluminum, brass, bronze, or other metal alloys, or a polymer material, such as nylon (polyamide), acrylic, polycarbonate, polyoxymethylene (POM), polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), polypropylene (PP), polyethylene (PE), or combinations thereof.
According to embodiments, a collar 34 is seated within the through hole 32 defined in the second pin tab 26 and a second collar 34′ is seated within the through hole 25 defined in the first pin tab 24. As shown in the figures, the collars 34, 34′ each define a through hole 36, 36′ therein. According to embodiments, the collar 34 is coaxial with the through hole 32 defined in the second pin tab 26 while the second collar 34′ is coaxial with the through hole 25 defined in the first pin tab 24. According to embodiments, the collars 34, 34′ are formed of a metal material, a polymer material, or a rubber material.
According to embodiments such as those shown in
According to embodiments, the second mounting plate 42 defines a plurality of through holes 43 therein, which are configured to receive fasteners (not shown) for securing the hinge bracket 40 to a surface. According to further embodiments, the second mounting plate 42 of the hinge bracket 40 is secured to a surface by an adhesive, by welding, or any other suitable means. According to embodiments, the second mounting plate 42 is planar, however, other configurations are contemplated. According to embodiments, the second mounting plate 42 includes two flanges 45 extending therefrom.
According to embodiments, the second mounting plate 42 and the knuckle 44 are integrally formed, for example by stamping and bending processes, by injection molding, casting, or by additive manufacturing such as 3D printing. According to further embodiments, the second mounting plate 42 and the knuckle 44 are separately formed and subsequently attached together, for example by an adhesive, by fusing, or by welding. According to embodiments, the hinge bracket 40 is formed of a metal material, such as steel, aluminum, brass, bronze, or other metal alloys, or a polymer material, such as nylon (polyamide), acrylic, polycarbonate, polyoxymethylene (POM), polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), polypropylene (PP), polyethylene (PE), or combinations thereof.
According to embodiment, such as those shown in
According to embodiments, the mounting bracket 20 is configured to be attached to a fixed surface while the hinge bracket 40 is configured to be attached to a component designed to be pivotally coupled to the fixed surface. According to embodiments, the fixed surface is a vehicle, and more particularly to a vehicle frame or body panel, while the component designed to be pivotally coupled to the fixed surface is a vehicle window, vehicle panel, or a vehicle door.
The inventive releasable hinge assembly 10 is thus useful for providing increased vehicle configurability, modularity, and functionality. For example, not only can a door, liftgate, panel, or window W, as shown in
Once removed from the fixed structure, the removed hinged component may be stored in a location remote from the fixed structure, such as in a garage or shed, or may be stored within a vehicle, such as in the trunk or in a designated storage compartment. According to embodiments, the releasable hinge assembly 10 is configured to be released and reassembled by a single use and/or without the use of tools.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the described embodiments in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient roadmap for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes may be made in the function and arrangement of elements without departing from the scope as set forth in the appended claims and the legal equivalents thereof.
This application claims priority benefit of U.S. Provisional Application Ser. No. 63/213,822, filed 23 Jun. 2021, the contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63213822 | Jun 2021 | US |