This invention relates generally to mooring systems and methods for drilling vessels.
Stationkeeping for drillships and mobile offshore drilling units (MODUs) can be accomplished by providing mooring lines made up of chain, wire, synthetics or combinations of two or more. The top end of a typical mooring line is connected to the vessel using fairleads to change the mooring line direction and winches or chain jacks to tension and secure the mooring line. At the seafloor end of the mooring line, an anchor is provided; these typically can be a high-holding power drag embedment anchor, a suction pile, a plate anchor or driven pile.
Alternatively, the vessel can maintain station by dynamic positioning. Dynamic positioning (DP) typically entails the use of the main propulsion system of the vessel in combination with additional thrusters; the systems are controlled by computers and are linked to navigational aids such as GPS. In this way, the vessel can stay on location without the need for mooring lines and is able to move away from danger on a moment's notice.
For arctic conditions where drifting ice can pose a danger even during the summer drilling season, dynamic positioning (DP) would appear to be the stationkeeping method of choice. Experience has shown, however, that DP will not perform adequately in ice conditions. This leaves mooring systems for stationkeeping which are relatively slow to connect or disconnect; typically on the order of days to complete.
There are emergency release systems available on the market, but these systems simply drop the mooring system onto the seafloor. Re-connecting is therefore quite slow and can be complicated by fouled mooring chain and wire.
Disclosed herein are mooring systems and methods for drilling vessels, e.g., for mooring of exploratory drilling vessels in arctic ocean waters. The disclosed systems and methods may be implemented in one exemplary embodiment to provide for both a quick disconnect of the mooring system when danger approaches and relatively easy re-connect when the vessel returns to the well site. This may be achieved by connecting the mooring system using dockable buoys in lieu of directly connecting the mooring lines to the vessel. The dockable buoys may be designed for both easy disconnect and easy re-connect to the drilling vessel via receptacles either integral with the hull (e.g., in the case of a drillship) or external to the hull (e.g., in the case of a MODU).
In one exemplary embodiment, the disclosed systems and methods may be implemented in arctic drilling environments to provide a way for quickly disconnecting the mooring system from a drilling vessel when floating ice approaches, thereby allowing the drillship or MODU to drift in the ice. Once the drillship or MODU can be freed from the ice and safely returned to the drill site, the disclosed systems and methods provide a way of quickly reconnecting the mooring system and re-starting drilling operations.
It will be understood that the disclosed systems and methods may also be employed for mooring drilling vessels (including DP-equipped drilling vessels) in non-arctic drilling environments, such as in any situation where it is desirable to provide for relatively quick disconnection and later reconnection of a mooring system to a drilling vessel. Examples of such situations include, but are not limited to, mooring of a drilling vessel in hurricane-prone waters such as the Gulf of Mexico where storms may rapidly develop and require quick disconnection of the drilling vessel, followed by later return and re-connection to the mooring system for resumption of drilling operations. In another embodiment, the disclosed systems and methods may be employed for mooring DP-equipped vessels for drilling operations. In this embodiment, the releasable moorings are used to substantially reduce the time the vessel is actively using the DP system to maintain station. Advantages of this configuration includes reduced costs for DP fuel and maintenance, a much reduced carbon footprint while still maintaining the safety advantages of being able to quickly release the moorings and move the vessel out of harm's way.
In one respect, disclosed herein is a releasable mooring system for a seagoing drilling vessel. The system may include at least one dockable mooring buoy configured for coupling to one or more mooring lines anchored to a seafloor, with the mooring buoy having a buoyancy configured to float in the water at an equilibrium depth between a surface and the seafloor. The dockable mooring buoy may be configured to be engaged and retained in at least one retention feature provided on a seagoing drilling vessel to moor the vessel to the seafloor during drilling operations in which a drill string extends from the drilling vessel to the seafloor. The dockable mooring buoy may be further provided with a connection feature to allow a seagoing drilling vessel to connect to and retrieve the mooring buoy into selectable locking engagement with the retention feature to moor the vessel to the seafloor for the drilling operations. An opening may be defined through the mooring buoy to allow the drill string to pass through the mooring buoy to the seafloor to conduct drilling operations while the drilling vessel is moored to the seafloor by the mooring buoy, or multiple mooring buoys may be provided and configured for engagement and retention in multiple corresponding respective retention features provided on the drilling vessel in positions that provide clearance to allow the drill string to extend downward from the moored drilling vessel to conduct drilling operations while the drilling vessel is moored to the seafloor by the mooring buoys, or a combination thereof. The dockable mooring buoy may be configured to be selectably released from locking engagement with the retention feature to release the vessel from being moored to the seafloor.
In another respect, disclosed herein is a releasable mooring system and seagoing drilling vessel, including: a drilling vessel configured to conduct drilling operations below the surface of the water with a drill string; at least one dockable mooring buoy configured for coupling to one or more mooring lines anchored to a seafloor, the mooring buoy having a buoyancy configured to float in the water at an equilibrium depth between a surface and the seafloor; and at least one retention feature provided on a seagoing drilling vessel. The dockable mooring buoy may be configured to be engaged and retained in the at least one retention feature to moor the vessel to the seafloor during drilling operations in which the drill string extends from the drilling vessel to the seafloor. The dockable mooring buoy may be provided with a connection feature to allow the seagoing drilling vessel to connect to and retrieve the mooring buoy into selectable locking engagement with the retention feature to moor the vessel to the seafloor for the drilling operations; and the dockable mooring buoy may be further configured to be selectably released from locking engagement with the retention feature to release the vessel from being moored to the seafloor.
In another respect, disclosed herein is a method of conducting mooring operations for a seagoing drilling vessel, the method including: providing a drilling vessel on the surface of a body of water, the drilling vessel having at least one retention feature and the drilling vessel being configured to conduct drilling operations below the surface of the water with a drill string; providing at least one dockable mooring buoy coupled to one or more mooring lines anchored to a seafloor, the mooring buoy having a buoyancy configured to float in the water at an equilibrium depth between a surface and the seafloor; positioning the drilling vessel over the mooring buoy while the buoy is floating in the water at an equilibrium depth between a surface and the seafloor; using a connection feature to connect to and retrieve the mooring buoy, and engaging and retaining the dockable mooring buoy into locking engagement with the retention feature to moor the vessel to the seafloor; conducting drilling operations from the drilling vessel with the drill string extended from the drilling vessel to the seafloor while the mooring buoy is engaged and retained in the at least one retention feature to moor the vessel to the seafloor; and releasing the dockable mooring buoy from locking engagement with the retention feature to release the vessel from being moored to the seafloor.
In another respect, disclosed herein is a method of conducting mooring operations for a seagoing drilling vessel, the method including: providing a drilling vessel on the surface of a body of water, the drilling vessel having at least one retention feature and the drilling vessel being configured to conduct drilling operations below the surface of the water with a drill string; providing at least one dockable mooring buoy coupled to one or more mooring lines anchored to a seafloor, the mooring buoy having a buoyancy configured to float in the water at an equilibrium depth between a surface and the seafloor; positioning the drilling vessel over the mooring buoy while the buoy is floating in the water at an equilibrium depth between a surface and the seafloor; using a connection feature to connect to and retrieve the mooring buoy, and engaging and retaining the dockable mooring buoy into locking engagement with the retention feature to moor the vessel to the seafloor; and releasing the dockable mooring buoy from locking engagement with the retention feature to release the vessel from being moored to the seafloor. In the practice of the method, an opening may be defined through the mooring buoy to allow the drill string to pass through the mooring buoy to the seafloor to conduct drilling operations while the drilling vessel is moored to the seafloor by the mooring buoy; or multiple mooring buoys may be provided and configured for engagement and retention in multiple corresponding respective retention features provided on the drilling vessel in positions that provide clearance to allow the drill string to extend downward from the moored drilling vessel to conduct drilling operations while the drilling vessel is moored to the seafloor by the mooring buoys.
As illustrated in
Mooring buoy 110 of
It will be understood that the number of multiple buoys 710 employed to moor a MODU may vary. For example,
It is noted that the number of mooring lines may vary for the mooring buoys of the disclosed systems and methods. For example, each buoy 710 uses four mooring lines 120 in the embodiment of
While the invention may be adaptable to various modifications and alternative forms, specific examples and exemplary embodiments have been shown by way of example and described herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the systems and methods described herein. Moreover, the different aspects of the disclosed systems and methods may be utilized in various combinations and/or independently. Thus the invention is not limited to only those combinations shown herein, but rather may include other combinations.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/587,922 filed Jan. 18, 2012, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4498412 | Liden | Feb 1985 | A |
4604961 | Ortloff et al. | Aug 1986 | A |
4646672 | Bennett et al. | Mar 1987 | A |
4995762 | Goldman | Feb 1991 | A |
5054963 | Williamsson | Oct 1991 | A |
5209175 | Cintron | May 1993 | A |
5542783 | Pollack | Aug 1996 | A |
5549164 | Blandford | Aug 1996 | A |
5809925 | Montgomery | Sep 1998 | A |
6009825 | Fulton | Jan 2000 | A |
7524143 | Loset et al. | Apr 2009 | B2 |
20050013666 | Chianis et al. | Jan 2005 | A1 |
20090126617 | Millheim | May 2009 | A1 |
20110011329 | Kim et al. | Jan 2011 | A1 |
20110017511 | Payne | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
0831022 | Mar 1998 | EP |
1020100003554 | Jan 2010 | KR |
Entry |
---|
International Search Report, PCT/US2013/021720, INTM:002PCT, Mar. 25, 2013, 3 pgs. |
STP, Submerged Turret Production, APL, Available on the Internet prior to the Jan. 18, 2012 filing date of the U.S. Appl. No. 61/587,922, to which the present application claims priority, 8 pgs. |
STL, Submerged Turret Loading, APL, This reference describes technology publicly known prior to the Jan. 18, 2012 filing date of the U.S. Appl. No. 61/587,922, to which the present application claims priority, 8 pgs. |
Number | Date | Country | |
---|---|---|---|
20130183876 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
61587922 | Jan 2012 | US |