Releasable palatal expanders

Information

  • Patent Grant
  • 11564777
  • Patent Number
    11,564,777
  • Date Filed
    Wednesday, April 10, 2019
    5 years ago
  • Date Issued
    Tuesday, January 31, 2023
    a year ago
Abstract
Releasable and removable palatal expander apparatuses for expanding a patient's palate (“palatal expanders”) and methods of using and making them. These releasable palatal expanders are adapted for ease in removal by the patient or caregiver, and may include a breach region configured to predictably bend or break when a pulling force is applied. The palatal expander apparatuses described herein may include one or more locks for locking the palatal expander onto the patient's teeth. The lock(s) may be unlocked to release the palatal expander from the teeth. A lock may include a control for manually unlocking the lock. Unlocking the locks may allow the palatal expander to automatically disengage from the patient's teeth.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

The technical field relates to removable palatal expanders, methods of making and methods of using and/or removing palatal expanders.


BACKGROUND

A variety of orthodontic problems are linked with a narrow palate. In certain circumstances the maxilla of a patient is not sized to accommodate the patient's upper teeth. In other cases there is room for the upper teeth but the palate is so narrow that speech is impaired or made difficult. In other cases the palate is so high that it cuts down on the amount of air that can pass through the nose, so that deep breathing, without opening the mouth, is almost impossible. In all of these cases, palate expansion, including applying forces to separate, widen, and/or spread the maxilla, may be helpful.


While many conventional palatal expanders exist to separate, widen, spread, etc. a patient's maxilla, these appliances are often difficult to remove. As an example, many palatal expanders, when inserted in a patient's palate, exert a significant force on the patient's palate and/or arch. Due to these and other factors, it is often difficult to remove a palatal expander from a patient's mouth. These issues may persist for adult patients, but also apply to pediatric patients, patients who are less coordinated than an ordinary adult patient, or patient's whose palatal expander is removed by a caretaker, such as a parent. In addition, traditional technique of forming attachments on the patient's crowns utilizes thermoformed attachment templates and may be limited on the geometries that can be formed.


SUMMARY OF THE DISCLOSURE

Described herein are palatal expander apparatuses (including device and systems) that can be easily removed from a patient's mouth. Also described herein are removal tools that can be used to remove a palatal expander from a patient's mouth. The systems and techniques described herein allow a palatal expander to be easily removed (e.g., dismounted) from a patient's palate even when the palatal expander is attached to one or more attachments on the patient's teeth and/or palate. The implementations described herein may include a palatal expander (and/or series of palatal expanders) that include a breach region. A “breach region,” as used herein, may refer to a region of a structure configured to facilitate breaking, bending, deformation, etc. of the structure through materials, geometry, location, and/or other properties of the breach region. In some implementations, the breach region may comprise a region of materials that are different from the materials used to form the rest of the palatal expander. Materials used to form a breach region may be softer, more brittle, or sufficiently different from materials used to form the rest of a palatal expander so that the palatal expander may be broken, bent, deformed, etc. at the breach region. In some implementations, a breach region may have a different contour or geometry than other regions of the palatal expander so that the palatal expander may be broken, bent, deformed, etc. at the breach region.


A breach region may be strategically placed at locations of a palatal expander that absorb removal forces placed on the palatal expander. As an example, a breach region may be strategically placed on the other side of a fulcrum formed between the breach region and an edge of the palatal expander used to remove the palatal expander from a palate. A breach region may absorb a removal energy generated through a removal force more effectively than other areas of the palatal expander. A break, bend, deformation, etc. of the breach regions may cause a sufficient force to remove the palatal expander from a patient's palate. As noted further herein, the side or edge of the palatal expander may have one or more detachment regions that may include one or more edge geometries that interface with one or more expander removal tools (including fingers, tools with hooks and/or other structures). The edge geometries may facilitate transfer of a removal force to the breach regions through fulcrums and/or other structures. In some implementations, the edge geometries are on the buccal side of any of tooth engagement regions. The removal force may, but need not, comprise a “pulling force,” that is a force moving in a direction away from a patient's dentition. In some implementations, the force may cause the breach region to “predictably” bend, break, deform, etc., or break according to a substantially predictable manner and/or in a substantially predicable arrangement.


Methods of removing a palatal expander having breach regions are disclosed herein. Methods of designing and/or manufacturing a palatal expander with breach regions are also disclosed herein.


In some implementations, the apparatuses (such as devices and systems) are used with progressive expansion of a palate of a patient with a series of palatal expanders. Provided herein are methods and apparatuses (including systems and devices) for progressive palatal expansion. These palatal expanders may be adapted for comfort, efficacy and/or for ease of removal. For example described herein are systems for palatal expansion that may include a series of incremental expanders including a first incremental expander having a geometry selected to expand the palate, one or more intermediate expanders having geometries selected to progressively expand the palate to a target desired breadth.


Typically, palatal expanders have been described as pre-formed devices having a first molar-engaging (or molar/premolar-engaging) region adapted to engage upper molars on a first side of the upper jaw, a second molar-engaging (or molar/premolar-engaging) region adapted to engage upper molars on a second side of the upper jaw and palatal region with a geometry configured to fit adjacent to the shape of the palate while providing lateral force to incrementally expand the palate. The palatal expanders may be referred to as simply “expanders” or “palatal expander apparatuses” for convenience. Each of the palatal expanders in a series of expanders may comprise two molar regions (which may also be configured to include premolars), one on each side, each with one or more cavities, each cavity being adapted to fit over one of the patient's molars (or molars and/or premolars). In an embodiment each molar region may comprise two (or more) cavities that are configured to fit over two (or more) posterior molars or premolars. Each palatal expander may include a palatal region, which separates the two molar regions and fits against the patient's palate. Typically, the distance between the molar regions in the series of expanders is sequentially greater, in the order that they are to be worn.


The palatal region of the device may provide force to stretch or expand the mid-palatal region. Although energy-enhancing features may be placed in this region (e.g., springs and thermally active materials), in addition, this region may include one or more adaptations, such as struts, supports, cross-beams, ribs, gaps/windows, attachments, and the like which may distribute the forces applied in a more nuanced manner than previously described. For example, these devices may be configured so that the forces applied are distributed in a predetermined and/or desired pattern by arranging one or more points of contact between the palatal expander and the patient's mouth (e.g., in the gingiva and/or preferably along an upper or lower lateral portion of the patient's teeth, including their molars). The curvature (e.g., concavity) of the device may also be adjusted, to distribute the forces applied, while allowing clearance between the palate and the device, and/or allowing clearance for the user's tongue.


Any of the palatal expander apparatuses (e.g., devices, systems, etc.) for expanding a patient's palate described herein may include one or more locks. Locks may secure the palatal expander to the patient's teeth by locking the buccal side of the palatal expander to one or more attachments bonded to the teeth, allowing the lateral force from the palatal expander to apply the proper expansion force to the upper palate in the proper region. The locks may be manually unlocked, e.g., by actuating a control (e.g., tab, etc.) or otherwise applying a release force to disengage the lock. Multiple locks may be used, and may operate to keep the lateral force from disengaging the palatal expander until the locks are unlocked.


For example, a palatal expander (e.g., a palatal expander system) may include: a palatal expander having a first tooth engagement region, a second tooth engagement region and a palatal region connecting the first and second tooth engagement regions and configured to apply a lateral force between the first tooth engagement region and the second tooth engagement region; a plurality of attachment coupling regions on the buccal sides of the first tooth engagement region and the second tooth engagement region; a plurality of locks, wherein each attachment coupling region of the plurality of attachment coupling regions is associated with a lock of the plurality of lock, further wherein each lock is configured to engage with an attachment within the attachment coupling region to lock the palatal expander onto the patient's teeth.


The attachment coupling regions may be recesses, openings, or the like into or through the palatal expander for engaging with one or more attachments bonded to the teeth. For example, the attachment coupling regions may be windows (e.g., attachment windows) through the buccal side of the palatal expander.


The locks may generally include a release control that engages with a stay. The release control may be on the palatal expander and the stay may be on the attachment, or the stay may be on the palatal expander and the release control on the attachment. For example, the lock may include a release control comprising a latch, lever, switch, hook, tab, arm, snap, bar, pin, etc. that engages, through the attachment coupling region with a stay (e.g., a channel, hollow, check, cleat, catch, clasp, hasp, protrusion, etc.).


For example, a palatal expander system for expanding a patient's palate may include: a palatal expander comprising a first tooth engagement region, a second tooth engagement region and a palatal region connecting the first and second tooth engagement regions and configured to apply a lateral force between the first tooth engagement region and the second tooth engagement region; a first attachment coupling region on a buccal side of the first tooth engagement region; a first lock on the buccal side of the first tooth engagement region, wherein the first lock comprises a first release control configured to extend into the first attachment coupling region to engage with a stay on a first attachment within the first attachment coupling region to lock the palatal expander onto the patient's teeth until the first lock is released; a second attachment coupling region on a buccal side of the second tooth engagement region; and a second lock on the buccal side of the second tooth engagement region, wherein the second lock comprises a second release control configured to extend into the second attachment coupling region to engage with a stay on an second attachment within the second attachment coupling region to lock the palatal expander onto the patient's teeth. The palatal expander system may also include the attachments, e.g., the first attachment and the second attachment, wherein the first attachment and the second attachment are configured to be bonded to the patient's teeth.


The stay on each of the first attachment and the second attachment may comprise one or more of a: channel, hollow, check, cleat, catch, clasp, and hasp. The first and second release controls may each comprises one or more of a: latch, lever, switch, tab, hook, arm, snap, prong, bar, and pin. For example, the first release control may comprise a latch configured to slide into a channel in the stay of the first attachment. In some examples, the first release control comprises a hook configured to engage the stay of the first attachment. In any of these examples, the first release control may comprise one or more flexible protrusions. The first release control may comprise a locked configuration in which the first release control extends into the first attachment coupling region and an unlocked configuration in which the first release control is retracted from the first attachment coupling region.


The first and second locks may be symmetrically arranged on the palatal expander about a midline through the palatal expander, wherein the palatal expander is symmetrical about the midline


A palatal expander system for expanding a patient's palate may include a palatal expander comprising: a first tooth engagement region, a second tooth engagement region and a palatal region connecting the first and second tooth engagement regions and configured to apply a lateral force between the first tooth engagement region and the second tooth engagement region; a plurality of attachment coupling regions on a buccal side of the first tooth engagement region and the second tooth engagement region; a plurality of locks on the buccal side of the first tooth engagement region and the second tooth engagement region, wherein each lock comprises a release control having a locked configuration in which the release control extends into an attachment coupling region of the plurality of attachment coupling regions and an unlocked configuration in which the release control is retracted from the attachment coupling region; and a plurality of attachments, wherein each attachment in the plurality of attachment comprises a stay configured to engage with the release control in the locked configuration to lock the palatal expander onto the patient's teeth.


A series of palatal expanders as described herein may be configured to expand the patient's palate by a predetermined distance (e.g., the distance between the molar regions of one expander may differ from the distance between the molar regions of the prior expander by not more than 2 mm, by between 0.1 and 2 mm, by between 0.25 and 1 mm, etc.) and/or by a predetermined force (e.g., limiting the force applied to less than 180 Newtons (N), to between 8-200 N, between 8-90 N, between 8-80 N, between 8-70 N, between 8-60 N, between 8-50 N, between 8-40 N, between 8-30 N, between 30-60 N, between 30-70 N, between 40-60 N, between 40-70 N, between 60-200 N, between 70-180 N, between 70-160 N, etc., including any range there between).


In any of the apparatuses described herein (and methods of fabricating them), the expanders may be formed out of a polymeric (e.g., acrylic, thermoplastics, thermosets, etc.) and/or a metal material, including stainless steel, nickel titanium, copper nickel titanium, etc. Any of these apparatuses may be formed by 3D printing and/or by a lamination process, in which the apparatuses are formed for layers of material that may be formed and/or adhered together (e.g., to form a unitary device); different layers may have different mechanical and/or chemical properties, and may include different thicknesses or regions of thickness. For example, an apparatus may include laminated materials that are bonded together.


Also described herein are apparatuses and method of forming them by direct fabrication techniques. For example, an apparatus (including a series of palatal expanders) may be digitally designed and fabricated by a direct printing (e.g., 3D printing); alternatively or additionally the fabrication method may include 3D printing of models of the teeth, gingiva and palate that have been digitally configured to form one or more of the series applying the palatal expansion.


Also described herein are methods of expanding the palate of a patient using any of the apparatuses described herein, which may include positioning each expander in a series of expanders in position to expand the palate, leaving the expander in position for a period of time and replacing the expander with the next expander in the series until the desired palatal expansion has occurred and then applying a palatal expander that is configured to retain the palate in the final position at the target desired breadth.


In general, the palatal expanders described herein may be referred to as palatal expander shell apparatuses. The tooth engagement regions (e.g., the molar or molar/premolar engagement regions) may be configured as shells that fit over the patient's teeth, as described above.


Any of the palatal expanders described herein may be configured or adapted to enhance removal of the palatal expander. For example, a palatal expander (e.g., palatal expander shell apparatus) for expanding a patient's palate that is configured for ease of removal may include: a pair of tooth engagement regions each extending anteriorly to posteriorly, and configured to be worn over the patient's teeth, wherein the tooth engagement regions each comprise an occlusal side and a buccal side; a palatal region connecting the pair of tooth engagement regions, wherein the palatal region is configured to apply a lateral force between the pair of tooth engagement regions when the apparatus is worn by the patient. In any of these palatal expanders may also include a breach region extending anteriorly to posteriorly, the breach region configured to predictably bend or break when a pulling force is applied to the buccal side of either or both of the pair of tooth engagement regions.


The pair of tooth engagement regions may be the molar (and/or molar/premolar) regions configured to hold the patient's teeth within a pocket, hollow, chamber, region or channel, or a series of interconnected pockets, formed by the molar region of the shell apparatus, to hold the patient's molar/premolar teeth on one side of the patient's mouth. The first tooth engagement region, which may be referred to as a first molar (or molar/premolar) engagement region, may extend from an anterior (e.g., towards the front of the patient's mouth when worn), to a posterior (e.g., towards the back of the patient's mouth when worn) configuration. The first molar (or molar/premolar) engagement region may typically extend anteriorly to posteriorly in the patient's mouth when worn.


The tooth engagement region (e.g., the molar or molar/premolar engagement region may generally each include an occlusal side and a buccal side. The buccal side typically faces outward from the mouth when the apparatus is worn by the patient, over the buccal surface of the molars/premolars. The occlusal surface typically lies adjacent to the occlusal (bite) surface of the teeth. As described above, the pair of tooth engagement regions may be connected by a palatal region connecting the pair of tooth engagement regions and configured to span between them and adjacent to the patient's palate when worn by the patient.


In general, the breach region is a region of lower mechanical strength compared to the mechanical strength of regions adjacent to either side of the breach region. Thus, the palatal expander may preferentially bend or break along the breach region. In general, the breach region may be a line, channel, pattern, etc. that extends from a posterior to an anterior direction. The breach region may extend part of the way from the posterior to anterior direction or all of the way from the anterior to posterior direction along the apparatus. The breach region may be continuous (e.g., as a continuous line or curve) or discontinuous (e.g., a series of lower mechanical strength regions arranged in a line or curve, such as a dashed line, perforation, etc.). The mechanical strength of the breach region may be a fraction of the mechanical strength of the region adjacent to it (e.g., less than about 0.95× the strength, less than about 0.9× the strength, less than about 0.85× the strength, less than about 0.8× the strength, less than about 0.75× the strength, less than about 0.7× the strength, less than about 0.65× the strength, less than about 0.6× the strength, less than about 0.55× the strength, less than about 0.5× the strength, less than about 0.45× the strength, etc.). The lower mechanical strength in the breach may allow it to bend, collapse, give, etc. when force is applied, and particularly a force that is a pull force that is directed (or includes a vector component directed) in a laterally outward direction when the palatal expander is worn by the patient.


For example, the breach region may be a perforated region that is formed by regions (holes, pits, dots, islands, etc.) of lower strength regions that are arranged in a linear (straight line or curved line) arrangement along the apparatus. The lower-strength region(s) may be a crease or channel. The lower-strength regions may be one or more voids within the palatal expander shell apparatus.


In any of the apparatuses and methods described herein, the lower-strength breach region(s) may be formed using a multiple material construction. For example, the breach region(s) may be formed of a more elastic material than the adjacent regions. The application of a pre-determined force to the appliance will therefore cause the breach region to bend and allow the appliance to be removed without requiring substantial additional force. Thus, any of these appliances may include a small amount of an elastic material strategically located at the breach (“hinge”) region to assist with the bending. This may be used in addition to, or instead of, using creating a void in the appliance. The apparatus may be configured so that the elastic material in the breach region may return to its original (unbent) shape after bending.


The breach region may be arranged along one or both tooth engagement regions, and/or they may be arranged along the palatal region. More than one breach region may be included, such as a first breach region along the occlusal side of a first tooth engagement region, and/or a second breach region along the occlusal side of a second tooth engagement region and/or a palatal breach region along the palatal region. For example, the breach region may extend across the occlusive side of one of the pair of tooth engagement regions. As mentioned, the breach regions may be arranged in an anterior to posterior (e.g., anteriorly to posteriorly) pattern.


In some variations, the breach region is configured to form a hinge or hinge region. Alternatively or additionally, the breach region may be configured to break when a pulling force of greater than a predetermined breaking value is applied to the buccal side of one of the pair of tooth engagement regions in a laterally outward direction. Thus, in some variations, the breach region may be configured to bend in a hinged manner when a pulling force of greater than a predetermined value (e.g., predetermined bending value) is applied to the buccal side of one of the pair of tooth engagement regions in a laterally outward direction.


The predetermined bending or breaking value may be set to a value that is within the pulling force that may be applied by a human hand/finger, or that may be reasonably applied by a tool for removing the apparatus, as described in greater detail below. For example, the predetermined bending or breaking value may be about 5 N or more, about 6 N or more about 7 N or more about 8 N or more, about 9 N or more about 10 N or more, about 11 N or more, about 12 N or more, about 15 N or more, about 20 N or more, between about 5 N and 100 N, between about 7.5 N and 100 N, between about 10 N and 100 N, etc.


In some variations, the breach region is configured to preferentially break (or break along at least a portion of the length). In other variations, the breach region is configured to preferentially bend along at least a portion of the length. In some variations the breach region may be configured to initially bend at a first predetermined bending value, then to break at a second (e.g., higher) predetermined breaking value.


The breach region may be marked or visible. In some variations the breach region is marked to show the line for bending and/or breakage by a different color, texture, crease, etc. In some variations, the breach region is not visible.


The breach region may extend completely across the length of the palatal expander, or just partially along the length (e.g., the anterior to posterior length) of the palatal expander, e.g., from the front of the patient's mouth toward the back of the patient's mouth. For example, the breach region may extend from an anterior end of the palatal expander shell apparatus to a posterior end of the palatal expander shell apparatus. Alternatively, in some variations, the breach region may along just a portion of the anterior-to-posterior length.


Any of the palatal expanders described herein may include a plurality of attachment regions each configured to couple to an attachment bonded to the patient's teeth. The breach region may extends adjacent to one or more of the attachment regions along an anterior to posterior axis.


Any of the palatal expanders described herein may also include one or more detachment regions, e.g., on the buccal side of at least one of the pair of pair of tooth engagement regions, that is configured to receive the pulling force. The detachment region may be configured as a protrusion, cavity, tab, etc. for engaging with a removal tool and/or the user's finger to apply a pulling force having a laterally outward component for removing the palatal expander, typically by bending or breaking the breach region to disengage the palatal expander from the teeth (including from any attachment on the teeth or between the teeth and the palatal expander), so that the palatal expander can be removed. For example a detachment region may be one or more of a slot, ledge, notch, lip, or gap on or adjacent to a lower edge of the buccal side. The detachment region may be sized to receive the tool and/or finger or fingernail. For example, the detachment region may include a pocket, gap, etc. that is between about 1 mm and 15 mm (e.g., between about 1 mm and 12 mm, between about 1 mm and 10 mm, between about 1 mm and 8 mm, between about 1 mm and 5 mm, etc.).


Any of these apparatuses may include one or more (e.g., a plurality of) vertical slots or slits extending from a bottom of the buccal side toward the breach region. These slots or slits may allow a portion of the buccal side (particularly on either side of one or more attachments) to bend or pull away from the gingiva and teeth and to disengage from the one or more attachments.


For example, a palatal expander shell apparatus may be configured to be easily removed for expanding a patient's palate, the apparatus may comprise: a pair of tooth engagement regions each extending anteriorly to posteriorly, and configured to be worn over the patient's teeth, wherein the tooth engagement regions each comprise an occlusal side and a buccal side; a palatal region connecting the pair of tooth engagement regions, wherein the palatal region is configured to apply a lateral force between the pair of tooth engagement regions when the apparatus is worn by the patient; and a breach region extending anteriorly to posteriorly, the breach region having a mechanical strength that is less than the mechanical strength of regions adjacent to either side of the breach region so that the breach region predictably bends or breaks when a pulling force having a laterally outward component is applied to the buccal side of either or both of the pair of tooth engagement regions.


Any of the apparatuses described herein may be adapted to make removing the palatal expander easier without reducing the retention or the ability of the palatal expander to remain held in position on the patient. For example, any of these palatal expanders may include the breach region. Any of these apparatuses may also or alternatively include a detachment region on one or both buccal side of the palatal expander. As mentioned, the detachment region (which may be referred to as a removal grip, a removal cavity, a removal handle, a removal attachment, removal slot, etc.) may include a gap, slot, opening, etc., on an upward- or downward-facing side that may be adapted to allow a user to insert a fingernail and/or removal tool therein to remove the palatal expander from the teeth. The detachment region may be configured to deform or break the breach region and release the palatal expander from the patient's teeth. The detachment region may be configured as a lip, ledge, or protrusion on the buccal side of the palatal expander. The breach region may therefore form a hinge region; in some variations, this hinge region is between the occlusal surface and the buccal side, so that operating the detachment region may pull the buccal side of the palatal expander away from the patient's teeth and/or off of any attachment so that it may be removed. Any of these palatal expanders may include a slit, slot, gap, etc. that extends upward from the edge of the palatal expander toward the occlusal surface on the buccal side permitting all or a portion of the palatal expander to pull upward and disengage from the teeth.


Also described herein are palatal expanders that are adapted for comfort to have a thickness that varies. For example, in any of these variations, the palatal expander may include an inner bottom surface in the palatal arch portion of the palatal expander that faces the patient' tongue when worn that is smooth or flattened compared to the opposite surface (matching the patient's palate where the palatal expander is worn. This tongue-facing side may have a surface that is rounded and does not include any rapid transitions in topology compared with the patient's actual palate. In any of these examples, the apparatuses described herein may have a different (including variable) thickness. In some variations, the apparatus may include a palatal region that is narrower toward the anterior of the palatal expander apparatus. In any of these variations, the poster portion of the palatal expander may be thinner and/or cut away (removed from) the palatal expander, which may prevent or limit gagging.


The palatal expanders described herein may be removed by applying a force (e.g., a pulling force) to cause the breach region to bend and/or break. For example, described herein are methods of removing a palatal expander shell apparatus from a patient's teeth that may include the steps of: applying a pulling force to a buccal side of the palatal expander shell apparatus while a first tooth engagement region is worn on a first portion of the patient's teeth, a second tooth engagement region is worn on a second portion of the patient's teeth, and while a palatal region extending between the first tooth engagement region and the second tooth engagement region is applying a lateral force between the first tooth engagement region and the second tooth engagement region, wherein the pulling force causes a breach region of the palatal expander shell apparatus to break or bend along the breach region and to disengage the palatal expander shell apparatus from the first or second set of the patient's teeth; and removing the palatal expander shell apparatus from the patient's oral cavity.


The pulling force may be any appropriate force, as mentioned above. For example, applying the pulling force comprises applying about 100 N, about 90 N, about 80 N, about 70 N, about 60 N, about 50 N, about 40 N, about 30 N, about 20 N, etc. The pulling force applied may be about 5 N or greater, about 7.5 N or greater, about 8 N or greater, about 10 N or greater, about 12 N or greater, about 15 N or greater, etc. (e.g., between about 5-100 N, etc.). The pulling force applied may refer to the laterally outward component of the force. In general, this laterally outward force may also be directed downward or between the laterally outward (e.g., parallel to the plane of the palatal expander, and/or the plane of the patient's upper palate when worn) and downward (e.g., away from the outer occlusal surface, and/or toward the lower jaw when the palatal expander is worn on the upper jaw). In some variations, the force may be applied in a direction that is between the laterally outward and downward directions when the palatal expander is worn. Applying the pulling force may comprise pulling the buccal side of the palatal expander with a force having a laterally outward force component, or a laterally outward force component and a downward component. For example, applying the pulling force may comprise pulling the edge of the buccal side of the palatal expander.


In general, applying the puling force may cause the breach region to bend or break along the breach region so that the palatal expander shell apparatus disengages from the teeth, including disengaging from one or more attachments between the palatal expander shell apparatus and the patient's teeth. Applying the puling force may cause the breach region to bend along the breach region in a hinged manner. Applying the puling force may cause the breach region to break along the breach region.


The pulling force may be applied by the user manually, using their finer or a tool, such as applying the pulling force comprises using a tool to apply a pulling force. The tool may include a long arm and a fulcrum region that leverages against a portion of the palatal expander. In some variations, applying the pulling force comprises using a fingernail to apply a pulling force. Applying the pulling force may comprise pulling on a detachment region on the buccal side of the palatal expander shell apparatus.


A method of removing a palatal expander shell apparatus from a patient's teeth may include: applying a pulling force to a buccal side of the palatal expander shell apparatus while a first tooth engagement region is worn on a first set of the patient's teeth and a second tooth engagement region is worn on a second set of the patient's teeth, and while a palatal region extending between the first tooth engagement region and the second tooth engagement region is applying a lateral force between the first tooth engagement region and the second tooth engagement region, wherein the pulling force causes a breach region of the palatal expander shell apparatus to break or bend at a predetermined location and disengage from the first or second set of the patient's teeth, wherein the breach region extends anteriorly to posteriorly along the palatal expander shell and comprise one or more regions having a mechanical strength that is less than the material strength of the regions of the palatal expander surrounding to the breach region; and removing the palatal expander shell apparatus from the patient's oral cavity.


Also described herein are methods for forming one or a series of palatal expanders and methods of making and using them in which the palatal expander is configured to include one or more gaps or spacing regions between the patient's upper arch and the upper (e.g., palate-facing) surface of the palatal expander. For example, any of these apparatuses may be configured to include a gap or concave channel or region to prevent impingement near the gingival line (e.g., on the buccal and/or on the lingual side of the apparatus. Any of these apparatuses may be configured to include a gap between the upper (e.g., palate-facing) surface of the palatal expander and the palate.


Methods and apparatuses for performing palatal expansion using any of these apparatuses are also described. For example, described herein are methods an apparatuses for scanning a patient's intraoral cavity (including in particular the upper arch) sufficiently so that the palatal expander apparatuses described herein may be formed.


Methods of applying or attaching the palatal expanders described herein are described, including methods for the patient to apply the palatal expander to her/his own teeth. Also described herein are attachments (which may alternatively be referred to as retaining attachments, retaining posts, etc.) and templates for attaching the attachments to a patient's teeth that may be configured to releasably secure the palatal expander to the patient's teeth. Methods of forming the attachment template, and/or attaching the attachments to the teeth are also described.


Also described herein are methods and apparatuses for removing the palatal expanders from a patient's teeth. For example, described herein are removal tools to assist a person (and particularly, but not limited to, the patient) in removing the palatal expander when secured onto the patient's teeth.


Also described herein are methods of making any of the apparatuses described herein.


For example, described herein are palatal expander apparatuses for expanding a patient's palate. A palatal expander apparatus may include: a pair of tooth engagement regions connected by a palatal region and two or more attachment regions each configured to couple to an attachment bonded to the patient's teeth, wherein the palatal region is configured to apply between 8 and 160 N of force between the pair of tooth engagement regions when worn by the patient; wherein the tooth engagement regions each comprise an occlusal side and a buccal side, further wherein the occlusal side is thinner than the palatal region, and the buccal side is thinner than the occlusal side.


The palatal region may be between about 1-5 mm thick (e.g., between 1.5 to 3 mm, between 2 and 2.5 mm thick, etc.). The occlusal side may have a thickness of between about 0.5-2 mm (e.g., between 0.5 to 1.75 mm, between 0.75 to 1.7 mm, etc.). The buccal side may have a thickness of between about 0.25-1 mm (e.g., between 0.35 and 0.85 mm, between about 0.4 and 0.8 mm, etc.).


As mentioned, any of these apparatuses may include a detachment region on a buccal side of the apparatus to help remove the device once attached to the patient's teeth. The forces being applied to widen the palate may make it difficult to easily remove the apparatus. A buccally-located detachment region (e.g., a notch, gap, handle, tab, slot, etc.) may be used to more easily remove the apparatus from the teeth, particularly when attachments are used to hold the apparatus on the teeth. A detachment region may provide a handle or grip region for applying a pulling force to remove the palatal expander. The detachment region may be on or extend from the buccal side(s) and may be spaced from the patient's gingiva by at least 0.25 to 1 mm when the apparatus is being worn and may be near the bottom edge (or extending from the bottom edge, or over the bottom edge) of the buccal side of the apparatus. For example, the bottom edge of the buccal side may be configured as a detachment region extending from the buccal side of the device, along all or a side (e.g., between 1 mm and 5 cm, e.g. 1 mm to 4 cm, 1 mm to 3 cm, 5 mm to 4 cm, etc.) of the buccal region. The extension may be configured to extend below and away from the patient's gingiva, e.g., to form a gap of between about 0.25-1 mm when the apparatus is worn by a patient. Any of these apparatuses may include one or a plurality of vertical slots or slits extending from a bottom of the buccal side toward the occlusal side. In particular, these slots or slits may be on either side of the detachment region.


Any of these apparatuses may be smoothed on the tongue-facing side of the apparatus. For example, the palatal region may comprise an upper convex surface having a first surface curvature comprising a plurality of grooves and ridges that align with grooves and ridges in the patient's palate; further wherein the palatal region comprises a lower, concave surface having a second surface curvature that is smoother than the first surface curvature. Smoother may mean having fewer and/or less extensive (deep, high) grooves and/or ridges.


Also described herein are methods of making a palatal expander apparatus, the method comprising: receiving a model of a patient's upper arch (e.g., a digital model, a manual model, etc.); and forming a palatal expander having a pair of tooth engagement regions connected by a palatal region and one or more breach regions extending anteriorly. The method may also include forming the palatal expander to include two or more attachment regions each configured to couple to an attachment bonded to the patient's teeth, wherein the tooth engagement regions are each configured to fit over the patient's teeth and each comprise an occlusal side and a buccal side, further wherein the occlusal side comprises a detachment region configured to engage with the patient's fingernail to disengage at least one of the attachment regions from an attachment on the patient's teeth. Forming the apparatus may include forming any of the features described herein, including detachment regions, slits/slots, smoothing the tongue-facing side, forming an opening in the apparatus, varying the thickness of the different regions relative to each other and/or within each region, etc. For example, forming may comprise forming the palatal region by smoothing a bottom surface of the palatal region relative to an opposite top surface of the palatal region.


For example, a method of making a palatal expander apparatus may include: receiving a model of a patient's upper arch; forming a palatal expander having a pair of tooth engagement regions connected by a palatal region and two or more attachment regions each configured to couple to an attachment bonded to the patient's teeth; forming a breach region extending anteriorly to posteriorly one or more of the palatal region, the first tooth engagement region (e.g., along the buccal side, the occlusal side, between the buccal and occlusal side, etc.), the second tooth engagement region (along the buccal side, the occlusal side, between the buccal and occlusal side, etc.). The tooth engagement regions may each be configured to fit over the patient's teeth and each comprise an occlusal side and a buccal side. The method may also include forming a detachment region on the buccal side having a gap that is configured to engage with the patient's fingernail or an elongate tool and to disengage at least one of the attachment regions from an attachment on the patient's teeth.


In any of these methods, the tooth engagement region may comprise an extension of the buccal side of the tooth engagement region that extends from the patient's gingiva to form a gap of between about 0.25-1 mm when the apparatus is worn by a patient. The tooth engagement region may comprise a projection extending from the buccal side of the tooth engagement region. The palatal expander may be configured to contact a lingual side of the patient's teeth when worn by the patient and to apply between 8 and 160 N of force between the tooth engagement regions. The palatal expander may be configured not to contact either or both the gingiva adjacent to a lingual side of the patient's teeth when worn by the patient and the midline of the patient's palate.


The apparatus may be formed in any appropriate manner, including forming comprises forming by three-dimensional (3D) printing. For example, receiving a model of the patient's upper arch may comprise receiving a digital model of the patient's teeth, gingiva and palatal region.


In general, any of these palatal expanders may be configured so that all or a portion (e.g., the mid-palatal region, e.g., configured to be positioned opposite of the suture) is spaced apart from the patient's palate when the device is worn, by some minimum distance, e.g., between 0.01 and 5 mm (e.g., 0.02 mm or greater, 0.03 mm or greater, 0.04 mm or greater, than 0.05 mm or greater, 0.06 mm or greater, 0.07 mm or greater, 0.1 mm or greater, 0.15 mm or greater, 0.2 mm or greater, 0.25 mm or greater, etc.) This minimum distance may be determined when forming the palatal expander by modeling (e.g., from a digital model) the patient's dental arch, including the palatal region. Including this minimal distance may be particularly helpful, for example, to prevent sores or irritation of the soft and/or hard palate when wearing the palatal expander(s).


This space between the palatal-facing surface of the palatal region of the palatal expander and the patient's palate may be referred to as clearance. This spacing may be positive (e.g., forming a gap) or, in some areas of the palate region, negative, e.g., impinging on the patient's palate, in order to provide force to expand the palate. Negative clearance may be identified by comparing an actual or predicted (e.g., for later stages of the expansion treatment) model of the patient's palate with the palatal expander outer (palate-facing) surface. Actual or predated models may be digital (virtual) or casts of the patient's dental arch. In later stages of treatment, the clearance may be estimated from a digital model in which the patient's palatal region morphology is predicted by morphing the palatal region r to reflect the treatment progression.


For example, contact with soft palate regions of the patient's palate may be avoided by include positive clearance of greater than some minimum (e.g., see above, such as 0.1 mm, 0.2 mm, etc.) in regions configured to be worn opposite of the soft palatal region). In general, any of these apparatuses may be configured so that the mid palatal regions (e.g., opposite the mid palatal suture) are offset from the patient's palate when worn. In some variations the separation distance may be at a maximum in this mid palatal region. In some variations the separation distance may decrease laterally, and negative clearance (e.g., force-applying contact) may be present laterally. The clearance may vary over a sequence or series of aligners. For example, the initial (early) stages may be configured to have a lower maximum positive clearance than later stages, which may have greater maximum clearance. Any of these apparatuses may have greater positive clearance posterior than anteriorly. In some variations, the maximum positive clearance may taper from a maximum at the mid-palatal region towards the teeth.


For example, in some variations, the palatal region may be configured to have a clearance of greater than 0.1 mm from the patient's mid-palatal region when the device is worn by the patient.


Any of these apparatuses may include two or more attachment regions each configured to couple to an attachment bonded to the patient's teeth. Attachment regions may be openings, pits, slots, channels, or the like for securing to an attachment bonded to the patient's teeth. The attachment regions may be configured to secure to the patient's teeth, but to allow removal of the apparatus from the attachment by flexing a portion (e.g., a detachment region) of the palatal expander, which may be on the buccal side, including extending from the buccal side.


In general, as mentioned above, any of the palatal expanders described herein may include a variable thickness (e.g., transverse thickness perpendicularly between the opposite upper and lower surfaces). For example, the average and/or maximum thickness of the palatal region may be greater than the average or maximum thickness of the occlusal surface (e.g., the side worn against the occlusal surface of the teeth); the average or maximum thickness of the buccal surface (e.g., the side worn against the buccal surface of the teeth) may be less than the average or maximal thickness of the occlusal surface and/or the palatal surface. Alternatively or additionally, in some variations all or a portion of the occlusal surface may be cut away. In general, an anterior portion of the palatal region may have a different average thickness than a posterior portion of the palatal region. For example, the anterior portion of the palatal region may be thinner than a posterior portion of the palatal region; alternatively, the anterior portion of the palatal expander may be thicker than the posterior portion.


As mentioned, any of these apparatuses may include an extension extending from the buccal side of the apparatus, wherein the extension is configured to extend adjacent and away from the patient's gingiva to form a gap of between about 0.25 and 1 mm when the apparatus is worn by a patient. The length of the extension may be determined so that it does not contact the inner cheek surface.


Also described herein are palatal expander systems for expanding a patient's palate. These systems may include any of the palatal expanders described herein. Thus, described herein are systems including any of these apparatuses (and series of these apparatuses). Also described herein are methods of expanding a patient's palate using a series of patient-removable palatal expanders, the method comprising: sequentially wearing each of a plurality of palatal expanders except a last palatal expander from the series of patient-removable palatal expanders in a predetermined sequence of progressively increasing widths, wherein: each palatal expander comprises a pair of tooth engagement regions connected by a palatal region and two or more attachment regions, wherein the tooth engagement regions are worn over the patient's teeth with the attachment regions coupled to attachments on the patient's teeth, wherein at least one of the palatal expanders include a breach region for removal as described herein. Each palatal expander may be worn for between 0.5 and 14 days; and each palatal expander may be removed by applying a pulling force as described herein, to bend or break a breach region to disengage at least one of the attachment regions from the attachment on the patient's teeth. Thus wearing the apparatus may include removing the apparatus for less than some percentage (e.g., 2%, 5%, 7%, 10%, etc.) of the time worn during that period (e.g., for a few minutes to an hour a day, etc.


A method of forming a palatal expander is provided. The method may include: gathering a virtual representation of a palatal surface, the palatal surface having a convex surface geometry, the convex surface geometry configured to mate with a palate of a patient when the palatal expander is inserted into the palate of the patient; gathering a virtual representation of a lingual surface opposite to the palatal surface, the lingual surface having a concave surface geometry configured to provide a gap between a tongue of the patient and the palatal expander when the palatal expander is inserted into the palate; gathering a virtual representation of a plurality of sidewalls surrounding at least a portion of the palatal surface and the lingual surface, the plurality of sidewalls configured to exert a sidewall force against one or more of the palate and a lingual region of teeth of the patient when the palatal expander is inserted into the palate, the plurality of sidewalls having at least one removal structure to receive a removal force; gathering a virtual representation of a body, the body having a first deformation measure corresponding to a substantial first deformation of the body in response to application of a removal force to the removal structure; gathering a virtual representation of one or more breach regions, the one or more breach regions having a second deformation measure corresponding to a substantial second deformation of the one or more breach regions in response to the application of the removal force to the removal structure, the second deformation measure being greater than the first deformation measure; and providing instructions to manufacture the palatal expander using the virtual representation of a palatal surface, the virtual representation of a lingual surface, the virtual representation of the plurality of sidewalls, the virtual representation of the body, and the virtual representation of the one or more breach regions.


Any of the gathering steps may be performed as a single step or as sub-parts of a single step. For example, gathering the virtual representation of the palatal surface, the lingual surface opposite to the palatal surface, and/or the plurality of sidewalls surrounding at least a portion of the palatal surface and the lingual surface may be performed together. Gathering this information may include scanning (e.g., taking a digital scan) of the patient's oral cavity and/or a model (e.g., physical model) of the patient's oral cavity.


A palatal expander may comprise: a palatal surface having a convex surface geometry, the convex surface geometry configured to mate with a palate of a patient when the palatal expander is inserted into the palate of the patient; a lingual surface opposite to the palatal surface, the lingual surface having a concave surface geometry configured to provide a gap between a tongue of the patient and the palatal expander when the palatal expander is inserted into the palate; a plurality of sidewalls surrounding at least a portion of the palatal surface and the lingual surface, the plurality of sidewalls configured to exert a sidewall force against one or more of the palate and a lingual region of teeth of the patient when the palatal expander is inserted into the palate, the plurality of sidewalls having at least one removal structure to receive a removal force; a body having a first deformation measure corresponding to a substantial first deformation of the body in response to application of a removal force to the removal structure; and one or more means for breaching a portion of the palatal expander in response to the removal force, the one or more means for breaching the portion of the palatal expander having a second deformation measure corresponding to a substantial second deformation of the one or more breach regions in response to the application of the removal force to the removal structure, the second deformation measure being greater than the first deformation measure.


Any of the methods of applying and removing the palatal expanders described herein may be configured as a method of applying a palatal expander that includes engaging the palatal expander onto the patient's teeth by placing the one or more attachments into the attachment coupling region(s) and locking the attachments to the palatal expander. The lock may be automatically engaged by driving the attachment into the attachment coupling region, e.g., by driving the release control against the stay; the release control may be biased (e.g., spring loaded) to extend into the attachment coupling region and engage with a stay.


A method of removing a palatal expander shell apparatus from a patient's teeth, wherein the palatal expander shell apparatus comprises a first tooth engagement region, a second tooth engagement region, and a palatal region between the first and second tooth engagement regions applying a lateral force between the first and second tooth engagement regions, may include: unlocking the palatal expander shell apparatus from the first tooth engagement region by disengaging a first lock from a first attachment on the patient's teeth; unlocking the palatal expander shell apparatus from the second tooth engagement region by disengaging a second lock from a second attachment on the patient's teeth; wherein disengaging either or both the first and second locks causes the palatal expander shell apparatus to release from the patient's teeth; and removing the palatal expander shell apparatus from the patient's oral cavity.


Unlocking the palatal expander shell apparatus from the first tooth engagement region may comprise operating a release control on the palatal expander shell to disengage from a stay on the first attachment. For example, operating the release control on the palatal expander shell to disengage from the stay on the first attachment may comprise sliding a latch from one or a channel or cavity in the stay. Operating the release control on the palatal expander shell to disengage from the stay on the first attachment may comprise disengaging a protrusion member from the stay wherein the stay comprises a bracket having a channel.


Disengaging the first lock from a first attachment on the patient's teeth may comprise unsnapping the release control from the stay.


Operating the release control on the palatal expander shell to disengage from the stay on the first attachment may comprise operating a release control comprising one of a: latch, lever, switch, tab, arm, snap, bar, or pin that engages with the stay on the first attachment.


The first lock and the second lock may be disengaged concurrently. Alternatively, the first lock and the second lock may be disengaged separately. The locks may be manually disengaged (e.g., by the patient or caregiver's fingers) and/or using a tool. In some variations disengaging a first lock from a first attachment on the patient's teeth comprises retracting a spring to disengage. Disengaging the first lock from the first attachment on the patient's teeth may comprise applying a disengaging force to the first lock that is less than the lateral force (e.g., less than 30 N, less than 20 N, etc.).





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the apparatuses and methods described herein are set forth with particularity in the claims that follow. A better understanding of the features and advantages will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 illustrates one example of a palatal expander including an enclosed attachment that may aid in retention within the oral cavity.



FIGS. 1A-1G illustrate an example of a palatal expander that may be part of a series of palatal expanders used to expand a patient's palate. FIG. 1A is a front perspective view of a bottom side (tongue-facing side) of an example of a palatal expander, shown attached on a model of a patient's upper dental arch. FIG. 1B is a back perspective view of an example of a palatal expander; the dashed line 163 shows a midline of the palatal expander. FIG. 1C is another back perspective view of an example of a palatal expander. FIG. 1D is a front side perspective view of an example of a palatal expander of FIG. 1A. FIG. 1E is a side perspective view of an example of a palatal expander. FIG. 1F is another back perspective view of an example of a palatal expander. FIG. 1G is a top perspective view of an example of a palatal expander, showing the tooth-receiving cavities and the palate-facing top surface.



FIGS. 2A-2C illustrate an example of a system for expanding a patient's palate, including an attachment template (shown in a perspective view in FIG. 2A), series of progressive palatal expanders (shown in FIG. 2B) and a passive holder (e.g., retainer shown in FIG. 2C).



FIG. 3A illustrates an example of a method of treating a patient to expand the patient's palate using the palatal expanders described herein.



FIG. 3B illustrates an example method for forming a palatal expander.



FIG. 4A illustrates examples of translational forces that may be applied to a patient's palate (arrows) to expand the palate, braking and separating the palatal midline suture (e.g., median palatine suture, etc.). FIG. 4B illustrates a series of example palatal expanders that are configured to progressively expand the suture (e.g., the expanders shown in FIG. 4B may be examples taken from an entire sequence, e.g., of 8 or more expanders, and do not necessarily represent three immediately sequential expanders).



FIG. 4C illustrates an example of a palatal expander in which a portion of the palatal region has been removed from the anterior region; similarly, other regions of the apparatus, e.g., from the posterior region may be removed. Alternatively or additionally, any of these apparatuses may have a hole cut in other regions, including in the center region. This example also shows a breach region extending along a midline of the palatal expander.



FIG. 4D illustrates another example of a palatal expander including a breach region, shown extending along the occlusal surface of a first tooth engagement region. A pulling force is also illustrated.



FIG. 4E illustrates another example of a palatal expander including a breach region, in which the breach region is a line or channel that is not straight but extends in an anterior-to posterior direction across the occlusal side of a first tooth engagement region.



FIG. 4F illustrates another example of a palatal expander including a breach region extending in an anterior-to-posterior direction across the buccal side of a first tooth engagement region.



FIG. 4G illustrates another example of a palatal expander including a breach region extending in an anterior-to-posterior direction on the border between the buccal and occlusal sides of a first tooth engagement region.



FIG. 5 illustrates an example of attachments on teeth that may mate with a palatal expander in predetermined positons; in this example, four attachments (two on either side) may be used to secure each palatal expander to the teeth during treatment.



FIG. 6A illustrates an example of a palatal expander including a detachment region (e.g., a removal grip or tab) and two or more lateral hinge region(s) (e.g., slot, cut-out, slit, flex region, etc.) extending from the lateral edge (e.g., the edge of the buccal side) towards the occlusal surface, which may be used to help remove the apparatus from the subject's mouth, and a breach region extending partially across the anterior-to-posterior direction on the buccal side of a tooth engagement region.



FIG. 6B illustrates a section through a portion of a palatal expander that is configured to include a detachment region in which the outer (e.g., buccal) edge of the palatal expander is formed with a gap separating it from the teeth and/or gingiva sized and configured so that the patient's fingernail and/or a removal device may be inserted to pull the apparatus off of the teeth, including off of the attachment on the teeth.



FIG. 7A illustrates one example of a palatal expander having a detachment region on the buccal side of the palatal expander shell apparatus. In FIG. 7A, two detachment regions are shown and each include a protruding fulcrum region.



FIG. 7B illustrates another example of a palatal expander having a bottom edge region of the buccal side of the palatal expander shell configured as a detachment region.



FIG. 7C shows another example of a palatal expander having a bottom edge region configured as a detachment region, configured to provide a handle on each side of the palatal expander.



FIG. 7D shows an enlarged bottom view of the handle region of FIG. 7C.



FIG. 7E shows a profile view illustrating operation of one of the detachment regions (handles) of the device shown in FIGS. 7C-7D.



FIG. 7F shows an enlarged top view of the handle region of FIG. 7C.



FIG. 8 illustrates an example of detachment of a palatal expander from a patient's upper arch using a removal tool. The tool may apply a pulling force to cause a breach region of the palatal expander shell apparatus to break or bend along the breach region and to disengage the palatal expander shell apparatus from the first or second set of the patient's teeth, including detaching the palatal expander for one or more attachments on the patient's teeth.



FIG. 9 illustrates an example of a tool that may be used to remove a palatal expander, including a proximal grip region and a distal palatal expander engaging region.



FIG. 10A illustrates another example of a removal tool configured to apply a pulling force and remove a palatal expander from a patient's dental arch. In FIG. 10A, the removal tool is configured as a ring. The ring can be used on either hand (e.g., may be reversible).



FIG. 10B illustrates an enlarged view of the tool of FIG. 10A.



FIG. 10C illustrates operation of the tool of FIG. 10A-10B. The tool includes a flat region 1009 on the outer surface that may be used as a finger rest and to assist in using the fulcrum region, e.g., hold the ring stable when applying a pulling force by twisting or rotating (as shown) to remove the palatal expander appliance, preventing the ring from rotating around the finger.



FIGS. 11A-11D illustrate another example of a tool for removal of a palatal expander by applying a pulling force. In FIG. 11A, the tool is shown in a front view. FIG. 11B shows a side view of the tool of 11A. FIG. 11C is an example of a method of using the tool of FIGS. 11A-11B to apply a pulling force to remove a palatal expander worn on a patient's upper arch. FIG. 11D shows another view of the tool being used to remove a palatal expander from a patient.



FIG. 12 illustrates another example of a tool for removal of a palatal expander by applying a pulling force. In FIG. 12, the tool includes a support arm and a pull arm that is actuated by a control on the tool (e.g., a squeeze handle in this example).



FIGS. 13A-13G illustrate examples of removal tools for applying a pulling force to remove a palatal expander. Each of these examples include a support (e.g., fulcrum) arm on the tool that may be braced against the palatal expander to aid in applying the pulling (removal) force.



FIG. 14A illustrates another example of a removal tool for applying force to remove a palatal expander as described herein.



FIG. 14B shows another example of a removal tool for applying force to remove a palatal expander as described herein.



FIG. 14C is another example of a removal tool for applying force to remove a palatal expander; in FIG. 14C, the tool may be used on either the patient's right or left sides.



FIGS. 15A-15C illustrate an example of a method of inserting a palatal expander 2100 in a patients teeth including, placing the device in the patient's mouth on the upper dental arch (FIG. 15A), and biting down on the palatal expander apparatus (FIGS. 15B and 15C) to seat the device and secure it over the teeth, including in some examples, onto the attachments.



FIGS. 16A-16C illustrate removal of an example palatal expander apparatus including a detachment region by inserting a fingernail into the detachment region (FIG. 16A), pulling buccally away from the teeth (FIG. 16B) to disengage from any attachments, and then pulling down (FIG. 16C) to remove the apparatus from the teeth.



FIGS. 17A and 17B illustrate operation of another variation of an example tool for removing a palatal expander, configured to apply force from the palatal region of the apparatus to remove the palatal expander from the patient's teeth. The tool may apply a force to cause a breach region of the palatal expander shell apparatus to break or bend along the breach region (e.g., in the palatal region of the palatal expander) to disengage the palatal expander shell apparatus from the patient's teeth.



FIGS. 18A and 18B illustrate operation of another variation of an example tool for removing a palatal expander, configured to apply force from the palatal region of the apparatus to remove the palatal expander from the patient's teeth. The tool may apply a force to cause a breach region of the palatal expander shell apparatus to break or bend along the breach region (e.g., in the palatal region of the palatal expander) to disengage the palatal expander shell apparatus from the patient's teeth.



FIGS. 19A-19B illustrate one example of a palatal expander system with locks for easy dislodging of the palatal expander from the teeth.



FIG. 20A illustrates a palatal expander with elastic hooking and dislodging for easy placement and release.



FIG. 20B Illustrates a palatal expander with an elastic lock engaged with the bracket.



FIG. 20C-20D illustrate another example of a lock for a palatal expander configured to releasably engage with an attachment on a patient's tooth.



FIG. 21 illustrates a palatal expander, where the top and bottom parts of attachment can have different stiffness and angle so retention force and removal force can be separately designed to reach desired functionality and removal features.



FIG. 22A illustrates a palatal expander having a ball and socket joint snap, where the attachment is the ball side and the expander is the socket side with flexible protrusions.



FIG. 22B illustrates a palatal expander having cylindrical shape attachments, where dim A side is the attachment with snap, and dim B is the expander side with the cylindrical slot.



FIGS. 22C and 22D illustrates a palatal expander having prongs for prolonged snap fit.



FIGS. 22E and 22F illustrates a palatal expander for snap-on fit.



FIG. 23 illustrates a retractable pen mechanism that can be used for a palatal expander to engage and dislodge with the teeth.



FIG. 24 illustrates a cross-sectional view and side view of a palatal expander engaged with the teeth, where threaded nuts and bolts are used to engage or dislodge the palatal expander.





DETAILED DESCRIPTION

The palatal expansion apparatuses (devices and systems, including palatal expanders) described herein are configured to expand a patient's palate and are typically configured to be removed and/or inserted by the patient or a patient's caregiver (e.g., parent, guardian, etc.). A series of expanders may be worn by a patient to expand the patient's palate over time.


Various properties and characteristics of the inventive palatal expanders are described herein both in general and with reference to specific examples. Any of these features and characteristics, including the arrangement of features, may be incorporated into a palatal expander. These palatal expanders, which may be interchangeably referred to as palatal expansion shell apparatuses, may be configured to apply force within the patient's mouth to expand the patient's maxilla. The patients may be any appropriate patient, and particularly (but not limited to) children from ages 7 to 9 years old, e.g., following eruption of the first permanent molars. These apparatuses may be used to expand the patient's palate between 4 and 12 mm or more.


In use, the series of palatal expanders may be applied and/or removed by the patient (or a caregiver, e.g., parent) and may be adapted for securely attaching to the patient's teeth with sufficient strength to move the patient's palate, while being removable without excessive force or difficulty (e.g., using a finger and/or tool to remove). The apparatus may attach over two, three or more off the patient's teeth on either side of the upper arch, e.g., attach to the last three teeth (e.g., attaching over and/or to the first permanent molar and first and second primary molars). In general, the apparatuses described herein create sufficient force to open the patient's suture, e.g., apply between 8 N and 120 N (or greater than 8 N, greater than 9 N, greater than 10 N, greater than 20 N, greater than 30 N, greater than 40 N, greater than 50 N, greater than 60 N, etc.) against either side of the upper palate and/or lingual side of the teeth, yet require substantially less force to remove.


In any of the apparatuses and methods described herein, the apparatus may be configured so that it may be both securely attached to the patient's teeth, either with or without connecting to attachments bonded to the patient's teeth, while still being readily removable by the patient and/or caregiver. Specifically, any of the palatal expanders described herein may include a breach region that is configured to preferentially and controllably bend or break when a removal (e.g., pulling) force is applied; the pulling force may cause the breach region of the palatal expander shell apparatus to break or bend along the breach region and to disengage the palatal expander shell apparatus from the first or second set of the patient's teeth.


Any of the palatal expanders described herein may include an attachment that may be locked onto the patient's teeth by engaging onto an attachment on the patient's teeth. In some variations, the palatal expander may have (e.g., on a lateral side, such as the buccal side of the palatal expander) a lock that engages with an attachment bonded to the patient's teeth, to prevent removal of the palatal expander until the lock is disengaged. In some variations, the lock may be disengaged by manually moving, bending, pulling, pushing, displacing, or otherwise operating a release control. The release control may be a latch, lever, switch, tab, arm, snap, etc. The lock and release control may mechanically engage with each other and/or with the attachment on the patient's tooth/teeth. Alternatively or additionally, the lock, release and/or attachment may magnetically engage with each other.


Any of the apparatuses described herein may be configured so that the upper, convex surface of the palatal region matches the patient's palate, e.g., including any grooves, ridges, troughs, etc. that are present in the patient's particular anatomy. The upper convex surface may match the patient's palate, but may be configured to be separated or offset from it, e.g., by 0.5 mm or more, particularly at the more central region (e.g., opposite from the palatal midline suture). In some variations the apparatus may be offset from the patient's palate, and force may be applied primarily against the lingual sides of the teeth (e.g., molars); alternatively or additionally, the apparatus may be configured to apply force against the lateral side regions of the palate, above the molars; in this case, the upper convex surface of the palatal region may be configured to have a negative offset, e.g., may push against the palate, when worn.


The palatal expanders described herein may be formed of a single, monolithic material (e.g., by an additive, e.g., 3D printing, technique, etc.) or they may be formed in parts, e.g., by layering, thermosetting, etc. The apparatuses (e.g., devices, systems, etc.) may have a uniform or variable thickness. For example, the palatal region may be thinner in more anterior regions (e.g., the anterior half) compared to more posterior regions (e.g., the posterior half). Alternatively, the posterior half of the apparatus may be thinner than the anterior half. The posterior portion may be curved inward (e.g., toward the anterior region), or may include a cutout region in the posterior end.


The shape of the apparatus (e.g., the expander), and therefore the load applied by the apparatus when worn, may be controlled and selected during the fabrication process. It may be particularly advantageous to provide a digital planning process in which a digital model of the patients upper jaw (e.g., teeth, palate and gingiva), and in some cases the subject's lower jaw (e.g., teeth and/or gingiva) may be modified to plan the series of expanders that morph between the patient's initial anatomy to an expanded configuration in which the final expanded configuration is described.


The palatal expanders described herein may include a tooth engagement region for engaging at least a portion of the teeth in the patient's upper jaw, in particular the molars and/or premolars, and a palatal region extending between the tooth engaging region that is configured to be positioned adjacent and opposite from the patient's palate when the device is worn by the patient. For example, FIG. 1 and FIGS. 1A-1G show an example of a palatal expander 100, 150 that includes a pair of tooth engagement regions 103, 103′ on either side of the device, connected by a palatal region 105. The palatal expander may also include one or more attachment regions (e.g., attachment coupling regions) 107 that may couple with a pair of attachments (e.g., attachment connectors) bonded to the patient's teeth on either side of the device (on a buccal side of the patient's teeth; only one pair is visible in FIG. 1). Attachment connectors may also referred to herein as a connectors, pins, attachments, or the like, and may be secured to the teeth in a position that allows it to couple (e.g., removably couple) to the attachment region(s) on the expander. An attachment connector may be bonded (glued, etc.) to the teeth as part of an initial step prior to wearing the series of expanders. In FIG. 1, the bottom, concave surface 108 of the palatal region of the palatal expander is shown; the opposite surface is the top, convex surface. FIG. 1 also illustrates one example of a breach region 167 of a palatal expander, configured as a line extending anteriorly to posteriorly through the occlusal side of one of the tooth engagement region 103 in this example. Although in FIG. 1 the breach region extends in a line, it may have any appropriate thickness and encompasses a region having less material strength than the adjacent, surrounding regions. The lower strength may be achieved by using a different material and/or a different thickness and/or inclusion of gaps or openings. Other examples of breach regions are provided below.


The tooth engagement regions may be formed of the same material(s) as the palatal region, or they may include different materials. In some variations, the breach region may be formed at the junction between the palatal region and the occlusal region, between the occlusal region and the buccal region, etc. The thickness of the tooth engagement regions and the palatal regions may be different or the same. In particular, the palatal region may be thicker than the tooth engagement region. The thickness of the tooth engagement region may be thicker along the lateral (e.g., buccal and/or lingual) sides of the device and thinner (or removed from) across all or a portion of the top of the tooth engagement region. The palatal region may have a non-uniform thickness. For example, the palatal expander may be thicker near the midline of the device. Any of the palatal expanders may include ribs or other supports (e.g., extending transversely between the tooth engagement regions and/or perpendicular to the tooth engagement regions). These ribs may be formed of the same material as the rest of the palatal region (e.g., but be thicker and/or shaped to have a cylindrical cross-sectional profile).


The inner (cavity) portion of the tooth engagement region is typically configured to conform to the outer contour of the patient's teeth, and to rest directly against the teeth and/or a portion of the gingiva (or to avoid the gingiva) to apply force thereto. The upper surface of the palatal region which is positioned adjacent to the palate when worn by the patient may be contoured to match the actual or predicted shape of the patient's palate. As mentioned above, all or a significant portion of the palatal region may be separated or spaced from the patient's palate when worn, which may enhance comfort and minimize disruption of speech.


In some variations, a portion of the palatal region extending between the opposite tooth engagement regions on either side of the device (e.g., a portion of the palatal region extending approximately z % of the distance between the tooth engagement regions, where z is greater than about 30%, 40%, 50%, 60%, 70%, 80%, 90%, etc.) may be flat or straight, rather than curved, so that it does not necessarily follow the contour of the patient's mouth. This portion may be one or more transverse ribs, struts or supports, or it may be the flat sheet. Such a flat or straight portion may provide increase force. Alternatively or additionally, the palatal region (e.g., one or more ribs, the sheet, etc.) may be curved in an arc similar to the arc of the patient's palate, but may have a much larger radius of curvature (appearing as a shallower concavity) than the patient's palate.


Any of the palatal expanders described herein may include one or more attachment regions or sites (also referred to herein as attachment opening, attachment couplers, etc.) for coupling to an attachment connector on the patient's teeth. In particular, it may be helpful to use one or more (e.g., a pair) of attachment regions on each side of the device. Furthermore, the attachment sites may preferably be openings through the expander. An open structure (attachment site) on the orthodontic expander may interact with attachments (attachment connectors) located on teeth to improve the overall retention of the appliance and in some cases may be used to generate advantageous force features for teeth alignment, including limiting or preventing rolling of the teeth buccally as the palate is expanded. Such features may be helpful, in particular, when included as part of a directly fabricated (e.g., 3D printed) device for rapid (e.g., phase 1) palatal expansion. Further, although the attachment connector is typically bonded to one or more teeth and projects into a complimentary opening or cavity on the expander, this configuration may be revered in some or all of these; for example, the protruding attachment connector may be part of the expander which may insert into an opening/cavity bonded to the user's teeth. In some variations, a 3D printer that prints in multiple materials (including more elastic and/or lower strength materials) may be used directly print the apparatuses described herein, including the breach region(s) and/or locks.


Any appropriate attachment region may be used, and in particular any appropriate size and/or shape may be used. As mentioned, the attachment region may be an open structure on the appliance which may improve retention of the appliance over the attachments and possibly include force features for teeth alignment. For example the attachment region may comprise a round, oval, square, rectangular, triangular, etc. opening through the expander (e.g., at a lateral, e.g., buccal, side of the tooth regaining region of the expander. The attachment region may be keyed relative to the attachment connector; in general the attachment connector may be configured to mate with the attachment region in one or a particular orientation.


The exemplary palatal expander 150 in FIGS. 1A-1G is shown from different perspectives. This example may also include a breach region (not visible in FIGS. 1A-1G), to allow preferential breaking and/or bending. These or similar palatal expanders may include any of the features described herein, separately or collectively. In this example, the palatal expander is configured as a removable, e.g., patient-removable (with or without the use of a removing tool) that may be formed of any appropriate material, including, e.g., a biocompatible nylon material. A series of palatal expanders may be used and incrementally staged to expand a patient's palate. In particular, the methods and apparatuses described herein may be configured for treatment of children and young adults. The palatal expanders may be configured so that the transpalatal arch region 153 balances the load deflection for patient comfort. For example, transverse forces 463 may be distributed across three posterior teeth 466 on each side, as shown in FIG. 4A, and or on a lateral side of the palate. The occlusal surface 154 thickness may be optimized for structural integrity and patient comfort. The palatal expander apparatus may include a plurality of attachments (not visible in FIGS. 1A-1G). The attachments may be configured to allow easy appliance insertion and retention. As will be described in greater detail herein, the palatal expanders may also include one or more removal features to allow the patient to remove the apparatus once attached.


As mentioned above in the additional detail below, the forces applied by the apparatus to expand a patient's palate may be applied to the teeth (e.g., the lingual side of the D, E or 6 teeth) and/or the palate, and particularly the lateral side of the palate, above gingival line but below the midline, either uniformly along the anterior-to-posterior direction (typically symmetrically on either side of the midline) or at different regions along the anterior-to-posterior direction.


In any of the palatal expanders described herein, openings or holes formed through the palatal expander may be included. For example, in some variations the region of the palatal expander otherwise covering the occlusive surface of the patient's teeth may be removed. For example, allowing a more natural bite. In some variations, the anterior (front region) of the palatal region extending between the opposite sides of the upper arch (e.g., the opposite tooth-receiving portions of the apparatus) may be removed or curved inward, so as to avoid interfering with speech. Alternatively or additionally, the poster (e.g., back) end of the palatal expander may be removed or curved in, anteriorly, to minimize or reduce invoking a gag reflex. In any of these variations the thicknesses may also be adjusted in addition or alternatively. For example, the thickness in the posterior region (e.g., the back 10%, 20% 30%, etc.) of the palatal expander may be thinner than the more anterior regions.


The apparatuses described herein may be configured as a system including attachments and an attachment template for positioning the attachments on the teeth, a series of palatal expanders that progressive expand the patient's palate, and a passive holder (e.g., retainer) to be worn after the series has widened the palate. For example, FIG. 2A-2C illustrate these components of such a system. FIG. 2A shows an example of an attachment template 251; a plurality of attachments (not shown in FIG. 2A) may be attached to the patient's teeth at predetermined locations that may correspond to the locations of receiving sites on each of palatal expanders. FIG. 2B shows an example of a series of palatal expanders that get progressively broader (e.g., wider) to progressively expand the patient's palate. For example, the upper palatal expander 258 is narrower than the intermediate palatal expander 259 and a final palatal expander 260. FIG. 2C illustrate and example of a passive holder (e.g., retainer) 261 that may be worn after the series has completed expanding the patient's palate. In this example, the palatal expander retainer 261 is similar or identical to the last of the palatal expanders in the sequence, although it may have a different configuration.


Any of the examples described herein may be configured to include, for example: a detachment region (e.g., removal tab, slot, etc.), for example at the gingival edge gap and/or an extension to assist with appliance removal, a palatal expander identification marking (e.g., an expander identification number), etc.



FIG. 5 illustrates an enlarged view of attachments placed on the patient's teeth. FIG. 5 shows two attachments 551, 552, one on the E's (center of crown) molar and another on the 6's (Mesial Cusp) molar region. The attachments may be bonded to the teeth. In this example, four attachments are used, two on either sides. The attachments may engage with an attachment region on a palatal expander (see, e.g., attachment region 498 in FIGS. 4D-4G).


In the exemplary active palatal expanders illustrated in FIGS. 2B and 4B, the expanders may be configured for daily wear (e.g., 23-24 hours of wear). In these examples, the palatal expanders may be configured to provide a predetermined amount of total arch width activation per stage (e.g., approximately 0.15 mm, 0.20 mm, 0.25 mm, etc.) similar to screw activation expanders. Each expander of the series may include a breach region 267, 267′, 267″ extending in the anterior-to-posterior direction. As mentioned, different palatal expanders in the series may each include breach regions, but the location of these breach regions may be different or the same between different palatal expanders in the series. A holder or retainer (e.g., FIG. 2C) may be provided to the patient to be worn after completing the sequence. In some variations the holder, e.g., passive palatal expander, includes a breach region that is configured to flex or bend along the breach region to disengage the palatal expander shell apparatus from the patient's teeth; alternatively in some variations the holder does not include a breach region. In general, each of the palatal expanders in a series may be worn for up to two weeks; similarly a holder may be worn for up to two weeks holding device.



FIGS. 4C-4G illustrate examples of palatal expander apparatuses that include one or more breach regions. In FIG. 4C, the palatal expander includes a breach region 467 extending in an anterior (e.g., front of the patient's mouth when worn) to a posterior (e.g., back of the patient's mouth when worn), direction. The breach region may be visible or not visible in the apparatus. In some variations, the breach region is a continuous, or mostly (e.g., >60%, >65>, >70%, >75%, >80%, >85%, >90%, etc.) continuous line of lower strength, or a perforated line comprising discontinuous region of lower strength pockets extending long at least a portion of the length of the apparatus, such as along the anterior-to-posterior length through one of a tooth engagement regions (e.g., along one or more of an occlusal side, a buccal side or a lingual side of the tooth engagement region, or between them), and/or through a palatal region (or between the palatal region and a tooth engagement region). In FIG. 4C, the breach region extends down the midline of the apparatus, though the midline of the palatal region.


In general, the methods and apparatuses described herein may avoid the application of removal force on the attachment that is bonded to the patient's teeth, as this force may break and/or remove the attachment from the patient's teeth and may also interfere with the removal effort. Typically, the appliance itself is fairly rigid and resistant to bending, thus, bending may preferentially occur at the breach region(s). A breach region (e.g., bending region) may be formed in an appliance in a size and location so that when applying a force (e.g., pulling force), the appliance, or a region or the appliance typically over the attachments, will deflect in a pre-designed direction to des-engage the appliance from the attachments.


In addition to bending or breaking at a predetermined location and/or with a predetermined force profile, the breach regions described herein may be configured to create a spring effect to help with clasping the teeth when the appliance is mounted on the teeth. For removal, a controlled breakage may provide one way of making the removal easier. Controlled breakage of the breach region may be particularly useful for appliances that are disposable, e.g., single-use or “one time wear” appliances. Under a pre-determined force, the appliance will break in a way that will be easy to remove without additional force being necessary. Any of these apparatuses may be configured so that the broken edge(s) are atraumatic (e.g., not sharp) and/or configured to cleanly break without forming sharp edges, and/or avoiding small fragments. In some variations, a layer of film or coating on the appliance to avoid the spread of debris (or fragments or particles) in the mouth. The breach region may be configured as a breakage feature that permits the apparatus to break under a relatively low force that is applied in a specific location and/or orientation (e.g., a pulling force applied from the buccal side, etc.). The breach region may be configured as a breakage feature and may be combined with a folding feature so that at a lower force threshold the appliance may bend at the breach region, but a higher force may cause the appliance to controllably bend. In some variations the one or more breach regions may include a portion that breaks and a portion that bends, preventing small pieces from being released into the mouth. For example, approximately half of the breach region may break, while the remainder merely bends, releasing the device as a single (albeit broken) piece.


The breach region 467 shown in FIG. 4C is shown as a dashed line that extends along the entire anterior-to-posterior length of the palatal expander. The poster region of the palatal expander 457 includes cut-out region 455 that may enhance patient comfort when wearing the apparatus, providing additional space for the tongue in the posterior of the mouth (e.g., enhancing comfort, preventing problems with speech, or the like). The breach region in this example may be a region that is perforated, e.g., by including sections or pockets that have a weaker material strength than the adjacent region on either side of the breach region because, for example, they include voids (e.g., regions of lower density, including, in some variations air pockets). The breach region may be formed of the same material as the adjacent regions. The breach region may be formed to include a structural feature, such as a thinning, cut-out region, channel, etc. In some variations, the breach region is formed of a different material than the region(s) adjacent to the breach region. For example, the breach region may be formed of a material that is more flexible and/or less dense than the adjacent region(s).



FIG. 4D illustrates another example of a breach region 467′ in a palatal expander. In FIG. 4D, the breach region 467′ is formed as a channel through an occlusal side 471 of a tooth engagement region of a palatal expander. This channel may be a region having a local thinning of the profile of the palatal expander. The thinner region may be formed abruptly (e.g., having step, including a rounded-step) profile to form the channel shown. The breach region may therefore act as a hinge region along which the palatal expander may breach or bend when a pulling force 480 is applied to the palatal expander, as will be described in greater detail below. In FIG. 4D, the breach region extends along the full anterior-to-posterior length; however in other variations, the breach region may extend only partially across the palatal expander.



FIG. 4E illustrates another example of a palatal expander showing a breach region 467″ extending in an anterior-to-posterior direction in the occlusal portion 497 of a first tooth engagement region. In this example, the breach region does not extend in a straight line, but extends in a sinusoidal, e.g., zig-zag pattern. A pulling force may be applied to a bottom edge of the buccal side of the first tooth engagement region 480 (and/or to a detachment region, as will be illustrated below) to detach the palatal expander from the teeth, including by detaching one or more attachment regions 498 on the palatal expander from an attachment bonded to the patient's teeth. The breach region in this example may be a frangible region that breaks when a pulling force of sufficient strength is applied.



FIG. 4F shows another example of a palatal expander 457 having a breach region 467′″ that may bend or break when an appropriate pulling force 480″ is applied. In FIG. 4F, the breach region is located on the buccal side 499 of the first tooth engagement region, extending in an anterior-to-posterior direction. The apparatus also includes a pair of attachment regions 498, configured to hold an attachment bonded to a patient's teeth. An attachment region 498 in this example may be a cavity that is formed on the buccal side of the tooth engagement region that can hold the attachment when the apparatus is worn on the teeth. The breach region extends above the attachment region(s). In this example, a pulling force 480″ applied to pull the buccal side (e.g., from the bottom edge of the buccal side or from a detachment region on the buccal side) laterally outward and/or downward (e.g., towards the lower jaw when the apparatus is worn on the upper arch) may allow the breach region to bend or flex, hinge-like, so that at least a portion of the buccal side disengages from the teeth, including any attachments, and allows the apparatus to be removed from the teeth, despite the force being applied by the palatal region laterally to expand the palate, which may otherwise lock the apparatus in position.


Another example of a palatal expander 457 with a breach region 467″″ is shown in FIG. 4G. The breach region 467′″ may bend or break when an appropriate pulling force 480″ is applied. In FIG. 4F, the breach region is located at the transition between the occlusal side 497 and the buccal side 499 of the first tooth engagement region, extending in an anterior-to-posterior direction. In this example, a pulling force 480′″ applied to pull the buccal side (e.g., from the bottom edge of the buccal side or from a detachment region on the buccal side) laterally outward and/or downward (e.g., towards the lower jaw when the apparatus is worn on the upper arch) may allow the breach region to bend or flex, hinge-like, so that the buccal side disengages from the teeth, including any attachments, and allows the apparatus to be removed from the teeth.



FIG. 3A illustrates an exemplary method for providing a treatment plan for a patient to expand the patient's palate. The first step illustrated may include identifying a patient in need of palatal expansion 351. The patient may be a child, teenager, young adult or adult. Once the patient is identified, the dental arch, including the palate, teeth, and at least a portion of the gingiva may optionally be digitally scanned 353. Alternatively, the upper dental arch may be modeled manually (e.g., using a dental impression). When scanning is used, any appropriate scanner may be used, including, but not limited to an intraoral scanner that can directly scan the teeth, gingiva and palate.


Once the upper arch has been modeled (e.g., scanned, manually modeled, etc.), the palatal expanders may be designed 355. Typically, these designs may be configured to include any of the features described herein, and in particular, the breach region 356. The design process may include planning the final position of the teeth and/or palate, and designing intermediate palatal expanders to achieve the final configuration. The design process may include providing the location of the attachments on the teeth in order to provide both secure attachment as well as to move the teeth, and/or prevent substantial tipping of the teeth during expansion. The design process may be digitally performed using the digital model of the patient's upper arch. The design process may be automated or semi-automated.


In planning the treatment plan, including adding the breach region(s), the apparatus may be configured to include a breach region 356, as discussed above. The breach region may be positioned in different regions of the apparatus, so as to avoid interfering with the forces being applied to expand the subject's palate and/or move the subject's teeth. For example in some apparatuses in the series, the breach region may be located on a first (e.g., left) tooth engagement region, while in some palatal expanders, the breach region may be positioned on the second (e.g., right) tooth engagement region and/or on the palatal region, and/or between the palatal region and a tooth engagement region. The palatal expanders may or alternatively be configured to include one or more detachment regions; during the design process, the location and size of a detachment regions (including a fulcrum portion, if included) may be included. Each patient may need a custom design of the appliance features, such as the breach region and/or detachment regions; the shape, size, and/or location of attachments on the teeth may be configured to best cope with the patient specific dentition and the features, and thus the detachment features such as the breach region, attachment regions, detachment regions and/or base (fulcrum) regions may be adapted accordingly.


Once designed, the series of palatal expanders may be fabricated 357, and the template may be manufactured at the same time. Any appropriate fabrication technique may be used. For example, the method may include 3D printing, and/or lamination. Examples of these methods are provided below. The manufactured palatal expanders may then be sent 359 to the patient and/or to the dental professional who may instruct the patient in applying and removing the palatal expanders. The treatment may then be optionally monitored 361 to track the palatal expansion, including taking periodic (e.g., daily, weekly, bi-weekly, etc.) scans of all or a portion of the upper arch (palate, teeth, gingiva, etc.). The treatment may be adjusted to increase or decrease the rate of expansion, e.g., by redesigning the series of palatal expander and/or refabricating the palatal expanders. Once the sequence of palatal expanders has been worn, the patient may then wear the holder (e.g., retainer) to prevent relapse of the palate; the holder may be worn until the palatal suture has healed. The holder may be provided to the patient with the series of palatal expanders, or it may be (optionally) sent during the treatment or immediately after treatment 363.



FIG. 3B illustrates an example method 300B for forming a palatal expander. The method 300B is shown in conjunction with other structures discussed herein, including but not limited to the structures described in the context of other figures. In some implementations, the method 300B is executed by a computing device having memory and one or more processors. The memory may store computer-program instructions. The one or more processors may execute the computer program instructions to perform one or more operations of the method 300B.


At an operation 370, a virtual representation of a palatal surface may be gathered. The palatal surface may have a convex surface geometry with a size and a shape that mates with a palate of a patient. In some implementations, the size, shape, and/or other properties of the palatal surface are formed using impressions of a patient's palate, scans of a patient's palate, and/or incremental estimations of a patient's palate according to an orthodontic treatment plan. In various implementations, the size, shape, and/or other properties of the palatal surface are formed using visualization tools that display a 3D virtual rendering of the palatal surface as part of a 3D model of a palatal expander.


At an operation 372, a virtual representation of a lingual surface opposite to the palatal surface may be gathered. A “lingual surface” of a palatal expander, as used herein, may refer to a portion of a palatal expander that faces a patient's tongue when inserted into the patient's palate. The lingual surface of a palatal expander need not correspond to the lingual surface of teeth. The lingual surface of the palatal expander may have a concave surface geometry and may provide an air gap between the palatal expander and a patient's tongue. In various implementations, size, shape, thickness, contours, etc. of the lingual surface are formed using impressions of a patient's mouth and/or teeth, scans of a patient's mouth and/or teeth, and/or incremental estimations of a patient's mouth and/or teeth according to an orthodontic treatment plan. In various implementations, the size, shape, and/or other properties of the lingual surface are formed using visualization tools that display a 3D virtual rendering of the lingual surface as part of a 3D model of a palatal expander.


At an operation 374, a virtual representation of a plurality of sidewalls surrounding at least a portion of the palatal surface and the lingual surface may be gathered. At an operation 376, a virtual representation of a body may be gathered. The virtual representations of the sidewalls and/or the body may be formed using, again, impressions of a patient's mouth and/or teeth, scans of a patient's mouth and/or teeth, and/or incremental estimations of a patient's mouth and/or teeth according to an orthodontic treatment plan. The virtual representations of the sidewalls and/or the body may be formed using visualization tools that display a 3D virtual rendering of these structures as part of a 3D model of a palatal expander. In some implementations, the virtual representations of the sidewalls and/or the body may provide virtual representations of force(s) that result when the resulting palatal expander has been inserted into a patient's mouth. These forces may be modeled by force system(s) and/or other virtual systems described herein.


At an operation 378, a virtual representation of one or more breach regions may be gathered. In various implementations, breach regions may be identified on the virtual representation of the body of the palatal expander. As examples, a designer and/or an automated agent may identify specific regions of the body that can absorb removal forces and cause the palatal expander to deform when those removal forces are applied. A designer and/or automated agent may identify one or more fulcra to direct removal forces to various breach regions as well. The designer and/or automated agent may identify and/or gather materials, shape(s), etc. that form the basis of breach regions. In some implementations, the breach region(s) are modeled on the 3D virtual representation of the body of the palatal expander.


At an operation 380, instructions to manufacture the palatal expander using the virtual representation of a palatal surface may be provided. In various implementations, a computer-aided design (CAD) file or model is stored, streamed, etc. on a system that can manufacture the palatal expander. At an operation 382, the palatal expander may be formed by three-dimensional (3D) printing using the instructions to manufacture the palatal expander. More specifically, a 3D printer may use the CAD file or model to create various features of a palatal expander that can be removed from a patient's mouth.


As mentioned above, any of these methods and apparatuses may include palatal expanders with one or more removal/release features including a breach region. FIGS. 6A-6B illustrate an example of a palatal expander having one or more removal/release features that permit a patient to manually detach and disengage the palatal expander from the teeth once it has been applied. In FIG. 6A, the palatal expander includes both a detachment region (configured as a removal tab 751) and a breach region 767. The detachment region in this example is a tab or protrusion extending along or near the bottom (e.g., bottom side) of the lateral (buccal) outer side of the palatal expander. The detachment region 751 may include a slot or opening into which the patient's fingernail and/or a removal tool may be inserted, to allow the buccal side of the palatal expander to be separated and pulled away from the teeth, so that any attachment(s) on the palatal expander may be disengaged. The device may then be pulled down off of the teeth.


In FIG. 6A, the design also includes a pair (though one or more may be used) of slits, slots, cut-out regions, etc. 753, 753′ extending from the bottom edge of the buccal side up towards the breach region 767. These slots, slits, etc. may provide a region that can be separated from the palatal expander when a pulling force is applied to bend or break the breach region of the palatal expander. This may allow detachment of the attachment(s) from the patient's teeth so that it can be removed. The one or more slit(s) 753, 753′ on an outside of the attachment cavities of the device may allow a portion of the palatal expander (e.g., a portion of the buccal side) to be removed or bent away from the teeth, begin the disengagement process.


In FIG. 6B a profile of the region between the slits 753, 753′ is shown, showing a slight gap 780 between the gingiva and the bottom edge of the buccal side of the apparatus. This gap may be small enough to minimize food trapping by the apparatus, but large enough to prevent irritation of the gingiva and/or to allow it to act as a detachment site for applying a pulling force to remove the apparatus. The profile of FIG. 6B shows the attachment 752 on the patient's tooth within the attachment region (e.g., cavity) 798 on the palatal expander shell apparatus.


The design (size, shape, prominence and location) of the attachments on the teeth and/or the apparatus may be configured to assist with insertion and still be highly retentive. Similarly, the detachment (release) features may be configured to allow retention until release is manually triggered by the patient.


In general, any of the shell apparatuses described herein may include a breach region that is configured as a hinge region. The breach region may be located on the apparatus before the occlusal surface but above the attachment regions (if present) coupling to one or more tooth attachment(s). The breach region may break of bend to disengage the apparatus from the teeth. For example, a hinge design with a finger access may be included to allow disengaging the device from the retention attachment for easier removal.


In some variations, the release mechanism may include a lock or other region that may require activation (e.g., by deforming, squeezing, etc.) before it can be released. For example, the palatal expander may be squeezed or deformed (e.g., by biting down on the palatal expander first) before pulling at a release on the palatal expander (e.g., using a fingernail) to release the aligner when also releasing the biting down onto the palatal expander. Thus, another part of the device may be modified or deformed begin disengaging the device from the retention attachment.



FIGS. 7A and 7B illustrate examples of detachment regions that may be used with a tool and/or a user or patient's fingernail. In FIG. 7A two detachment regions 851, 851′ are shown on the buccal side of one of the tooth engagement region of an apparatus to be worn on the teeth. In FIG. 7A, the apparatus also includes a pair of engagement regions 898, 898′ that are configured to engage with attachments mounted on the patient's teeth. In FIG. 7A, the detachment regions are configured as upward-facing (e.g., facing away from the occlusal surface of the patient's teeth when worn) pockets or tabs. A protruding region on the apparatus that is positioned downward (e.g., towards the outer occlusal surface of the palatal expander when worn) may act as a base or fulcrum for a removal tool that may engage with one or both of these detachment regions, as will be described in greater detail below. In FIG. 7A, the base or fulcrum region may be the outer surface of the attachment region, or a region that is offset from the attachment region downward, towards the occlusal side of the apparatus.


In FIG. 7B, the bottom edge of the buccal side of the apparatus is configured as a detachment region forming an upward-facing pocket that can engage with a detachment/removal tool (and/or a fingernail). Thus, any of the apparatuses described herein may include a release (e.g., detachment region) that is formed at least in part by a lip or ledge forming a finger gap that can be manipulated by a patient's finger (e.g., fingernail). In some variation, such as shown in FIG. 7B, the gap may be formed as an outwardly extending buccal edge of the apparatus. In FIG. 6B the gap 780 or separation between the palatal expander and the gingiva may be along all or a portion of the bottom of the palatal expander and may be sized to permit the patient's finger/fingernail or a detachment (e.g., removal) tool to engage and pull the palatal expander away from the palate. The palatal expander may include an extension 759 at the bottom edge of the buccal side of the palatal expander. The extension may be specifically designed to leave a gap between the palatal expander and the gingiva, e.g., up to the gingival line 761. The extension of the buccal section below the gingival line by the extension, as well as the separation between the gingiva and the palatal expander may provide for better removal.



FIGS. 7C-7F illustrate another example of a palatal expander 780 having one or more detachment regions 788, 788′ that may be used with a tool and/or a user or patient's fingernail. In FIG. 7C two detachment regions are shown on the buccal side of the apparatus to be worn on the teeth. The apparatus may also include one or more (including one or more pairs) of engagement regions that may be configured to engage with attachments mounted on the patient's teeth. In FIG. 7C the detachment regions are configured as handle regions that are offset from the bottom (gingival) edge of the palatal expander. As described in the profile shown in FIG. 6B the handle or detachment region may be offset (in a direction normal to the buccal side of the teeth) from the cavity retaining the attachment when the device is worn by the patient. The offset in this outward direction may provide a reasonable angle for disengaging the attachment from the palatal expander.



FIGS. 7D and 7F show examples of the underside (bottom) and upper side (top) views of the handle portion, also referred to herein as a detachment region. The handle portion (e.g., handle, handle feature, detachment region, etc.) may be a small tab on the palatal expander designed to ease the removal process for parents/patients. This feature may also be configured to reduce unwanted shear forces applied to the retention attachments during device removal by providing a place to push with a finger or thumb to begin a rotational movement needed to disengage the device from the retention attachment system (attachments not shown). For example, FIG. 7E the user (patient, caregiver, etc.) may apply force against the top surface of the handle/detachment region and a twisting moment is generated at the handle/detachment region, as shown by the arrow in FIG. 7E, resulting in separating the palatal expander from the attachment and therefore from the patient's teeth. The detachment feature (e.g., handle) shown in FIGS. 7C-7F is longer than variations illustrated above, extending from one end of the molars/premolars to the other along a lateral length of the teeth in this region. The length and extent (protrusion) of the handle regions shown may be customized to the length of the use's teeth and/or the size of their oral cavity. In general, the handle region in this example extends outwards from the buccal side by between 0.5 and 10 mm (e.g., between about 0.5 and 5 mm, between about 0.5 and 4 mm, etc.). The length of the handle/detachment feature may depend on the spacing between, e.g., the patient's molars. Thus, this feature (the detachment feature and component parts) may be customized for each patient. It typically spans the distance between the retention attachments and can be located on either one or both sides of the palatal expander. A handle (e.g., detachment feature) may also eliminate the need to have an ideal size/strong fingernail or a separate tool to easily remove the palatal expander. These handle/detachment features may also be customized, e.g., hiding based on the space in the user's oral cavity.


In general, the handles/detachment features may be configured so that it/they do/does not protrude more than a short (e.g., 1-3 mm, e.g., 2-3 mm, 1-2 mm, etc.) distance beyond the distance offset from the buccal aspect of the teeth in the direction of the gums.


In FIG. 6B, the minimum gap at the soft palate (e.g., the mid-line region) may preferably be ˜0.5 mm (e.g., between 0.01 mm and 1 mm, between 0.1 mm and 0.75 mm, etc.) to prevent any touch. Larger gaps may cause food entrapment. The gap between the palatal surface of a trans-palatal segment and the palate may be controllable across the palate. Extension of the buccal section below the gingival line; as mentioned above, to provide enough mechanical advantage (or moment) for ease of removal, the device trim line may be extended 1-3 mm lower than gingiva line. A gap of 0.25-1 mm between the extension and gingival may be provided to facilitate hooking of patient/parent's finger/nail for removal, as shown in FIG. 6B.



FIG. 8 illustrates one example of a removal tool 844 and removal of a palatal expander 857 worn on a patient's upper arch. In FIG. 8 the tool includes a hook and an elongate arm. A portion of the tool may rest against a fulcrum region (e.g., base region) to allow the tool leverage to apply a pulling force 853 to detach the apparatus from the patient. This pulling force may cause a breach region (not visible in FIG. 8) to bend or break. FIGS. 9-14 illustrate alternative examples of detachment tools (removal tools) that may be used.


Devices for removing a dental apparatus, and particularly a palatal expander, must have sufficient stiffness and leverage to apply the desired pulling force in an easy manner and without harming the patient. For example, in some apparatuses, there is a need to apply a significant force on the arch and palate during normal wear of the apparatus; this force may be greater than about 50 Newtons (N). As a result, the removal force (pulling force) may be considerable and the removal of the appliance may otherwise be difficult. As discussed above, the apparatuses described herein may address these issues, for example, by making the appliance easier to remove by including one or more breach regions enhancing bending and controlled breakage. The removal tools described herein may also address this need.


Any of the apparatuses described herein may be configured to interface with one or more customized tools or human finger. Optionally the interface between the removal tool and the appliance may create a force system that will direct all the force to bending in the designated direction of the breach region, thus enabling the removal of the appliance with minimal force.


In FIGS. 9-14C, the removal tools (also referred to as disengagement tools) may include a hook region that may be inserted into a pocket, tab, latch, etc. of a detachment region, and/or may be inserted between the teeth and the appliance. When the force is applied by the tool, the pulling force may be oriented to bend and/or break the breach region and disengage the attachment from the appliance (e.g., palatal expander) with minimal effort.


For example, FIG. 9 shows an example of a removal tool 1504. This example of a removal tool may be a metal (e.g., stainless steel) and may be shaped for easy access into the disengagement region (e.g., gap) of the palatal expander. As shown in FIG. 9, one end 1507 may be configured to enter the gap and apply the pulling force. The apparatus may also include a gripping region 1509 to allow easy control of the tool. In general, the detachment region (or removal grip, etc.) may be configured for use with a tool such as the removal tool shown in FIG. 9.



FIGS. 10A-10C illustrate another example of a removal tool, configured as a ring 1003 having a hook 1005 that may engage with a detachment region 1066 of an apparatus such as a palatal expander. In this variation, the detachment or removal tool may be worn on a user's finger 1011. The tool may also include an outer region 1009 configured to stabilize the ring to prevent it from rotating around the user's finger when applying force. In FIGS. 10B-10C, the stabilizing outer region 1009 is configured as a flat or concave region on the outer ring surface that can be held by another finger or against an adjacent finger. A region of the tool may also be configured to act as a fulcrum 1013 against which force can be applied (against the appliance, e.g., palatal expander) when operating the tool to remove the appliance. This fulcrum region may be protrusion, extension or base. FIG. 10C illustrates operation of the tool to apply a pulling force on an appliance to remove it from a patient's teeth.



FIGS. 11A-11D illustrate another example of a removal tool (e.g., detachment tool). The detachment tool may include a curvature 1107 of the elongate arm (handle) region to avoid contact with the patient's face when operating the tool. The distal end of the tool is hooked or curved to engage with a detachment region (including a pocket and/or the bottom edge of the buccal side of the appliance). In this example, the hooked distal end region 1103 lies in a plane that is at an angle to the plane of the curvature 1107. In FIGS. 11A-11D, the angle is approximately 90 degrees, but may be +/−60 degrees from this angle (e.g., an angle of between 30 degrees and 150 degrees). FIGS. 11C-11D illustrates the operation of the apparatus to apply a pulling force on an appliance worn in the mouth. In FIG. 11C, the distal end also rests in part on a fulcrum region of the appliance to apply the pulling force so that the force is laterally outward and in the downward direction (e.g., including both a laterally outward and downward vector component). Applying the pulling force may bend or break a breach region on the appliance, as described above.


A removal tool may be configured to be actuated by a control. For example, FIG. 12 illustrates a conceptual model of a removal tool (e.g., disengagement tool) that includes a control for applying the pulling force. In FIG. 12, the appliance includes a hooked distal end portion 1205. The hooked distal end may engage with a detachment region (e.g., upward-facing pocket) 1266 on the appliance. The hooked distal end is at the end of an elongate support arm 1206. The tool of FIG. 12 also includes a second support arm 1207 that acts as a brace or lever arm against a fulcrum region 1213 on the appliance. In this example the first elongate support arm 1206 and hook 1215 are coupled to a control (shown as a squeeze handle) 1219 on the tool; when activated, the control causes the hook to pull with a laterally outward and downward pulling force (pushing against the fulcrum region) to disengage attachments and/or bend or break a breach region on the appliance.



FIGS. 13A-13G illustrate other examples and variations of a removal tool (e.g., detachment tool). Each of these examples includes a handle portion 1318 that may be held by the user, and a distal end with an engagement (hook) region 1305 that engages with an appliance, e.g., at an engagement region of the appliance. Each of these apparatuses includes a hook region with a fulcrum region 1311 for easy attachment disengagement. The variations shown in FIGS. 13A-13G have different spacing between the hook and fulcrum regions and some have different handle configurations. FIG. 14A shows another example of a removal tool having a hook 1405 and fulcrum region 1411 and handle portion 1418.



FIGS. 14A and 14C illustrate two additional removal tools (e.g., detachment tools) that may be operated as described herein. For example, in FIG. 14A the detachment tool may be inserted so that it is on the patient's left side, and may be twisted 1453 by the user in a clockwise direction (shown by arrows 1419 in FIG. 14B). When twisted in this manner, the hook end portion 1455 engages with a disengagement member and/or under the gingival ledge formed as part of the palatal expander. The end of the device opposite from the hook 1455 is a cantilever region 1457 that may push against the palatal expander at a region that is on an opposite side of the attachment mating zone. The exemplary tool shown in FIG. 14C may be used in patient's in either orientation without disturbing the patient. For example, in FIG. 14C the tool shown has two hook end portions 1455, 1455′, allowing the device to be inserted into and use on either the patient's left side or right side to disengage a palatal expander.


In use, any of the apparatuses described herein may be inserted by the patient, and/or by a dental professional. For example, a patient may be provided with instructions for inserting a palatal expander including first brushing and flossing the teeth. The patient may also confirm (e.g., by reading the markings on the palatal expander) that it is the correct device. The palatal expander may then be cleaned, e.g., with a soft bristle toothbrush, water and a small amount of toothpaste) and rinsed (e.g., with cold tap water). As shown in FIG. 15A, the device 2100 may then be inserted into the mouth, and, as shown in FIGS. 15B and 15C, the palatal expander may be fully engaged on one side of expander first, then applied over the teeth of the other side. The patient may then bite down to fully seat the device.


Similarly, the patient (or a patient's caregiver, parent, etc.) may remove the device, as shown in FIGS. 16A-16C. To remove the device, the patient (or caregiver) may insert a fingernail 2203 or a removal tool inside of a detachment region. The detachment region may be on a buccal side of the apparatus and/or it may be a gap at the bottom edge of the buccal side of the apparatus. A pulling force may then be applied to pull laterally outward and downward (e.g., towards the lower jaw) to disengage the appliance (e.g., palatal expander) 2200 from one or more attachments 2205 on at least one side, as shown in FIG. 16B. As described above, this may be achieved by bending or breaking the appliance along one or more breach regions. The appliance may then be pulled down and off of the teeth, as shown in FIG. 16C. Once removed, the palatal expander may be cleaned and/or stored or discarded, e.g., when moving to the next stage of treatment.



FIGS. 17A-17B and 18A-18B illustrate another example of a detachment tool; the tools shown in FIGS. 17A-17B and 18A-18B are configured to remove the apparatus by applying force in a laterally inward direction to the palatal region of a palatal expander appliance. For example, in FIG. 17A, the detachment tool (e.g., removal tool) is shown prior to engaging with detachment regions on the outward-facing palatal region of a palatal expander. In FIG. 17A, the tool includes handles 1706, 1706′ that are compressed (to an arm distance of da between each other), which also shortens the distance, dh, between the air of engagement regions (e.g., hooks) 1705, 1705′ at the distal end of the device.


Once compressed, the engagement regions of the tool may be inserted securely into a pair of detachment regions on the palatal expander 1709. The handles may then be pulled away from each other (or released so that a bias, such as a spring, may separate them), so that the engagement regions can engage within the detachment regions of the appliance, as shown in FIG. 17B. Once engaged, the tool arms from which the engagement regions extend to the handles may allow the application of force to apply a laterally inward force to compress the palatal region. The force, F, applied may include vertical and horizontal components, depending on the coupling between the appliance and the tool. For example the applied force, F, may include a component force F2 that exerts a moment around occlusal area while a second component force, F1, may pull down the device (e.g., towards the opposite jaw). The force between the left side of hook and the slot may be distributed (as opposed to concentrated at one point). The angle of slot can be optimized to reach an optimal removal process.


In some variations, the tool may engage securely with the appliance, so that the handles can again be brought closer together, opposing the laterally outward force applied by the appliance, and allowing it to compress; if a breach region is present (e.g., between the attachment sites) on the appliance, the appliance may bend or break at the breach region, making it easier to remove the apparatus. FIGS. 18A and 18B illustrate an example having this configuration.


In FIG. 18A, the engagement regions on the distal ends of the apparatus include hooks that are configured to be horizontal and/or inward curving, so a compressive force may be exerted to the palatal expander. By applying an amount of compressive (laterally inward) force on the appliance, e.g., on the palatal region of the appliance, the appliance may cause the apparatus to disengage from the teeth. The compressive force Fc typically causes the device to bend or break (e.g., at a breach region) while remaining engaged with the appliance, allowing the appliance to be released from the patient's teeth. The direction of force exertion can be reversed as shown in FIG. 18B, by allowing the arms to bend or twist relative to each other so that they extend from a hinge region 1809 in the same side of a mirror axis through the tool as they approached the hinge region.


In FIG. 18A, the distal end engagement regions may attach to the inside (lingual) side of the appliance (or in some cases the occlusal side or buccal side) to apply a laterally inward force from either sides of the appliance. For example, in FIG. 18A, the distal engagement ends 1805, 1805′ engage with the palatal region of the device and secure to it so that they handles can be pulled together to apply a compressive force (laterally inward). This compressive force may therefore bend or break a breach region, aiding in removal of the apparatus. In the variation shown in FIG. 18B, pulling the two handles apart (to increase the distance between them, as shown by arrows 1840, 1841) applies a compressive force to the appliance, and therefore bending or breaking a breach region to release the appliance from the patient's teeth.


Any of the variations the apparatuses described herein may be configured so that the palatal expander is locked onto the patients upper arch when worn, and may be unlocked to facilitate removal from the teeth. For example, the apparatuses described herein may include a lock which may include a release control (e.g., latch, lever, switch, tab, arm, snap, etc.) that engage with a stay to secure the palatal expander to the teeth until the lock is release, e.g., by operating the release control to disengage the lock from the stay. In some variations the lock and/or release control portion of the lock is on or integrated with the palatal expander. For example, the release control may be a latch, bar, pin, tab, snap, arm, switch, lever, etc., that is part of the palatal expander and engages a stay that is formed on and/or from an attachment bonded (or to be bonded) to the patient's teeth. Alternatively or additionally, the release control is part of the attachment bonded to the patient's teeth which engages a stay on the palatal expander. The stay may include a channel, hollow, check, cleat, hook, catch, clasp, hasp, etc., that engages with the release control to secure (or release) the lock.


The apparatuses described herein may generally be configured to provide sufficient retention under the palatal resistive force to prevent the palatal expander from moving, loosening, or accidental removal, but may be further configured to allow for removal with a physiologically-relevant amount of force, e.g., a force that can be easily applied by patient/caregiver, in order to release the device from the retention attachments. As mentioned, the retention attachments may be locking. Thus, the retention features described herein may provide high retention, e.g., when locked, but may have a relatively low force to disengage and/or dislodge the palatal expander from the retention attachments.


Additive manufacturing can make prefabricated attachments with complex geometries and accuracy. Also, complex logging features can be formed on palatal expanders as they are made via additive manufacturing. This disclosure introduces retention features that have the advantage of providing high retention, but requiring low force to dislodge from the retention attachments.


For example, described herein are attachments that may be configured as either the release control of the lock or as the stay to which the release control secures. For example, the attachment may be a stay configured to bond to the teeth and include a channel, hollow, cleat, hook or catch (generically, a stay) forming an opening and/or channel into which the release control on the palatal expander couples to releasably lock the palatal expander to the attachment and therefore to the patient's teeth.



FIGS. 19A-19B illustrate an example of a palatal expander apparatus (e.g., system) with a lock having sliding and locking features. As shown in FIG. 19A, the attachments 302, 304 are configured to include a stay, formed into a bracket; each attachment in this example includes a bracket forming a channel 301, 303 into which a release control (e.g., latch) on or of the palatal expander may engage. The attachments are each bonded to the teeth in a position for the palatal expander to engage with them. The channels 301 and 303 in each bracket include openings that are properly sized such that they can fit over and retain latches 306 and 308 that may be slide to engage into the channels 301, 303 to lock the palatal expander in place. FIG. 19B shows the palatal expander with a pair of locks including a pair of release controls 311, 313; each release control includes a latch 306, 308, an attachment coupling region (e.g., attachment window) 305, 307 through the palatal expander to fit over the attachment, and a body portion 315, 317 that allows the latch to slide laterally across and/or into the attachment window opening in order to engage with the stay on the attachment(s). The latches can be moved laterally by the patient and/or caregiver to an unlocked position so that the palatal expander can be removed easily (e.g., withdrawn from out of the stay) or to a locked position (extending into the stay when the attachment is held in the attachment window. The attachment window may be an opening through the palatal expander or it may be an indentation (e.g., cavity, depression, hollow, etc.) into the palatal expander (e.g., the body of the palatal expander, such as the lateral, buccal side of the palatal expander).



FIG. 20A illustrates another embodiment of the lock that may releasably couple the palatal expander to the patient's teeth. In this example, the palatal expander 415 include a pair of integrally-formed release controls configured as hooks 401, 403 forming arms that can be slightly deflected to engage through an attachment window of the palatal expander with a stay on the attachment bonded to the patient's teeth. The flexible (e.g., elastic, hinged or semi-elastic) arms 401 and 403 to place the palatal expander in a locked position when the expander is worn by the patient. The release control on the palatal expander may also include a tab 402, 404 on each arm of the release control that may help the patient and/or caregiver in applying force (F) to remove or release the lock by pushing the arms of the release control out of the stay so that they may bend or flex and release the palatal expander from the attachment. In FIG. 20A, the attachment include a stay that may be configured as a hook (e.g., open on three sides) as shown, or it may be a channel into which the arms of the release control may engage. In some variations the attachment is configured with a ramped surface, such as a camming surface, that the arms of the release control may engage against to automatically slide apart the arms allowing them to lock into the stay on the attachment. Because of the shape of the stay and the release control, pushing the apparatus (the palatal expander) onto the teeth and over the attachment may engage the lock automatically, but removing the lock may require the addition of force.



FIG. 20B illustrates another embodiment of the invention. In this example, the attachment is configured to include a stay shown as a side-facing opening (e.g., with an opening in the anterior/posterior direction, along the lateral side of teeth, perpendicular to the occlusal surface when attached to the teeth). Thus, this stay is configured as a bracket 428 that may be bonded to the patient's teeth. The lock on the palatal expander 425 may therefore include a release control 420 that includes a protrusion arm or member 422 that is attached to a flexible elastic arch 424, which is integral with or attached to the palatal expander 425. The protrusion arm 422 extends into an attachment window 430 and is configured to fit with the stay's channel 226 to lock the palatal expander to the attachment when the palatal expander is worn by the patient. A low pulling force can be applied to the edge 423 (e.g., a tab), which may bend or compress the flexible arch 424 to disengage the protrusion arm 422 of the release control from the stay 428 on the attachment, thereby releasing the palatal expander from the teeth.



FIGS. 20C and 20D illustrate another example of a lock including a release control 432 that engages a stay 435 on an attachment bonded to a patient's tooth 437. FIG. 20C shows a side profile view, while FIG. 20D shows a front perspective view. In FIG. 20C the release control is a flexible arm 432 formed at the edge of the palatal expander 438; the release control may be deflected against the stay on the attachment as the palatal expander is attached over the teeth, including over the attachment(s) on the teeth, until it locks into a recess or cavity forming the stay on the bottom (gingival-facing) surface of the attachment, shown in FIG. 20D. The release control also include a tab 442 on the release control that the patient or caregiver may manually (or via tool) apply force F against to bend the release control away from the attachment and disengage it from the stay.


Any of the variations described herein may also aid in removal of the palatal expander by allowing the palatal expander to be, in a relaxed state, biased to uncouple from the patient's palate and/or teeth so that it can be removed readily unless the lock(s) holding the palatal expander to the teeth are disengaged.



FIG. 21 shows another variation of a palatal expander that is configured to lock onto attachment(s) on the patient's teeth for easy attachment and release of the palatal expander. In this example, the edge (the buccal edge) of the palatal expander 501 is configured as a release control shaped as a hook 503. The hook 503 is configured to engage with a stay on the attachment; in FIG. 21, the stay has two portions (though it may be formed as a single attachment or a pair of portions) 505, 507. Each of these components includes a lip or rim into which the hook 503 extends between. In some variations these components may each have a different stiffness. Hook 503 may be rigid, with a flexible region 502 that allows it to be hinged/bent to fit into the stay. In some variations the inner lip/rim 507 have a greater stiffness than the external lip/rim 505 of the stay on the attachment, which may allow the hook to apply sufficient retention force to the stay to retain the palatal expander when it is worn by the patient. The outer (external) lip/rim of the stay 505 may be more flexible than inner lip/rim 507 which may aid in removal of the palatal expander when a force is applied to this region to remove the hook 503 of the release control on the palatal expander.



FIGS. 22A-22F and 23 illustrate other variations of release controls and stays that may be used to secure a palatal expander to a patient's teeth. For example, FIG. 22A shows an embodiment in which a ball and socket snap mechanism can be used. The release control in this case may formed as the receiving socket (ball socket) 602, which may be part of the palatal expander (IPE), while the attachment bonded to the patient's teeth may include the stay, configured as a ball or snap 606. In this example, the ball or snap may be attached into the socket by applying the palatal expander over the teeth and applying force to open the release control 602, which may include an opening that includes a flexible region 608. The release control may also include a release channel 610; the release channel may pass through the palatal expander (e.g., the buccal side of the palatal expander) and may be opened further, expanding the diameter D of the socket region, to disengage the stay from the release control. For example, a rod having a tapered or expanding diameter may be used to drive open the channel 610, disengaging the attachment. Alternatively or additionally, in some variations the attachment may be unsnapped by applying force F to pull the palatal expander from the attachment(s). Instead of the ball shape, other shapes such as triangle, square, oval and rectangle can also be used. The flexible protrusions 602 and 604 on the release control of the palatal expander may allow the engaging and dislodging of the expander.



FIG. 22B shows another example of a lock, configured as a snap (full perimeter snap) in this example. In FIG. 22B, the attachment 612 is bonded to the teeth and includes a rim or edge 632 configured as the stay to help retain the snap within the attachment window of the palatal expander. The palatal expander includes a cavity (“attachment window”) or opening 616 that fits the attachment 610. The attachment 610 is connected to a palatal expander and is flexible for easy release when pulled. The inner diameter of the cavity 616 may be approximately the same as the outer diameter of the attachment. Alternatively, the stay 612 can be on the palatal expander and the release control 610 may be part of the attachment that is bonded to the patient's teeth.


For example, FIG. 22C shows a variation in which the lock includes a release control on the attachment; the release control comprises a pair of arms or prongs 620, 622 or shaped protrusions that are attached to the teeth for fitting with the stay formed on the palatal expander 621. The stay in this example, is an opening or channel 623 at least partially through the palatal expander that the prongs of the release control may snap into, as shown in FIG. 22D. In some variations, the prongs may include a tab or protrusion (no shown) that extends through the palatal expander that may allow them to be deflected towards each other to disengage the release control from the stay for removal of the palatal expander. The flexibility of the prongs may allow the palatal expander to be dislodged by applying low force. Alternatively, the prongs may be on the palatal expander and the stay may be on the attachment.



FIGS. 22E-22F show another example of a snap-on/snap-fit lock that may be used. FIG. 22E shows a schematic of the engagement between the release control 630 and the stay 632. In this example, the attachment 638 is configured to include a stay 632 and is bonded on the tooth 640. The stay may have a prefabricated shape and may include, e.g., a rim, lip, edge, or the like secure to a complimentary structure on the release control, as shown in FIG. 22F. As shown in FIG. 22F, the attachment 638 with the stay portion 632 may fit into an attachment cavity (attachment window) on the palatal expander (IPE) 636. For example, the release control region of the palatal expander may include protrusions forming the release control that are a flexible region (e.g., flexible arms, etc.) at the outer region of the attachment cavity in the palatal expander. The attachment may therefore snap into the palatal expander.


Any of the release controls described herein may be configured as biased release controls. For example, the release control may include a spring, elastic, or other force retaining/releasing element. For example, FIG. 23 is an example of a release control configured as a biased pin 701 that may be used in any of the locks described herein. The biased pin includes a spring 703 that may drive the inner rod 707 out of the cylinder 705 forming the bod of the pin. Force (F) may be applied to compress the pin and collapse it back into the cylinder. In some variations the pin may be used as part of a release control mechanism of the lock that may extend either the inner rod portion or the cylindrical boy into a stay to secure the palatal expander into the stay on the teeth. Force may be applied by the patient and/or caregiver to remove the release control from the stay and disengage the palatal expander.


In any of the apparatuses described herein, a plurality of locks may be used to secure the palatal expander to the patient's teeth. For example, two or more locks (e.g., each comprising a release control and engaging with a stay) may be used to secure and release the palatal expander from the patient's teeth. The locks may be symmetrically arranged (e.g., one either side of a line of symmetry extending through the midline of the palatal expander). As mentioned, the locks may be configured on the buccal side of the palatal expander and configured to secure the palatal expander to the teeth.



FIG. 24 shows a variation in which the lock holding the palatal expander to the teeth includes a threaded nut 801, 803 that is attached to the patient's teeth. In this example, the threaded nut forms the release control and is separate or removable from the palatal expander, but secures to a threaded stay extending from and attached to (e.g., forming part of an attachment on) the patient's tooth 807. The palatal expander in this case includes an opening, notch or widow through the lateral (e.g., buccal) side through which the threaded stay extending from the tooth passes. The threaded nut can be used to lock the palatal expander 807 in place on the tooth, as shown. The palatal expander can be removed by unscrewing the threaded nut.


As mentioned above, the palatal expansion apparatuses described herein may be worn as a series of expanders by a patient. Various properties and characteristics of the inventive palatal expanders are described herein both in general and with reference to specific examples. Any of these features and characteristics, including the arrangement of features, may be incorporated into a palatal expander. These palatal expanders, which may be interchangeably referred to as palatal expansion shell apparatuses, may be configured to apply force within the patient's mouth to expand the patient's maxilla. The patients may be any appropriate patient, and particularly children from ages 7 to 9 years old, e.g., following eruption of the first permanent molars. These apparatuses may be used to expand the patient's palate between 4 and 12 mm or more.


The palatal expanders and/or attachments described herein may be formed of a single, monolithic material (e.g., by a 3D printing technique, etc.) or they may be formed in parts, e.g., by layering, thermosetting, etc.


The methods an apparatuses described herein may be used to treat young pre-pubertal subjects when a child's mouth has grown sufficiently to address the structure of the jaw and teeth while the primary teeth are still in the mouth. Palatal expansion may be used prior to aligner treatment; during this treatment, arch development occurs by increasing arch width or depth via dental or palatal expansion to create space for more permanent teeth to erupt. Typically aligners may not produce the required minimum transverse force needed for skeletal palatal expansion.


The palatal expander systems described herein may assist in skeletal and dental arch development. An example system may consist of a series of transpalatal arch feature that is intended to produce palatal expansion. The feature is designed to move/expand the palate by expanding the maxillary arch outwards buccolingually for transverse palatal size increases by exerting force on the maxillary posterior teeth. There will be no planned treatment for lower arch for the early feasibility clinical study. The expander wear time will be full-time. There are a series of expanders that are exchanged daily, with an expansion rate of 0.25 mm/day. The number of expanders is determined by the amount of expansion desired. This also determines the amount of time the expansion will be performed. The device is manufactured after obtaining digital impression scans of the child's teeth and palate. Thus, the palatal expander devices may be removed or replaced during the treatment, and may include any of the features descried herein to enhance removal. Patients are recommended to wear the device for a 24-hour period each day. Each device is recommended to wear for 1 day. The patient is requested to eat with the device as normally would. It is suggested that the patient remove the device before bedtime, brush their teeth before placing the next device.


The potential benefits of this treatment may include expansion of palate and arches, potentially correcting harmful and detrimental malocclusals. Expanding the palate may allow more space for permanent teeth to erupt, due to the space provided. Because the expanders are removable, patient hygiene may be improved. Because the expanders are made to the patient's anatomy, comfort may be improved without requiring the use of metal screws or brackets to irritate the tongue or palate. Expansion of the palate may improve the ability for the patient to breathe, increasing airway in nasal and areas.


The methods of treatment described herein may include a series of doctor-prescribed, custom manufactured, plastic removable orthodontic appliances that are designed for the expansion of the skeletally narrow maxilla (upper jaw, dental arch and/or palate) during early interceptive treatment of malocclusal. These apparatuses may be intended for use to expand the skeletally narrow maxilla (upper jaw, dental arch and/or palate).


Any of the apparatuses described herein may be used with (e.g., in conjunction with) a fixed skeletal expander and/or oral surgery, to correct severe crowding or jaw imbalances. If oral surgery is required, risks associated with anesthesia and proper healing must be taken into account prior to treatment.


Any of the features and methods described herein for palatal expanders may be applied to other removable orthodontic appliances, including in particular dental aligners. For example, the detachment regions, breach (e.g., hinge) regions, slots/slits, removal tools, etc., described herein may be similarly incorporated into a dental aligner or series of dental aligners. Thus, in the description above, unless the context makes it clear otherwise, the term “palatal expander” may be replaced with the term “dental aligner”.


In addition, although the examples described herein are illustrated in the context of palatal expanders for use with one or more attachments on the teeth, these apparatuses and methods may be used for apparatuses that do not include attachments. For example, detachment regions, smoothed lower surfaces, and the like may be used with palatal expanders that do not include attachment regions (for mating with an attachment on a tooth).


When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.


Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.


Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.


Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.


Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.


In general, any of the apparatuses and methods described herein should be understood to be inclusive, but all or a sub-set of the components and/or steps may alternatively be exclusive, and may be expressed as “consisting of” or alternatively “consisting essentially of” the various components, steps, sub-components or sub-steps.


As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.


Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.


The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims
  • 1. A method of removing a palatal expander shell apparatus from a patient's teeth, the method comprising: applying a pulling force to a buccal side of the palatal expander shell apparatus while a first tooth engagement region is worn on a first portion of the patient's teeth, a second tooth engagement region is worn on a second portion of the patient's teeth, and while a palatal region extending between the first tooth engagement region and the second tooth engagement region is applying a lateral force between the first tooth engagement region and the second tooth engagement region,wherein the pulling force causes a breach region of the palatal expander shell apparatus to break or bend along the breach region and to disengage the palatal expander shell apparatus from the first or second portion of the patient's teeth, wherein the breach region extends anteriorly to posteriorly in the palatal expander shell apparatus, and wherein the breach region comprises: a perforated region, a crease, a channel, or one or more voids within the palatal expander shell apparatus; andremoving the palatal expander shell apparatus from the patient's oral cavity.
  • 2. The method of claim 1, wherein applying the pulling force comprises applying less than 30 N.
  • 3. The method of claim 1, wherein applying the pulling force comprises applying less than 20 N.
  • 4. The method of claim 1, wherein applying the pulling force comprises pulling the buccal side of the palatal expander shell apparatus with a force having a laterally outward force component.
  • 5. The method of claim 1, wherein applying the pulling force comprises pulling an edge of the buccal side of the palatal expander shell apparatus.
  • 6. The method of claim 1, wherein applying the pulling force causes the breach region to bend or break along the breach region so that the palatal expander shell apparatus disengages from one or more attachments between the palatal expander shell apparatus and the patient's teeth.
  • 7. The method of claim 1, wherein applying the pulling force causes the breach region to bend along the breach region in a hinged manner.
  • 8. The method of claim 1, wherein applying the pulling force causes the breach region to break along the breach region.
  • 9. The method of claim 1, wherein applying the pulling force comprises using a tool to apply the pulling force.
  • 10. The method of claim 1 wherein applying the pulling force comprises using a fingernail to apply the pulling force.
  • 11. The method of claim 1, wherein applying the pulling force comprises pulling on a detachment region on the buccal side of the palatal expander shell apparatus.
  • 12. A method of removing a palatal expander shell apparatus from a patient's teeth, the method comprising: applying a pulling force to a buccal side of the palatal expander shell apparatus while a first tooth engagement region is worn on a first set of the patient's teeth and a second tooth engagement region is worn on a second set of the patient's teeth, and while a palatal region extending between the first tooth engagement region and the second tooth engagement region is applying a lateral force between the first tooth engagement region and the second tooth engagement region, wherein the palatal expander apparatus comprises a breach region extending anteriorly to posteriorly along the palatal expander shell apparatus, and vertical slots extending from a bottom of the buccal side toward the breach region,wherein the pulling force causes a region along the buccal side between the vertical slots to bend away from the patient's teeth at the breach region, or to separate from the palatal expander apparatus at the breach region; andremoving the palatal expander shell apparatus from the patient's oral cavity.
  • 13. The method of claim 12, wherein the breach region has a mechanical strength that is less than a material strength of regions of the palatal expander shell apparatus surrounding to the breach region.
  • 14. A palatal expander apparatus, the apparatus comprising: a pair of tooth engagement regions each extending anteriorly to posteriorly, and configured to be worn over a patient's teeth, wherein the tooth engagement regions each comprise an occlusal side and a buccal side;a palatal region connecting the pair of tooth engagement regions, wherein the palatal region is configured to apply a lateral force between the pair of tooth engagement regions when the apparatus is worn by the patient; anda breach region extending anteriorly to posteriorly, the breach region configured to predictably bend or break when a pulling force is applied to the buccal side of either or both of the pair of tooth engagement regions, wherein the breach region comprises: a perforated region, a crease, a channel, or one or more voids within the palatal expander apparatus.
  • 15. The apparatus of claim 14, wherein the breach region has a mechanical strength that is lower than a mechanical strength of regions adjacent to either side of the breach region.
  • 16. The apparatus of claim 14, wherein the breach region comprises a perforated region.
  • 17. The apparatus of claim 14, wherein the breach region comprises a crease or channel.
  • 18. The apparatus of claim 14, wherein the breach region comprises one or more voids within the palatal expander apparatus.
  • 19. The apparatus of claim 14, wherein the breach region comprises a hinge.
  • 20. The apparatus of claim 14, wherein the breach region extends across the occlusive side of one of the pair of tooth engagement regions.
  • 21. The apparatus of claim 14, wherein the breach region is configured to break when the pulling force is greater than a predetermined value applied to the buccal side of one of the pair of tooth engagement regions in a laterally outward direction.
  • 22. The apparatus of claim 21, wherein the predetermined value is 10 N.
  • 23. The apparatus of claim 21, wherein the predetermined value is between 5 N and 100 N.
  • 24. The apparatus of claim 14, wherein the breach region is configured to bend in a hinged manner when the pulling force is greater than a predetermined value applied to the buccal side of one of the pair of tooth engagement regions in a laterally outward direction.
  • 25. The apparatus of claim 24, wherein the predetermined value is 10 N.
  • 26. The apparatus of claim 24, wherein the predetermined value is between 5 N and 100 N.
  • 27. The apparatus of claim 14, wherein the breach region is not visible.
  • 28. The apparatus of claim 14, wherein the breach region extends from an anterior end of the palatal expander apparatus to a posterior end of the palatal expander apparatus.
  • 29. The apparatus of claim 14, further comprising a plurality of attachment regions each configured to couple to an attachment bonded to the patient's teeth.
  • 30. The apparatus of claim 29, wherein the breach region extends adjacent to one or more of the attachment regions along an anterior to posterior axis.
  • 31. The apparatus of claim 14, further comprising a detachment region on the buccal side of at least one of the pair of tooth engagement regions configured to receive the pulling force.
  • 32. The apparatus of claim 31, wherein the detachment region comprises one or more of a slot, ledge, notch, lip, or gap on or adjacent to a lower edge of the buccal side.
  • 33. The apparatus of claim 14, further comprising a plurality of vertical slots or slits extending from a bottom of the buccal side toward the breach region.
  • 34. A palatal expander apparatus, the apparatus comprising: a pair of tooth engagement regions each extending anteriorly to posteriorly, and configured to be worn over a patient's teeth, wherein the tooth engagement regions each comprise an occlusal side and a buccal side;a palatal region connecting the pair of tooth engagement regions, wherein the palatal region is configured to apply a lateral force between the pair of tooth engagement regions when the apparatus is worn by the patient; anda breach region extending anteriorly to posteriorly, the breach region configured to predictably bend or break when a pulling force is applied to the buccal side of either or both of the pair of tooth engagement regions; andvertical slots extending from a bottom of the buccal side toward the breach region, wherein, when the pulling force is applied to bend or break the breach region, the vertical slots provide a region along the buccal side that bends away from the patient's teeth or separates from the palatal expander apparatus.
  • 35. The apparatus of claim 34, wherein the breach region has a mechanical strength that is less than a mechanical strength of regions adjacent to either side of the breach region so that the breach region predictably bends or breaks when a pulling force having a laterally outward component is applied to the buccal side of either or both of the pair of tooth engagement regions.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application claims priority to U.S. Provisional Patent Application No. 62/656,289, filed on Apr. 11, 2018, titled “RELEASABLE PALATAL EXPANDERS,” and to U.S. Provisional Patent Application No. 62/735,658, filed on Sep. 24, 2018, titled “RELEASABLE PALATAL EXPANDERS,” each of which is herein incorporated by reference in its entirety. This patent application may also be related to U.S. patent application Ser. No. 15/831,159, titled “PALATAL EXPANDERS AND METHODS OF EXPANDING A PALATE,” filed on Dec. 4, 2017, which claims priority to U.S. Provisional Patent Application No. 62/429,692, filed on Dec. 2, 2016 (titled “METHODS OF FABRICATING PALATAL EXPANDERS”), and U.S. Provisional Patent Application No. 62/542,750, filed on Aug. 8, 2017 (titled “PALATAL EXPANDERS AND METHODS OF EXPANDING A PALATE”), each of which is herein incorporated by reference in its entirety. This application may be related to US Patent Application Publication No. 2016/0081768 (titled “ARCH EXPANDING APPLIANCE”) and US Patent Application Publication No. 2016/0081769 (titled “ARCH ADJUSTMENT APPLIANCE”), each of which is herein incorporated by reference in its entirety.

US Referenced Citations (1107)
Number Name Date Kind
2098867 Baxter Nov 1937 A
2171695 Harper Sep 1939 A
2194790 Jeno et al. Mar 1940 A
2467432 Kesling Apr 1949 A
2531222 Kesling Nov 1950 A
2818065 Freed Dec 1957 A
3089487 Enicks et al. May 1963 A
3092907 Traiger Jun 1963 A
3162948 Gerber Dec 1964 A
3178820 Kesling Apr 1965 A
3211143 Grossberg Oct 1965 A
3277892 Tepper Oct 1966 A
3379193 Monsghan Apr 1968 A
3385291 Martin May 1968 A
3407500 Kesling Oct 1968 A
3478742 Bohlmann Nov 1969 A
3496936 Gores Feb 1970 A
3533163 Kirschenbaum Oct 1970 A
3556093 Quick Jan 1971 A
3600808 Reeve Aug 1971 A
3660900 Andrews May 1972 A
3683502 Wallshein Aug 1972 A
3724075 Kesling et al. Apr 1973 A
3738005 Cohen et al. Jun 1973 A
3797115 Cohen et al. Mar 1974 A
3860803 Levine Jan 1975 A
3885310 Northcutt May 1975 A
3916526 Schudy Nov 1975 A
3922786 Lavin Dec 1975 A
3949477 Cohen et al. Apr 1976 A
3950851 Bergersen Apr 1976 A
3955282 Mcnall May 1976 A
3983628 Acevedo Oct 1976 A
4014096 Dellinger Mar 1977 A
4055895 Huge Nov 1977 A
4094068 Schinhammer Jun 1978 A
4117596 Wallshein Oct 1978 A
4129946 Kennedy Dec 1978 A
4134208 Pearlman Jan 1979 A
4139944 Bergersen Feb 1979 A
4179811 Hinz Dec 1979 A
4179812 White Dec 1979 A
4183141 Dellinger et al. Jan 1980 A
4195046 Kesling Mar 1980 A
4204325 Kaelble May 1980 A
4253828 Coles Mar 1981 A
4255138 Frohn Mar 1981 A
4299568 Crowley Nov 1981 A
4324546 Heitlinger et al. Apr 1982 A
4324547 Arcan et al. Apr 1982 A
4348178 Kurz Sep 1982 A
4368040 Weissman Jan 1983 A
4419992 Chorbajian Dec 1983 A
4433956 Witzig Feb 1984 A
4433960 Garito et al. Feb 1984 A
4439154 Mayclin Mar 1984 A
4449928 Von May 1984 A
4478580 Barrut Oct 1984 A
4500294 Lewis Feb 1985 A
4505672 Kurz Mar 1985 A
4505673 Yoshii Mar 1985 A
4519386 Sullivan May 1985 A
4523908 Drisaldi et al. Jun 1985 A
4526540 Dellinger Jul 1985 A
4553936 Wang Nov 1985 A
4575330 Hull Mar 1986 A
4575805 Moermann et al. Mar 1986 A
4591341 Andrews May 1986 A
4592725 Goshgarian Jun 1986 A
4608021 Barrett Aug 1986 A
4609349 Cain Sep 1986 A
4611288 Duret et al. Sep 1986 A
4629424 Lauks et al. Dec 1986 A
4638145 Sakuma et al. Jan 1987 A
4656860 Orthuber et al. Apr 1987 A
4663720 Duret et al. May 1987 A
4664626 Kesling May 1987 A
4665621 Ackerman et al. May 1987 A
4676747 Kesling Jun 1987 A
4755139 Abbatte et al. Jul 1988 A
4757824 Chaumet Jul 1988 A
4763791 Halverson et al. Aug 1988 A
4764111 Knierim Aug 1988 A
4790752 Cheslak Dec 1988 A
4793803 Martz Dec 1988 A
4798534 Breads Jan 1989 A
4830612 Bergersen May 1989 A
4836778 Baumrind et al. Jun 1989 A
4837732 Brandestini et al. Jun 1989 A
4850864 Diamond Jul 1989 A
4850865 Napolitano Jul 1989 A
4856991 Breads et al. Aug 1989 A
4877398 Kesling Oct 1989 A
4880380 Martz Nov 1989 A
4886451 Cetlin Dec 1989 A
4889238 Batchelor Dec 1989 A
4890608 Steer Jan 1990 A
4901737 Toone Feb 1990 A
4932866 Guis Jun 1990 A
4935635 O'Harra Jun 1990 A
4936862 Walker et al. Jun 1990 A
4937392 Imanari et al. Jun 1990 A
4937928 van der Zel Jul 1990 A
4941826 Loran et al. Jul 1990 A
4952928 Carroll et al. Aug 1990 A
4964770 Steinbichler et al. Oct 1990 A
4971557 Martin Nov 1990 A
4975052 Spencer et al. Dec 1990 A
4976614 Tepper Dec 1990 A
4983334 Adell Jan 1991 A
4997369 Shafir Mar 1991 A
5002485 Aagesen Mar 1991 A
5011405 Lemchen Apr 1991 A
5015183 Fenick May 1991 A
5017133 Miura May 1991 A
5018969 Andreiko et al. May 1991 A
5027281 Rekow et al. Jun 1991 A
5035613 Breads et al. Jul 1991 A
5037295 Bergersen Aug 1991 A
5055039 Abbatte et al. Oct 1991 A
5061839 Matsuno et al. Oct 1991 A
5083919 Quach Jan 1992 A
5094614 Wildman Mar 1992 A
5100316 Wildman Mar 1992 A
5103838 Yousif Apr 1992 A
5114339 Guis May 1992 A
5121333 Riley et al. Jun 1992 A
5123425 Shannon et al. Jun 1992 A
5128870 Erdman et al. Jul 1992 A
5130064 Smalley et al. Jul 1992 A
5131843 Hilgers et al. Jul 1992 A
5131844 Marinaccio et al. Jul 1992 A
5139419 Andreiko et al. Aug 1992 A
5145364 Martz et al. Sep 1992 A
5176517 Truax Jan 1993 A
5194003 Garay et al. Mar 1993 A
5204670 Stinton Apr 1993 A
5222499 Allen et al. Jun 1993 A
5224049 Mushabac Jun 1993 A
5238404 Andreiko Aug 1993 A
5242304 Truax et al. Sep 1993 A
5245592 Kuemmel et al. Sep 1993 A
5273429 Rekow et al. Dec 1993 A
5278756 Lemchen et al. Jan 1994 A
5306144 Hibst et al. Apr 1994 A
5312247 Sachdeva et al. May 1994 A
5324186 Bakanowski Jun 1994 A
5328362 Watson et al. Jul 1994 A
5335657 Terry et al. Aug 1994 A
5338198 Wu et al. Aug 1994 A
5340309 Robertson Aug 1994 A
5342202 Deshayes Aug 1994 A
5344315 Hanson Sep 1994 A
5354201 Wilson et al. Oct 1994 A
5368478 Andreiko et al. Nov 1994 A
5372502 Massen et al. Dec 1994 A
D354355 Hilgers Jan 1995 S
5382164 Stern Jan 1995 A
5395238 Andreiko et al. Mar 1995 A
5415542 Kesling May 1995 A
5431562 Andreiko et al. Jul 1995 A
5440326 Quinn Aug 1995 A
5440496 Andersson et al. Aug 1995 A
5447432 Andreiko et al. Sep 1995 A
5449703 Mitra et al. Sep 1995 A
5452219 Dehoff et al. Sep 1995 A
5454717 Andreiko et al. Oct 1995 A
5456600 Andreiko et al. Oct 1995 A
5474448 Andreiko et al. Dec 1995 A
5487662 Kipke et al. Jan 1996 A
RE35169 Lemchen et al. Mar 1996 E
5499633 Fenton Mar 1996 A
5522725 Jordan et al. Jun 1996 A
5528735 Strasnick et al. Jun 1996 A
5533895 Andreiko et al. Jul 1996 A
5540732 Testerman Jul 1996 A
5542842 Andreiko et al. Aug 1996 A
5543780 McAuley et al. Aug 1996 A
5549476 Stern Aug 1996 A
5562448 Mushabac Oct 1996 A
5570182 Nathel et al. Oct 1996 A
5575655 Darnell Nov 1996 A
5583977 Seidl Dec 1996 A
5587912 Andersson et al. Dec 1996 A
5588098 Chen et al. Dec 1996 A
5605459 Kuroda et al. Feb 1997 A
5607305 Andersson et al. Mar 1997 A
5614075 Andre Mar 1997 A
5621648 Crump Apr 1997 A
5626537 Danyo et al. May 1997 A
5636736 Jacobs et al. Jun 1997 A
5645420 Bergersen Jul 1997 A
5645421 Slootsky Jul 1997 A
5651671 Seay et al. Jul 1997 A
5655653 Chester Aug 1997 A
5659420 Wakai et al. Aug 1997 A
5683243 Andreiko et al. Nov 1997 A
5683244 Truax Nov 1997 A
5691539 Pfeiffer Nov 1997 A
5692894 Schwartz et al. Dec 1997 A
5711665 Adam et al. Jan 1998 A
5711666 Hanson Jan 1998 A
5725376 Poirier Mar 1998 A
5725378 Wang Mar 1998 A
5730151 Summer et al. Mar 1998 A
5737084 Ishihara Apr 1998 A
5740267 Echerer et al. Apr 1998 A
5742700 Yoon et al. Apr 1998 A
5769631 Williams Jun 1998 A
5774425 Ivanov et al. Jun 1998 A
5790242 Stern et al. Aug 1998 A
5799100 Clarke et al. Aug 1998 A
5800162 Shimodaira et al. Sep 1998 A
5800174 Andersson Sep 1998 A
5813854 Nikodem Sep 1998 A
5816800 Brehm et al. Oct 1998 A
5818587 Devaraj et al. Oct 1998 A
5823778 Schmitt et al. Oct 1998 A
5848115 Little et al. Dec 1998 A
5857853 van Nifterick et al. Jan 1999 A
5866058 Batchelder et al. Feb 1999 A
5876199 Bergersen Mar 1999 A
5879158 Doyle et al. Mar 1999 A
5880961 Crump Mar 1999 A
5880962 Andersson et al. Mar 1999 A
5882192 Bergersen Mar 1999 A
5886702 Migdal et al. Mar 1999 A
5890896 Padial Apr 1999 A
5904479 Staples May 1999 A
5934288 Avila et al. Aug 1999 A
5957686 Anthony Sep 1999 A
5964587 Sato Oct 1999 A
5971754 Sondhi et al. Oct 1999 A
5975893 Chishti et al. Nov 1999 A
5975906 Knutson Nov 1999 A
5980246 Ramsay et al. Nov 1999 A
5989023 Summer et al. Nov 1999 A
6002706 Staver et al. Dec 1999 A
6018713 Coli et al. Jan 2000 A
6044309 Honda Mar 2000 A
6049743 Baba Apr 2000 A
6053731 Heckenberger Apr 2000 A
6068482 Snow May 2000 A
6070140 Tran May 2000 A
6099303 Gibbs et al. Aug 2000 A
6099314 Kopelman et al. Aug 2000 A
6102701 Engeron Aug 2000 A
6120287 Chen Sep 2000 A
6123544 Cleary Sep 2000 A
6142780 Burgio Nov 2000 A
6152731 Jordan et al. Nov 2000 A
6154676 Levine Nov 2000 A
6183248 Chishti et al. Feb 2001 B1
6183249 Brennan et al. Feb 2001 B1
6186780 Hibst et al. Feb 2001 B1
6190165 Andreiko et al. Feb 2001 B1
6200133 Kittelsen Mar 2001 B1
6201880 Elbaum et al. Mar 2001 B1
6210162 Chishti et al. Apr 2001 B1
6212435 Lattner et al. Apr 2001 B1
6213767 Dixon et al. Apr 2001 B1
6217334 Hultgren Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6230142 Benigno et al. May 2001 B1
6231338 De Josselin De Jong et al. May 2001 B1
6238745 Morita et al. May 2001 B1
6239705 Glen May 2001 B1
6243601 Wist Jun 2001 B1
6263234 Engelhardt et al. Jul 2001 B1
6283761 Joao Sep 2001 B1
6288138 Yamamoto et al. Sep 2001 B1
6299438 Sahagian et al. Oct 2001 B1
6299440 Phan et al. Oct 2001 B1
6309215 Phan et al. Oct 2001 B1
6313432 Nagata et al. Nov 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6328745 Ascherman Dec 2001 B1
6332774 Chikami Dec 2001 B1
6334073 Levine Dec 2001 B1
6350120 Sachdeva et al. Feb 2002 B1
6364660 Durbin et al. Apr 2002 B1
6382975 Poirier May 2002 B1
6386878 Pavlovskaia et al. May 2002 B1
6394802 Hahn May 2002 B1
6402510 Williams Jun 2002 B1
6402707 Ernst Jun 2002 B1
6405729 Thornton Jun 2002 B1
6406292 Chishti et al. Jun 2002 B1
6409504 Jones et al. Jun 2002 B1
6413086 Womack Jul 2002 B1
6414264 Von Falkenhausen Jul 2002 B1
6414708 Carmeli et al. Jul 2002 B1
6435871 Inman Aug 2002 B1
6436058 Krahner et al. Aug 2002 B1
6441354 Seghatol et al. Aug 2002 B1
6450167 David et al. Sep 2002 B1
6450807 Chishti et al. Sep 2002 B1
6462301 Scott et al. Oct 2002 B1
6470338 Rizzo et al. Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6471512 Sachdeva Oct 2002 B1
6471970 Fanara et al. Oct 2002 B1
6482002 Jordan et al. Nov 2002 B2
6482298 Bhatnagar Nov 2002 B1
6496814 Busche Dec 2002 B1
6496816 Thiesson et al. Dec 2002 B1
6499026 Rivette et al. Dec 2002 B1
6499995 Schwartz Dec 2002 B1
6507832 Evans et al. Jan 2003 B1
6514074 Chishti et al. Feb 2003 B1
6515593 Stark et al. Feb 2003 B1
6516288 Bagne Feb 2003 B2
6516805 Thornton Feb 2003 B1
6520772 Williams Feb 2003 B2
6523009 Wilkins Feb 2003 B1
6523019 Borthwick Feb 2003 B1
6524101 Phan et al. Feb 2003 B1
6526168 Ornes et al. Feb 2003 B1
6526982 Strong Mar 2003 B1
6529891 Heckerman Mar 2003 B1
6529902 Kanevsky et al. Mar 2003 B1
6532455 Martin et al. Mar 2003 B1
6535865 Skaaning et al. Mar 2003 B1
6540512 Sachdeva et al. Apr 2003 B1
6540707 Stark et al. Apr 2003 B1
6542593 Bowman Amuah Apr 2003 B1
6542881 Meidan et al. Apr 2003 B1
6542894 Lee et al. Apr 2003 B1
6542903 Hull et al. Apr 2003 B2
6551243 Bocionek et al. Apr 2003 B2
6554837 Hauri et al. Apr 2003 B1
6556659 Bowman Amuah Apr 2003 B1
6556977 Lapointe et al. Apr 2003 B1
6560592 Reid et al. May 2003 B1
6564209 Dempski et al. May 2003 B1
6567814 Bankier et al. May 2003 B1
6571227 Agrafiotis et al. May 2003 B1
6572372 Phan et al. Jun 2003 B1
6573998 Cohen-Sabban Jun 2003 B2
6574561 Alexander et al. Jun 2003 B2
6578003 Camarda et al. Jun 2003 B1
6580948 Haupert et al. Jun 2003 B2
6587529 Staszewski et al. Jul 2003 B1
6587828 Sachdeva Jul 2003 B1
6592368 Weathers, Jr. Jul 2003 B1
6594539 Geng Jul 2003 B1
6595342 Maritzen et al. Jul 2003 B1
6597934 De Jong et al. Jul 2003 B1
6598043 Baclawski Jul 2003 B1
6599250 Webb et al. Jul 2003 B2
6602070 Miller et al. Aug 2003 B2
6604527 Palmisano Aug 2003 B1
6606744 Mikurak Aug 2003 B1
6607382 Kuo et al. Aug 2003 B1
6611783 Kelly et al. Aug 2003 B2
6611867 Bowman Amuah Aug 2003 B1
6613001 Dworkin Sep 2003 B1
6615158 Wenzel et al. Sep 2003 B2
6616447 Rizoiu et al. Sep 2003 B1
6616579 Reinbold et al. Sep 2003 B1
6621491 Baumrind et al. Sep 2003 B1
6623698 Kuo Sep 2003 B2
6624752 Klitsgaard et al. Sep 2003 B2
6626180 Kittelsen et al. Sep 2003 B1
6626569 Reinstein et al. Sep 2003 B2
6626669 Zegarelli Sep 2003 B2
6633772 Ford et al. Oct 2003 B2
6640128 Vilsmeier et al. Oct 2003 B2
6643646 Su et al. Nov 2003 B2
6647383 August et al. Nov 2003 B1
6650944 Goedeke et al. Nov 2003 B2
6671818 Mikurak Dec 2003 B1
6675104 Paulse et al. Jan 2004 B2
6678669 Lapointe et al. Jan 2004 B2
6685469 Chishti et al. Feb 2004 B2
6689055 Mullen et al. Feb 2004 B1
6690761 Lang et al. Feb 2004 B2
6691110 Wang et al. Feb 2004 B2
6694234 Lockwood et al. Feb 2004 B2
6697164 Babayoff et al. Feb 2004 B1
6697793 McGreevy Feb 2004 B2
6702765 Robbins et al. Mar 2004 B2
6702804 Ritter et al. Mar 2004 B1
6705863 Phan et al. Mar 2004 B2
6729876 Chishti et al. May 2004 B2
6733289 Manemann et al. May 2004 B2
6736638 Sachdeva et al. May 2004 B1
6739869 Taub et al. May 2004 B1
6744932 Rubbert et al. Jun 2004 B1
6749414 Hanson et al. Jun 2004 B1
6769913 Hurson Aug 2004 B2
6772026 Bradbury et al. Aug 2004 B2
6790036 Graham Sep 2004 B2
6802713 Chishti et al. Oct 2004 B1
6814574 Abolfathi et al. Nov 2004 B2
6830450 Knopp et al. Dec 2004 B2
6832912 Mao Dec 2004 B2
6832914 Bonnet et al. Dec 2004 B1
6843370 Tuneberg Jan 2005 B2
6845175 Kopelman et al. Jan 2005 B2
6885464 Pfeiffer et al. Apr 2005 B1
6890285 Rahman et al. May 2005 B2
6951254 Morrison Oct 2005 B2
6976841 Osterwalder Dec 2005 B1
6978268 Thomas et al. Dec 2005 B2
6983752 Garabadian Jan 2006 B2
6984128 Breining et al. Jan 2006 B2
6988893 Haywood Jan 2006 B2
7011518 DeLuke Mar 2006 B2
7016952 Mullen et al. Mar 2006 B2
7020963 Cleary et al. Apr 2006 B2
7036514 Heck May 2006 B2
7040896 Pavlovskaia et al. May 2006 B2
7106233 Schroeder et al. Sep 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7121825 Chishti et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7137812 Cleary et al. Nov 2006 B2
7138640 Delgado et al. Nov 2006 B1
7140877 Kaza Nov 2006 B2
7142312 Quadling et al. Nov 2006 B2
7155373 Jordan Dec 2006 B2
7156655 Sachdeva et al. Jan 2007 B2
7156661 Choi et al. Jan 2007 B2
7168950 Cinader, Jr. et al. Jan 2007 B2
7184150 Quadling et al. Feb 2007 B2
7191451 Nakagawa Mar 2007 B2
7192273 McSurdy Mar 2007 B2
7217131 Vuillemot May 2007 B2
7220122 Chishti May 2007 B2
7220124 Taub et al. May 2007 B2
7229282 Andreiko et al. Jun 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7241142 Abolfathi et al. Jul 2007 B2
7244230 Duggirala et al. Jul 2007 B2
7245753 Squilla et al. Jul 2007 B2
7257136 Mori et al. Aug 2007 B2
7286954 Kopelman et al. Oct 2007 B2
7292759 Boutoussov et al. Nov 2007 B2
7294141 Bergersen Nov 2007 B2
7302842 Biester et al. Dec 2007 B2
7320592 Chishti et al. Jan 2008 B2
7328706 Bardach et al. Feb 2008 B2
7329122 Scott Feb 2008 B1
7338327 Sticker et al. Mar 2008 B2
D565509 Fechner et al. Apr 2008 S
7351116 Dold Apr 2008 B2
7354270 Abolfathi et al. Apr 2008 B2
7357637 Liechtung Apr 2008 B2
7435083 Chishti et al. Oct 2008 B2
7450231 Johs et al. Nov 2008 B2
7458810 Bergersen Dec 2008 B2
7460230 Johs et al. Dec 2008 B2
7462076 Walter et al. Dec 2008 B2
7463929 Simmons Dec 2008 B2
7476100 Kuo Jan 2009 B2
7500851 Williams Mar 2009 B2
D594413 Palka et al. Jun 2009 S
7543511 Kimura et al. Jun 2009 B2
7544103 Walter et al. Jun 2009 B2
7553157 Abolfathi et al. Jun 2009 B2
7561273 Stautmeister et al. Jul 2009 B2
7577284 Wong et al. Aug 2009 B2
7596253 Wong et al. Sep 2009 B2
7597594 Stadler et al. Oct 2009 B2
7609875 Liu et al. Oct 2009 B2
D603796 Sticker et al. Nov 2009 S
7616319 Woollam et al. Nov 2009 B1
7626705 Altendorf Dec 2009 B2
7632216 Rahman et al. Dec 2009 B2
7633625 Woollam et al. Dec 2009 B1
7637262 Bailey Dec 2009 B2
7637740 Knopp Dec 2009 B2
7641473 Sporbert et al. Jan 2010 B2
7668355 Wong et al. Feb 2010 B2
7670179 Muller Mar 2010 B2
7695327 Bauerle et al. Apr 2010 B2
7698068 Babayoff Apr 2010 B2
7711447 Lu et al. May 2010 B2
7724378 Babayoff May 2010 B2
D618619 Walter Jun 2010 S
7728848 Petrov et al. Jun 2010 B2
7731508 Borst Jun 2010 B2
7735217 Borst Jun 2010 B2
7740476 Rubbert et al. Jun 2010 B2
7744369 Imgrund et al. Jun 2010 B2
7746339 Matov et al. Jun 2010 B2
7780460 Walter Aug 2010 B2
7787132 Korner et al. Aug 2010 B2
7791810 Powell Sep 2010 B2
7796243 Choo-Smith et al. Sep 2010 B2
7806687 Minagi et al. Oct 2010 B2
7806727 Dold et al. Oct 2010 B2
7813787 De Josselin De Jong et al. Oct 2010 B2
7828601 Pyczak Nov 2010 B2
7841464 Cinader, Jr. et al. Nov 2010 B2
7845969 Stadler et al. Dec 2010 B2
7854609 Chen et al. Dec 2010 B2
7862336 Kopelman et al. Jan 2011 B2
7869983 Raby et al. Jan 2011 B2
7872760 Ertl Jan 2011 B2
7874836 McSurdy Jan 2011 B2
7874849 Sticker et al. Jan 2011 B2
7878801 Abolfathi et al. Feb 2011 B2
7878805 Moss et al. Feb 2011 B2
7880751 Kuo et al. Feb 2011 B2
7892474 Shkolnik et al. Feb 2011 B2
7904308 Arnone et al. Mar 2011 B2
7907280 Johs et al. Mar 2011 B2
7929151 Liang et al. Apr 2011 B2
7930189 Kuo Apr 2011 B2
7947508 Tricca et al. May 2011 B2
7959308 Freeman et al. Jun 2011 B2
7963766 Cronauer Jun 2011 B2
7985414 Knaack et al. Jul 2011 B2
7986415 Thiel et al. Jul 2011 B2
7987099 Kuo et al. Jul 2011 B2
7991485 Zakim Aug 2011 B2
8017891 Nevin Sep 2011 B2
8026916 Wen Sep 2011 B2
8027709 Arnone et al. Sep 2011 B2
8029277 Imgrund et al. Oct 2011 B2
8038444 Kitching et al. Oct 2011 B2
8045772 Kosuge et al. Oct 2011 B2
8054556 Chen et al. Nov 2011 B2
8070490 Roetzer et al. Dec 2011 B1
8075306 Kitching et al. Dec 2011 B2
8077949 Liang et al. Dec 2011 B2
8083556 Stadler et al. Dec 2011 B2
D652799 Mueller Jan 2012 S
8092215 Stone-Collonge et al. Jan 2012 B2
8099268 Kitching et al. Jan 2012 B2
8108189 Chelnokov et al. Jan 2012 B2
8118592 Tortorici Feb 2012 B2
8126025 Takeda Feb 2012 B2
8136529 Kelly Mar 2012 B2
8144954 Quadling et al. Mar 2012 B2
8152518 Kuo Apr 2012 B2
8160334 Thiel et al. Apr 2012 B2
8172569 Matty et al. May 2012 B2
8197252 Harrison, III Jun 2012 B1
8201560 Dembro Jun 2012 B2
8215312 Garabadian et al. Jul 2012 B2
8240018 Walter et al. Aug 2012 B2
8272866 Chun et al. Sep 2012 B2
8275180 Kuo Sep 2012 B2
8279450 Oota et al. Oct 2012 B2
8292617 Brandt et al. Oct 2012 B2
8294657 Kim et al. Oct 2012 B2
8296952 Greenberg Oct 2012 B2
8297286 Smernoff Oct 2012 B2
8303302 Teasdale Nov 2012 B2
8306608 Mandelis et al. Nov 2012 B2
8314764 Kim et al. Nov 2012 B2
8332015 Ertl Dec 2012 B2
8354588 Sticker et al. Jan 2013 B2
8366479 Borst et al. Feb 2013 B2
8401826 Cheng et al. Mar 2013 B2
8419428 Lawrence Apr 2013 B2
8433083 Abolfathi et al. Apr 2013 B2
8439672 Matov et al. May 2013 B2
8465280 Sachdeva et al. Jun 2013 B2
8477320 Stock et al. Jul 2013 B2
8488113 Thiel et al. Jul 2013 B2
8517726 Kakavand et al. Aug 2013 B2
8520922 Wang et al. Aug 2013 B2
8520925 Duret Aug 2013 B2
8556625 Lovely Oct 2013 B2
8570530 Liang Oct 2013 B2
8573224 Thornton Nov 2013 B2
8577212 Thiel Nov 2013 B2
8601925 Coto Dec 2013 B1
8650586 Lee et al. Feb 2014 B2
8675706 Seurin et al. Mar 2014 B2
8723029 Pyczak et al. May 2014 B2
8738394 Kuo May 2014 B2
8743923 Geske et al. Jun 2014 B2
8753114 Vuillemot Jun 2014 B2
8767270 Curry et al. Jul 2014 B2
8768016 Pan et al. Jul 2014 B2
8771149 Rahman et al. Jul 2014 B2
8839476 Adachi Sep 2014 B2
8843381 Kuo et al. Sep 2014 B2
8856053 Mah Oct 2014 B2
8870566 Bergersen Oct 2014 B2
8874452 Kuo Oct 2014 B2
8878905 Fisker et al. Nov 2014 B2
8886702 Hering et al. Nov 2014 B2
8896592 Boltunov et al. Nov 2014 B2
8899976 Chen et al. Dec 2014 B2
8936463 Mason et al. Jan 2015 B2
8948482 Levin Feb 2015 B2
8956058 Rosch Feb 2015 B2
8992216 Karazivan Mar 2015 B2
9022792 Sticker et al. May 2015 B2
9039418 Rubbert May 2015 B1
9084535 Girkin et al. Jul 2015 B2
9108338 Sirovskiy et al. Aug 2015 B2
9144512 Wagner Sep 2015 B2
9192305 Levin Nov 2015 B2
9204952 Lampalzer Dec 2015 B2
9211166 Kuo et al. Dec 2015 B2
9220580 Borovinskih et al. Dec 2015 B2
9241774 Li et al. Jan 2016 B2
9242118 Brawn Jan 2016 B2
9261358 Atiya et al. Feb 2016 B2
9336336 Deichmann et al. May 2016 B2
9351810 Moon May 2016 B2
9375300 Matov et al. Jun 2016 B2
9381810 Nelson et al. Jul 2016 B2
9403238 Culp Aug 2016 B2
9408743 Wagner Aug 2016 B1
9414897 Wu et al. Aug 2016 B2
9433476 Khardekar et al. Sep 2016 B2
9439568 Atiya et al. Sep 2016 B2
9444981 Bellis et al. Sep 2016 B2
9463287 Lorberbaum et al. Oct 2016 B1
9492243 Kuo Nov 2016 B2
9500635 Islam Nov 2016 B2
9506808 Jeon et al. Nov 2016 B2
9510918 Sanchez Dec 2016 B2
9545331 Ingemarsson-Matzen Jan 2017 B2
9584771 Mandelis et al. Feb 2017 B2
9610141 Kopelman et al. Apr 2017 B2
9675427 Kopelman Jun 2017 B2
9675430 Verker et al. Jun 2017 B2
9693839 Atiya et al. Jul 2017 B2
9730769 Chen et al. Aug 2017 B2
9744006 Ross Aug 2017 B2
9795461 Kopelman et al. Oct 2017 B2
9848985 Yang et al. Dec 2017 B2
9861451 Davis Jan 2018 B1
9936186 Jesenko et al. Apr 2018 B2
10123706 Elbaz et al. Nov 2018 B2
10130445 Kopelman et al. Nov 2018 B2
10154889 Chen et al. Dec 2018 B2
10159541 Bindayel Dec 2018 B2
10231801 Korytov et al. Mar 2019 B2
10248883 Borovinskih et al. Apr 2019 B2
10258432 Webber Apr 2019 B2
10390913 Sabina et al. Aug 2019 B2
10449016 Kimura et al. Oct 2019 B2
10470847 Shanjani et al. Nov 2019 B2
10504386 Levin et al. Dec 2019 B2
10517482 Sato et al. Dec 2019 B2
10585958 Elbaz et al. Mar 2020 B2
10595966 Carrier, Jr. et al. Mar 2020 B2
10606911 Elbaz et al. Mar 2020 B2
10613515 Cramer et al. Apr 2020 B2
10639134 Shanjani et al. May 2020 B2
10813727 Sabina et al. Oct 2020 B2
10980613 Shanjani et al. Apr 2021 B2
10993783 Wu et al. May 2021 B2
20010002310 Chishti et al. May 2001 A1
20010032100 Mahmud et al. Oct 2001 A1
20010038705 Rubbert et al. Nov 2001 A1
20010041320 Phan et al. Nov 2001 A1
20010054231 Miller et al. Dec 2001 A1
20020004727 Knaus et al. Jan 2002 A1
20020007284 Schurenberg et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020015934 Rubbert et al. Feb 2002 A1
20020025503 Chapoulaud et al. Feb 2002 A1
20020026105 Drazen Feb 2002 A1
20020028417 Chapoulaud et al. Mar 2002 A1
20020035572 Takatori et al. Mar 2002 A1
20020064752 Durbin et al. May 2002 A1
20020064759 Durbin et al. May 2002 A1
20020087551 Hickey et al. Jul 2002 A1
20020107853 Hofmann et al. Aug 2002 A1
20020188478 Breeland et al. Dec 2002 A1
20020192617 Phan et al. Dec 2002 A1
20030000927 Kanaya et al. Jan 2003 A1
20030009252 Pavlovskaia et al. Jan 2003 A1
20030019848 Nicholas et al. Jan 2003 A1
20030021453 Weise et al. Jan 2003 A1
20030035061 Iwaki et al. Feb 2003 A1
20030049581 Deluke Mar 2003 A1
20030057192 Patel Mar 2003 A1
20030059736 Lai et al. Mar 2003 A1
20030060532 Subelka et al. Mar 2003 A1
20030068598 Vallittu et al. Apr 2003 A1
20030095697 Wood et al. May 2003 A1
20030101079 McLaughlin May 2003 A1
20030103060 Anderson et al. Jun 2003 A1
20030120517 Eida et al. Jun 2003 A1
20030139834 Nikolskiy et al. Jul 2003 A1
20030144886 Taira Jul 2003 A1
20030172043 Guyon et al. Sep 2003 A1
20030190575 Hilliard Oct 2003 A1
20030192867 Yamazaki et al. Oct 2003 A1
20030207224 Lotte Nov 2003 A1
20030215764 Kopelman et al. Nov 2003 A1
20030224311 Cronauer Dec 2003 A1
20030224313 Bergersen Dec 2003 A1
20030224314 Bergersen Dec 2003 A1
20040002873 Sachdeva Jan 2004 A1
20040009449 Mah et al. Jan 2004 A1
20040013994 Goldberg et al. Jan 2004 A1
20040013996 Sapian Jan 2004 A1
20040019262 Perelgut Jan 2004 A1
20040029078 Marshall Feb 2004 A1
20040038168 Choi et al. Feb 2004 A1
20040054304 Raby Mar 2004 A1
20040054358 Cox et al. Mar 2004 A1
20040058295 Bergersen Mar 2004 A1
20040068199 Echauz et al. Apr 2004 A1
20040078222 Khan et al. Apr 2004 A1
20040080621 Fisher et al. Apr 2004 A1
20040094165 Cook May 2004 A1
20040107118 Harnsberger et al. Jun 2004 A1
20040133083 Comaniciu et al. Jul 2004 A1
20040152036 Abolfathi Aug 2004 A1
20040158194 Wolff et al. Aug 2004 A1
20040166463 Wen et al. Aug 2004 A1
20040167646 Jelonek et al. Aug 2004 A1
20040193036 Zhou et al. Sep 2004 A1
20040197728 Abolfathi et al. Oct 2004 A1
20040214128 Sachdeva et al. Oct 2004 A1
20040219479 Malin et al. Nov 2004 A1
20040220691 Hofmeister et al. Nov 2004 A1
20040229185 Knopp Nov 2004 A1
20040259049 Kopelman et al. Dec 2004 A1
20050003318 Choi et al. Jan 2005 A1
20050023356 Wiklof et al. Feb 2005 A1
20050031196 Moghaddam et al. Feb 2005 A1
20050037312 Uchida Feb 2005 A1
20050038669 Sachdeva et al. Feb 2005 A1
20050040551 Biegler et al. Feb 2005 A1
20050042569 Phan et al. Feb 2005 A1
20050042577 Kvitrud et al. Feb 2005 A1
20050048433 Hilliard Mar 2005 A1
20050074717 Cleary et al. Apr 2005 A1
20050089822 Geng Apr 2005 A1
20050100333 Kerschbaumer et al. May 2005 A1
20050108052 Omaboe May 2005 A1
20050131738 Morris Jun 2005 A1
20050144150 Ramamurthy et al. Jun 2005 A1
20050171594 Machan et al. Aug 2005 A1
20050171630 Dinauer et al. Aug 2005 A1
20050181333 Karazivan et al. Aug 2005 A1
20050186524 Abolfathi et al. Aug 2005 A1
20050186526 Stewart et al. Aug 2005 A1
20050216314 Secor Sep 2005 A1
20050233276 Kopelman et al. Oct 2005 A1
20050239013 Sachdeva Oct 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050244791 Davis et al. Nov 2005 A1
20050271996 Sporbert et al. Dec 2005 A1
20060056670 Hamadeh Mar 2006 A1
20060057533 McGann Mar 2006 A1
20060063135 Mehl Mar 2006 A1
20060078842 Sachdeva et al. Apr 2006 A1
20060084024 Farrell Apr 2006 A1
20060093982 Wen May 2006 A1
20060098007 Rouet et al. May 2006 A1
20060099545 Lai et al. May 2006 A1
20060099546 Bergersen May 2006 A1
20060110698 Robson May 2006 A1
20060111631 Kelliher et al. May 2006 A1
20060115785 Li et al. Jun 2006 A1
20060137813 Robrecht et al. Jun 2006 A1
20060147872 Andreiko Jul 2006 A1
20060154198 Durbin et al. Jul 2006 A1
20060154207 Kuo Jul 2006 A1
20060173715 Wang Aug 2006 A1
20060183082 Quadling et al. Aug 2006 A1
20060188834 Hilliard Aug 2006 A1
20060188848 Tricca et al. Aug 2006 A1
20060194163 Tricca et al. Aug 2006 A1
20060199153 Liu et al. Sep 2006 A1
20060204078 Orth et al. Sep 2006 A1
20060223022 Solomon Oct 2006 A1
20060223023 Lai et al. Oct 2006 A1
20060223032 Fried et al. Oct 2006 A1
20060223342 Borst et al. Oct 2006 A1
20060234179 Wen et al. Oct 2006 A1
20060257815 De Dominicis Nov 2006 A1
20060275729 Fornoff Dec 2006 A1
20060275731 Wen et al. Dec 2006 A1
20060275736 Wen et al. Dec 2006 A1
20060277075 Salwan Dec 2006 A1
20060290693 Zhou et al. Dec 2006 A1
20060292520 Dillon et al. Dec 2006 A1
20070031775 Andreiko Feb 2007 A1
20070037111 Mailyn Feb 2007 A1
20070037112 Mailyn Feb 2007 A1
20070046865 Umeda et al. Mar 2007 A1
20070053048 Kumar et al. Mar 2007 A1
20070054237 Neuschafer Mar 2007 A1
20070065768 Nadav Mar 2007 A1
20070087300 Willison et al. Apr 2007 A1
20070087302 Reising et al. Apr 2007 A1
20070106138 Beiski et al. May 2007 A1
20070122592 Anderson et al. May 2007 A1
20070141525 Cinader, Jr. Jun 2007 A1
20070141526 Eisenberg et al. Jun 2007 A1
20070143135 Lindquist et al. Jun 2007 A1
20070168152 Matov et al. Jul 2007 A1
20070172112 Paley et al. Jul 2007 A1
20070172291 Yokoyama Jul 2007 A1
20070178420 Keski-Nisula et al. Aug 2007 A1
20070183633 Hoffmann Aug 2007 A1
20070184402 Boutoussov et al. Aug 2007 A1
20070185732 Hicks et al. Aug 2007 A1
20070192137 Ombrellaro Aug 2007 A1
20070199929 Rippl et al. Aug 2007 A1
20070215582 Roeper et al. Sep 2007 A1
20070218422 Ehrenfeld Sep 2007 A1
20070231765 Phan et al. Oct 2007 A1
20070238065 Sherwood et al. Oct 2007 A1
20070239488 Derosso Oct 2007 A1
20070263226 Kurtz et al. Nov 2007 A1
20080013727 Uemura Jan 2008 A1
20080020350 Matov et al. Jan 2008 A1
20080045053 Stadler et al. Feb 2008 A1
20080057461 Cheng et al. Mar 2008 A1
20080057467 Gittelson Mar 2008 A1
20080057479 Grenness Mar 2008 A1
20080059238 Park et al. Mar 2008 A1
20080062429 Liang et al. Mar 2008 A1
20080090208 Rubbert Apr 2008 A1
20080094389 Rouet et al. Apr 2008 A1
20080113317 Kemp et al. May 2008 A1
20080115791 Heine May 2008 A1
20080118882 Su May 2008 A1
20080118886 Liang et al. May 2008 A1
20080141534 Hilliard Jun 2008 A1
20080169122 Shiraishi et al. Jul 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080176448 Muller et al. Jul 2008 A1
20080182220 Chishti et al. Jul 2008 A1
20080233530 Cinader Sep 2008 A1
20080242144 Dietz Oct 2008 A1
20080254402 Hilliard Oct 2008 A1
20080254403 Hilliard Oct 2008 A1
20080268400 Moss et al. Oct 2008 A1
20080306724 Kitching et al. Dec 2008 A1
20090029310 Pumphrey et al. Jan 2009 A1
20090030290 Kozuch et al. Jan 2009 A1
20090030347 Cao Jan 2009 A1
20090040740 Muller et al. Feb 2009 A1
20090061379 Yamamoto et al. Mar 2009 A1
20090061381 Durbin et al. Mar 2009 A1
20090075228 Kumada et al. Mar 2009 A1
20090087050 Gandyra Apr 2009 A1
20090098502 Andreiko Apr 2009 A1
20090099445 Burger Apr 2009 A1
20090103579 Ushimaru et al. Apr 2009 A1
20090105523 Kass et al. Apr 2009 A1
20090130620 Yazdi et al. May 2009 A1
20090136890 Kang et al. May 2009 A1
20090136893 Zegarelli May 2009 A1
20090148809 Kuo et al. Jun 2009 A1
20090170050 Marcus Jul 2009 A1
20090181346 Orth Jul 2009 A1
20090191502 Cao et al. Jul 2009 A1
20090208897 Kuo Aug 2009 A1
20090210032 Beiski et al. Aug 2009 A1
20090218514 Klunder et al. Sep 2009 A1
20090280450 Kuo Nov 2009 A1
20090281433 Saadat et al. Nov 2009 A1
20090286195 Sears et al. Nov 2009 A1
20090298017 Boerjes et al. Dec 2009 A1
20090305540 Stadler et al. Dec 2009 A1
20090316966 Marshall et al. Dec 2009 A1
20090317757 Lemchen Dec 2009 A1
20100015565 Carrillo et al. Jan 2010 A1
20100019170 Hart et al. Jan 2010 A1
20100028825 Lemchen Feb 2010 A1
20100045902 Ikeda et al. Feb 2010 A1
20100047732 Park Feb 2010 A1
20100062394 Jones et al. Mar 2010 A1
20100068676 Mason et al. Mar 2010 A1
20100075268 Duran Von Arx Mar 2010 A1
20100138025 Morton et al. Jun 2010 A1
20100142789 Chang et al. Jun 2010 A1
20100145664 Hultgren et al. Jun 2010 A1
20100145898 Malfliet et al. Jun 2010 A1
20100152599 Duhamel et al. Jun 2010 A1
20100165275 Tsukamoto et al. Jul 2010 A1
20100167225 Kuo Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100193482 Ow et al. Aug 2010 A1
20100196837 Farrell Aug 2010 A1
20100216085 Kopelman Aug 2010 A1
20100217130 Weinlaender Aug 2010 A1
20100231577 Kim et al. Sep 2010 A1
20100268363 Karim et al. Oct 2010 A1
20100268515 Vogt et al. Oct 2010 A1
20100279243 Cinader, Jr. et al. Nov 2010 A1
20100279245 Navarro Nov 2010 A1
20100280798 Pattijn et al. Nov 2010 A1
20100281370 Rohaly et al. Nov 2010 A1
20100303316 Bullis et al. Dec 2010 A1
20100312484 Duhamel et al. Dec 2010 A1
20100327461 Co et al. Dec 2010 A1
20110007920 Abolfathi et al. Jan 2011 A1
20110012901 Kaplanyan Jan 2011 A1
20110020761 Kalili Jan 2011 A1
20110027743 Cinader, Jr. et al. Feb 2011 A1
20110045428 Boltunov et al. Feb 2011 A1
20110056350 Gale et al. Mar 2011 A1
20110065060 Teixeira et al. Mar 2011 A1
20110081625 Fuh Apr 2011 A1
20110091832 Kim et al. Apr 2011 A1
20110102549 Takahashi May 2011 A1
20110102566 Zakian et al. May 2011 A1
20110104630 Matov et al. May 2011 A1
20110136072 Li et al. Jun 2011 A1
20110136090 Kazemi Jun 2011 A1
20110143300 Villaalba Jun 2011 A1
20110143673 Landesman et al. Jun 2011 A1
20110159452 Huang Jun 2011 A1
20110164810 Zang et al. Jul 2011 A1
20110207072 Schiemann Aug 2011 A1
20110212420 Vuillemot Sep 2011 A1
20110220623 Beutler Sep 2011 A1
20110235045 Koerner et al. Sep 2011 A1
20110240064 Wales et al. Oct 2011 A1
20110262881 Mauclaire Oct 2011 A1
20110269092 Kuo et al. Nov 2011 A1
20110316994 Lemchen Dec 2011 A1
20120028210 Hegyi et al. Feb 2012 A1
20120029883 Heinz et al. Feb 2012 A1
20120040311 Nilsson Feb 2012 A1
20120064477 Schmitt Mar 2012 A1
20120081786 Mizu et al. Apr 2012 A1
20120086681 Kim et al. Apr 2012 A1
20120115107 Adams May 2012 A1
20120129117 McCance May 2012 A1
20120147912 Moench et al. Jun 2012 A1
20120150494 Anderson et al. Jun 2012 A1
20120172678 Logan et al. Jul 2012 A1
20120281293 Gronenborn et al. Nov 2012 A1
20120295216 Dykes et al. Nov 2012 A1
20120322025 Ozawa et al. Dec 2012 A1
20130029284 Teasdale Jan 2013 A1
20130081272 Johnson et al. Apr 2013 A1
20130089828 Borovinskih et al. Apr 2013 A1
20130095446 Andreiko et al. Apr 2013 A1
20130103176 Kopelman et al. Apr 2013 A1
20130110469 Kopelman May 2013 A1
20130150689 Shaw-Klein Jun 2013 A1
20130163627 Seurin et al. Jun 2013 A1
20130201488 Ishihara Aug 2013 A1
20130204599 Matov et al. Aug 2013 A1
20130209952 Kuo et al. Aug 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130252195 Popat Sep 2013 A1
20130266326 Joseph et al. Oct 2013 A1
20130278396 Kimmel Oct 2013 A1
20130280671 Brawn et al. Oct 2013 A1
20130286114 Ito et al. Oct 2013 A1
20130286174 Urakabe Oct 2013 A1
20130293824 Yoneyama et al. Nov 2013 A1
20130323664 Parker Dec 2013 A1
20130323671 Dillon et al. Dec 2013 A1
20130323674 Hakomori et al. Dec 2013 A1
20130325431 See et al. Dec 2013 A1
20130337412 Kwon Dec 2013 A1
20140061974 Tyler Mar 2014 A1
20140081091 Abolfathi et al. Mar 2014 A1
20140093160 Porikli et al. Apr 2014 A1
20140100495 Haseley Apr 2014 A1
20140106289 Kozlowski Apr 2014 A1
20140122027 Andreiko et al. May 2014 A1
20140142902 Chelnokov et al. May 2014 A1
20140170591 El-Siblani Jun 2014 A1
20140178829 Kim Jun 2014 A1
20140186794 Deichmann et al. Jul 2014 A1
20140220520 Salamini Aug 2014 A1
20140265034 Dudley Sep 2014 A1
20140272774 Dillon et al. Sep 2014 A1
20140294273 Jaisson Oct 2014 A1
20140313299 Gebhardt et al. Oct 2014 A1
20140329194 Sachdeva et al. Nov 2014 A1
20140342299 Jung Nov 2014 A1
20140342301 Fleer et al. Nov 2014 A1
20140350354 Stenzler et al. Nov 2014 A1
20140363778 Parker Dec 2014 A1
20150002649 Nowak et al. Jan 2015 A1
20150004553 Li et al. Jan 2015 A1
20150021210 Kesling Jan 2015 A1
20150031940 Floyd Jan 2015 A1
20150079530 Bergersen Mar 2015 A1
20150079531 Heine Mar 2015 A1
20150094564 Tashman et al. Apr 2015 A1
20150097315 DeSimone et al. Apr 2015 A1
20150097316 DeSimone et al. Apr 2015 A1
20150102532 DeSimone et al. Apr 2015 A1
20150140502 Brawn et al. May 2015 A1
20150150501 George et al. Jun 2015 A1
20150164335 Van Der Poel et al. Jun 2015 A1
20150173856 Iowe et al. Jun 2015 A1
20150182303 Abraham et al. Jul 2015 A1
20150216626 Ranjbar Aug 2015 A1
20150216716 Anitua Aug 2015 A1
20150230885 Wucher Aug 2015 A1
20150238280 Wu et al. Aug 2015 A1
20150238283 Tanugula et al. Aug 2015 A1
20150257856 Martz et al. Sep 2015 A1
20150306486 Logan et al. Oct 2015 A1
20150320320 Kopelman et al. Nov 2015 A1
20150325044 Lebovitz Nov 2015 A1
20150338209 Knüttel Nov 2015 A1
20150351638 Amato Dec 2015 A1
20150366637 Kopelman Dec 2015 A1
20150374469 Konno et al. Dec 2015 A1
20160000332 Atiya et al. Jan 2016 A1
20160003610 Lampert et al. Jan 2016 A1
20160022185 Agarwal et al. Jan 2016 A1
20160042509 Andreiko et al. Feb 2016 A1
20160051345 Levin Feb 2016 A1
20160064898 Atiya et al. Mar 2016 A1
20160135924 Choi et al. May 2016 A1
20160135925 Mason et al. May 2016 A1
20160157962 Kim et al. Jun 2016 A1
20160163115 Furst Jun 2016 A1
20160193014 Morton et al. Jul 2016 A1
20160217708 Levin et al. Jul 2016 A1
20160220105 Duret Aug 2016 A1
20160220200 Sandholm et al. Aug 2016 A1
20160225151 Cocco et al. Aug 2016 A1
20160228213 Tod et al. Aug 2016 A1
20160242811 Sadiq et al. Aug 2016 A1
20160242871 Morton et al. Aug 2016 A1
20160246936 Kahn Aug 2016 A1
20160287358 Nowak et al. Oct 2016 A1
20160296303 Parker Oct 2016 A1
20160328843 Graham et al. Nov 2016 A1
20160346063 Schulhof et al. Dec 2016 A1
20160367188 Malik et al. Dec 2016 A1
20170007365 Kopelman et al. Jan 2017 A1
20170007366 Kopelman et al. Jan 2017 A1
20170007367 Li et al. Jan 2017 A1
20170007368 Boronkay Jan 2017 A1
20170049326 Alfano et al. Feb 2017 A1
20170056131 Alauddin et al. Mar 2017 A1
20170079747 Graf et al. Mar 2017 A1
20170086943 Mah Mar 2017 A1
20170100209 Wen Apr 2017 A1
20170100212 Sherwood et al. Apr 2017 A1
20170100213 Kuo Apr 2017 A1
20170100214 Wen Apr 2017 A1
20170105815 Matov et al. Apr 2017 A1
20170105816 Ward Apr 2017 A1
20170105817 Chun et al. Apr 2017 A1
20170135792 Webber May 2017 A1
20170135793 Webber et al. May 2017 A1
20170165032 Webber et al. Jun 2017 A1
20170215739 Miyasato Aug 2017 A1
20170231722 Boronkay et al. Aug 2017 A1
20170251954 Lotan et al. Sep 2017 A1
20170265967 Hong Sep 2017 A1
20170319054 Miller et al. Nov 2017 A1
20170319296 Webber et al. Nov 2017 A1
20170325690 Salah et al. Nov 2017 A1
20170340411 Akselrod Nov 2017 A1
20180000563 Shanjani et al. Jan 2018 A1
20180000565 Shanjani et al. Jan 2018 A1
20180028064 Elbaz et al. Feb 2018 A1
20180071054 Ha Mar 2018 A1
20180085059 Lee Mar 2018 A1
20180125610 Carrier, Jr. et al. May 2018 A1
20180153648 Shanjani Jun 2018 A1
20180153649 Wu et al. Jun 2018 A1
20180153733 Kuo Jun 2018 A1
20180168776 Webber Jun 2018 A1
20180168788 Fernie Jun 2018 A1
20180192877 Atiya et al. Jul 2018 A1
20180200031 Webber Jul 2018 A1
20180228359 Meyer et al. Aug 2018 A1
20180280118 Cramer Oct 2018 A1
20180280125 Longley et al. Oct 2018 A1
20180284727 Cramer et al. Oct 2018 A1
20180318042 Baek et al. Nov 2018 A1
20180325626 Huang Nov 2018 A1
20180353264 Riley et al. Dec 2018 A1
20180360567 Xue et al. Dec 2018 A1
20180368944 Sato Dec 2018 A1
20190019187 Miller et al. Jan 2019 A1
20190021817 Sato et al. Jan 2019 A1
20190026599 Salah et al. Jan 2019 A1
20190029784 Moalem et al. Jan 2019 A1
20190046296 Kopelman et al. Feb 2019 A1
20190046297 Kopelman et al. Feb 2019 A1
20190069975 Cam et al. Mar 2019 A1
20190076214 Nyukhtikov et al. Mar 2019 A1
20190076216 Moss et al. Mar 2019 A1
20190090983 Webber et al. Mar 2019 A1
20190099129 Kopelman et al. Apr 2019 A1
20190105130 Grove et al. Apr 2019 A1
20190125494 Li et al. May 2019 A1
20190152152 O'Leary et al. May 2019 A1
20190171618 Kuo Jun 2019 A1
20190175303 Akopov et al. Jun 2019 A1
20190175304 Morton et al. Jun 2019 A1
20190192259 Kopelman et al. Jun 2019 A1
20190231477 Shanjani et al. Aug 2019 A1
20190231492 Sabina et al. Aug 2019 A1
20190338067 Liska et al. Nov 2019 A1
20190343606 Wu et al. Nov 2019 A1
20200046463 Kimura et al. Feb 2020 A1
20200405451 Lemchen Dec 2020 A1
20210068926 Wu et al. Mar 2021 A1
20210259812 O'Leary et al. Aug 2021 A1
Foreign Referenced Citations (135)
Number Date Country
517102 Nov 1977 AU
3031677 Nov 1977 AU
1121955 Apr 1982 CA
201101586 Aug 2008 CN
101426449 May 2009 CN
101442953 May 2009 CN
101677842 Mar 2010 CN
201609421 Oct 2010 CN
203369975 Jan 2014 CN
103889364 Jun 2014 CN
104000662 Aug 2014 CN
204092220 Jan 2015 CN
104379087 Feb 2015 CN
204863317 Dec 2015 CN
105266907 Jan 2016 CN
105496575 Apr 2016 CN
105997274 Oct 2016 CN
106667594 May 2017 CN
2749802 May 1978 DE
3526198 Feb 1986 DE
4207169 Sep 1993 DE
69327661 Jul 2000 DE
102005043627 Mar 2007 DE
102009023357 Dec 2010 DE
202010017014 Mar 2011 DE
102011051443 Jan 2013 DE
202012011899 Jan 2013 DE
102014225457 Jun 2016 DE
0428152 May 1991 EP
490848 Jun 1992 EP
541500 May 1993 EP
714632 May 1997 EP
774933 Dec 2000 EP
731673 May 2001 EP
1941843 Jul 2008 EP
2211753 Aug 2010 EP
2437027 Apr 2012 EP
2447754 May 2012 EP
1989764 Jul 2012 EP
2332221 Nov 2012 EP
2596553 Dec 2013 EP
2612300 Feb 2015 EP
463897 Jan 1980 ES
2455066 Apr 2014 ES
2369828 Jun 1978 FR
2867377 Sep 2005 FR
2930334 Oct 2009 FR
1550777 Aug 1979 GB
53-058191 May 1978 JP
04-028359 Jan 1992 JP
08-508174 Sep 1996 JP
H0919443 Jan 1997 JP
2000339468 Dec 2000 JP
2003245289 Sep 2003 JP
2006043121 Feb 2006 JP
2007151614 Jun 2007 JP
2007260158 Oct 2007 JP
2007537824 Dec 2007 JP
2008067732 Mar 2008 JP
2008523370 Jul 2008 JP
04184427 Nov 2008 JP
2009000412 Jan 2009 JP
2009018173 Jan 2009 JP
2009205330 Sep 2009 JP
2010017726 Jan 2010 JP
2011087733 May 2011 JP
2012045143 Mar 2012 JP
2013007645 Jan 2013 JP
2013192865 Sep 2013 JP
201735173 Feb 2017 JP
20020062793 Jul 2002 KR
20070108019 Nov 2007 KR
20090065778 Jun 2009 KR
101266966 May 2013 KR
20160041632 Apr 2016 KR
20160071127 Jun 2016 KR
101675089 Nov 2016 KR
20160133921 Nov 2016 KR
480166 Mar 2002 TW
WO91004713 Apr 1991 WO
WO-9203102 Mar 1992 WO
WO94010935 May 1994 WO
WO9623452 Aug 1996 WO
WO98032394 Jul 1998 WO
WO98044865 Oct 1998 WO
WO-0108592 Feb 2001 WO
WO-0180762 Nov 2001 WO
WO-0185047 Nov 2001 WO
WO-0217776 Mar 2002 WO
WO-02062252 Aug 2002 WO
WO-02095475 Nov 2002 WO
WO03003932 Jan 2003 WO
WO2006096558 Sep 2006 WO
WO2006100700 Sep 2006 WO
WO-2006133548 Dec 2006 WO
WO-2007019709 Feb 2007 WO
WO-2007071341 Jun 2007 WO
WO-2007103377 Sep 2007 WO
WO-2008115654 Sep 2008 WO
WO-2009016645 Feb 2009 WO
WO-2009085752 Jul 2009 WO
WO-2009146788 Dec 2009 WO
WO-2009146789 Dec 2009 WO
WO2010123892 Oct 2010 WO
WO-2012007003 Jan 2012 WO
WO-2012042547 Apr 2012 WO
WO-2012064684 May 2012 WO
WO-2012074304 Jun 2012 WO
WO-2012078980 Jun 2012 WO
WO-2012083968 Jun 2012 WO
WO-2012140021 Oct 2012 WO
WO2013058879 Apr 2013 WO
WO2013176444 Nov 2013 WO
WO2014068107 May 2014 WO
WO-2014091865 Jun 2014 WO
WO-2014143911 Sep 2014 WO
WO-2015015289 Feb 2015 WO
WO-2015063032 May 2015 WO
WO-2015112638 Jul 2015 WO
WO-2015176004 Nov 2015 WO
WO-2016004415 Jan 2016 WO
WO2016028106 Feb 2016 WO
WO-2016042393 Mar 2016 WO
WO-2016042396 Mar 2016 WO
WO-2016061279 Apr 2016 WO
WO-2016084066 Jun 2016 WO
WO-2016099471 Jun 2016 WO
WO-2016113745 Jul 2016 WO
WO-2016116874 Jul 2016 WO
WO2016149007 Sep 2016 WO
WO-2016200177 Dec 2016 WO
WO2017006176 Jan 2017 WO
WO-2017182654 Oct 2017 WO
WO-2018057547 Mar 2018 WO
WO-2018085718 May 2018 WO
Non-Patent Literature Citations (257)
Entry
US 8,553,966 B1, 10/2013, Alpern et al. (withdrawn)
3 Shape Trios 3, Insane speed-scanning with 3shape trios 3 intracral canner, (Screenshot), 2 pages, retrieved from the internet at You Tube (https//www.youtube.com/watch?v=X5CviUZ5DpQ&feature=youtu.be, available as of Sep. 18, 2015.
Alves R.C., et al., “New Trends In Food Allergens Detection: Toward Biosensing Strategies”, Critical Reviews in Food Science and Nutrition, Mar. 2015, 18 pages.
Arakawa et al., Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor, Biosensors and Bioelectronics, Oct. 2016, 84, pp. 106-111.
Bandodkar et al., Allprinted magnetically selfhealing electrochemical devices, Science Advances, Nov. 2016, 2(11), 11 pages, e1601465.
Bandodkar et al., Self-healing inks for autonomous repair of printable electrochemical devices, Advanced Electronic Materials, Dec. 2015, 1(12), 5 pages, 1500289.
Bandodkar et al., Wearable biofuel cells: a review; Electroanalysis, Jun. 2016, 28 (6), pp. 1188-1200.
Bandodkar et al., Wearable chemical sensors: present challenges and future prospects; Acs Sensors, May 11, 2016, 1(5), pp. 464-482.
Berland, The use of smile libraries for cosmetic dentistry, Dental Tribunne: Asia pacfic Edition, Mar. 29, 2006, p. 16 18.
Bernabe et al., Are the lower incisors the best predictors for the unerupted canine and premolars sums? An analysis of peruvian sample, The Angle Orthodontist, Mar. 2005, 75(2), pp. 202-207.
Bookstein, Principal warps: Thin-plate splines and decomposition of deformations, IEEE Transactions on pattern analysis and machine intelligence, Jun. 1989, 11 (6), pp. 567-585.
Cadent Inc., OrthoCAD ABO user guide, 38 pages, Dec. 21, 2005.
Cadent Inc., Reviewing and modifying an orthoCAD case, 4 pages, Feb. 14, 2005.
Collins English Dictionary, Teeth (definition), 9 pages, retrieved from the internet (https://www.collinsdictionary.com/us/dictionary/english/teeth) on May 13, 2019.
Daniels et al., The development of the index of complexity outcome and need (ICON), British Journal of Orthodontics, Jun. 2000, 27(2), pp. 149-162.
Dental Monitoring, “Basics: How to put your Cheek Retractor? (Dental Monitoring Tutorial)”, https:/lwww.youtube.com/watch?v=6K1HXw4Kq3c, May 27, 2016.
Dental Monitoring, Dental monitoring tutdrial, 1 page (Screenshot), retrieved from the internet (https:www.youtube.com/watch?v=Dbe3ud0f9_c), Mar. 18, 2015.
Dentrix, “Dentrix G3, New Features”. http://www.dentrix.com/g3/new_features/index.asp, accessed Jun. 6, 2008, 2 pgs.
Di Giacomo et al., Clinical application of sterolithographic surgical guides for implant placement: Preliminary results, Journal Periodontolgy, Apr. 2005, 76(4), pp. 503-507.
DICOM to surgical guides; (Screenshot); 1 page; retrieved from the internet at YouTube (https://youtu.be/47KtOmCEFQk); Published Apr. 4, 2016.
dictionary.com, Plural (definition), 6 pages, retrieved from the internet (https://www.dictionary.eom/browse/plural#) on May 13, 2019.
dictionary.com, Quadrant (definition), 6 pages, retrieved from the internet (https://www.dictionary.com/browse/quadrant?s=t) on May 13, 2019.
Doruk et al., The role of the headgear timer in extraoral co-operation, European Journal of Orthodontics, Jun. 1, 2004, 26, pp. 289-291.
Dummer et al., Computed Radiography Imaging Based on High-Density 670 nm VCSEL Arrays, International Society for Optics and Photonics, Feb. 24, 2010., vol. 7557, p. 75570H, 7 pages, (Author Manuscript).
Eclinger Selfie, Change your smile, 1 page (screenshot), retrieved from the internet https://play.google.com/store/apps/details?id=parkelict.ecligner), on Feb. 13, 2018.
Farooq et al., Relationship between tooth dimensions and malocclusion, JPMA: The Journal of the Pakistan Medical Association, 64(6), pp. 670-674, Jun. 2014.
Friedrich et al., “Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy”, J. Biomech., 32(1), pp. 81-85, (Abstract only) Jan. 1999.
Geomagic, Dental reconstruction, 1 page, retrieved from the internet (http://geomagic.com/en/solutions/industry/detal_desc.php) on Jun. 6, 2008.
Gim Alldent Deutschland, “Das DUX System: Die Technik,” 2 pages total (2002).
Gottschalk et al., “OBBTree: A hierarchical structure for rapid interference detection” (http://www.cs.unc.edu/?geom/OBB/OBBT.html); relieved from the internet (https://www.cse.iitk.ac.in/users/amiUcourses/RMP/presentations/dslamba/presentation/sig96.pdf) on Apr. 25, 2019,12 pages.
gpsdentaire.com, Get a realistic smile simulation in 4 steps with GPS, a smile management software, 10 pages, retrieved from the internet (http://www.gpsdentaire.com/en/preview/) on Jun. 6, 2008.
Grest, Daniel, Marker-Free Human Motion Capture in Dynamic Cluttered Environments from a Single View-Point:, PhD Thesis, 171 pages, 2007, Kiel, Germany, XP055320155. [retrieved on Nov. 16, 2016] Retrieved from the Internet: [http://www.grest.org/publications/thesisDanielGrest.pdf].
Hou H.M., et al., “The Uses of Orthodontic Study Models in Diagnosis and Treatment Planning”, Hong Kong Dental Journal, Dec. 2006, vol. 3(2), pp. 107-115.
Imani et al., Awearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring, Nature Communications, 7, 11650. doi 1038/ncomms11650, 7 pages, May 23, 2016.
Invisalign., You were made to move. There's never been a better time to straighten your teeth with the most advanced clear aligner in the world', Product webpage, 2 pages, retrieved from the internet (www.invisalign.com/) on Dec. 28, 2017.
Jeerapan et al., Stretchable biofuel cells as wearable textile-based self-powered sensors, Journal of Materials Chemistry A, 4(47), pp. 18342-18353, Dec. 21, 2016.
Karaman et al., A practical method of fabricating a lingual retainer, Am. Journal of Orthodontic and Dentofacial Orthopedics, Sep. 2003, 124(3), pp. 327-330.
Kim et al., A wearable fingernail chemical sensing platform: pH sensing at your fingertips, Taianta, 150, pp. 622-628, Apr. 2016.
Kim et al., Advanced materials for printed wearable electrochemical devices: A review, Advanced Electronic Materials, 3(1), 15 pages, 1600260, Jan. 2017.
Kim et al., Noninvasive alcohol monitoring using a wearable tatto-based iontophoretic-biosensing system, Acs Sensors, 1(8), pp. 1011-1019, Jul. 22, 2016.
Kim et al., Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics, Biosensors and Bioelectronics, 74, pp. 1061-1068 (Author Manuscript), Dec. 2015.
Kumar et al., All-printed, stretchable Zn—Ag2o rechargeable battery via, hyperelastic binder for self-powering wearable electronics, Advanced Energy Materials, Apr. 2017, 7(8), 8 pages, 1602096.
Kumar et al., Rapid maxillary expansion: A unique treatment modality in dentistry, J. Clin. Diagn. Res., 5(4 ), pp. 906-911, Aug. 2011.
Mantzikos et al., Case report: Forced eruption and implant site development, The Angle Orthodontist, 68(2), pp. 179-186, Apr. 1998.
Martinelli et al., Prediction of lower permanent canine and premolars width by correlation methods, The Angle Orthodontist, 75(5), pp. 805-808, Sep. 2005.
Methot; Get the picture with a gps for smile design in 3 steps; Spectrum; 5(4); pp. 100-105; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2006.
Nedelcu, Robert G., et al., “Scanning Accuracy and Precision in 4 Intraoral Scanners: An In Vitro Comparison Based on 3-Dimensional Analysis,” The Journal of Prosthetic Dentistry, vol. 112, Issue 6, Dec. 1, 2014, pp. 1461-1471.
Newcombe, R., et al., DTAM: Dense Tracking and Mapping in Real-Time, Retrieved from https://www.doc.ic.ac.uk/?ajd/Publications/newcombe_etal_iccv2011.pdf, Dec. 2011, 8 pgs.
Nourallah et al., New regression equations for prediciting the size of unerupted canines and premolars in a contemporary population, The Angle Orthodontist, 72(3), pp. 216-221, Jun. 2002.
ormco.com: Increasing clinical performance with 3D interactive treatment planning and patient-specific appliances; retrieved from the internet (http://www. konsident.com/wp-contenVfiles mf/1295385693http armco. com _index_ cmsfilesystemaction fileOrmcoPDFwhitepapers. pdf) on Feb. 27, 2019, 8 Pages.
OrthoCAD downloads, retrieved Jun. 27, 2012 from the internet (www.orthocad.com/download/downloads.asp), 2 pages, Feb. 14, 2005.
Paredes et al., A new, accurate and fast digital method to predict unerupted tooth size, The Angle Orthodontist, 76(1 ), pp. 14-19, Jan. 2006.
Parrilla et al., A textile-based stretchable multi-ion potentiometric sensor, Advanced Healthcare Materials, 5(9), pp. 996-1001, May 2016.
Patterson Dental, “Cosmetic Imaging”. http://patterson.eaglesoft.net/cnt_di_cosimg.html, accessed Jun. 6, 2008, 2 pgs.
Rose T.P., et al., “The Role of Orthodontics in Implant Dentistry”, British Dental Journal, vol. 201, No. 12, Dec. 23, 2006, pp. 753-764.
Rubin et al., Stress analysis of the human tooth using a three-dimensional finite element model, Journal of Dental Research, 62(2), pp. 82-86, Feb. 1983.
Sahm et al., “Micro-Electronic Monitoring Of Functional Appliance Wear”, Eur J Orthod., 12(3), pp. 297-301, Aug. 1990.
Sahm, “Presentation of a wear timer for the clarification of scientific questions in orthodontic orthopedics”, Fortschritte der Kieferorthopadie, 51 (4), pp. 243-247, (Translation Included) Jul. 1990.
Sarment et al., “Accuracy of implant placement with a stereolithographic surgical guide”, Journal of Oral and Maxillofacial Implants, 118(4), pp. 571-577, Jul. 2003.
Schafer, et al. Quantifying patient adherence during active orthodontic treatment with removable appliances using microelectronic wear-time documentation. European Journal of Orthodontics. 2014, 1-8. doi: 10.1 093/ejo/cju012, Jul. 3, 2014.
Smalley; “Implants for tooth movement Determining implant location and orientation,” Journal of Esthetic and Restorative Dentistry; Mar. 1995, vol. 7(2); pp. 62-72.
Smart Technology; Smile library II; 1 page; retrieved from the internet;< http://smart-technology.net/> on Jun. 6, 2008.
Smile-Vision; “The smile-vision cosmetic imaging system”; 2 pages; Retrieved from the internet< http://www.smile-vision.net/cos_imaging.php> on Jun. 6, 2008.
Sobral De A Gular et al., The Gingival Crevicular Fluid as a Source of Biomarkers to Enhance Efficiency of Orthodontic and Functional Treatment of Growing Patients, Bio. Med. Research International, 2017, 7 Pages, Article ID 3257235, 2017.
Szeliski, Richard, “Introduction to Computer Vision: Structure from Motion”, Retrieved from internet< http://robots.stanford.edu/cs223b05/notes/CS%20223-B%20L10%20structurefro-mmotion1b.ppt> Feb. 3, 2005, 64 pgs.
Thera Mon; “Microsensor”; 2 pages; retrieved from the internet (www.english.thera-mon.com/the-product/transponder/index.html); on Sep. 19, 2016.
Vevin et al.; “Pose estimation of teeth through crown-shape matching; In Medical Imaging”;: Image Processing of International Society of Optics and Photonics;May 9, 2002, vol. 4684; pp. 955-965.
Virtual Orthodontics, Our innovative software,2005, 2 Pages. (http://www.virtualorthodontics.com/innovativesoftware.html), retrieved from the internet (https://web.archive.org/web/20070518085145/http://www.virtualorthodontics.com/innovativesoftware.html); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date).
Wiedmann; “According to the laws of harmony to find the right tooth shape with assistance of the computer”; Digital Dental News; Apr. 2008, 2nd Vol.; pp. 0005-0008.
Wikipedia; Palatal expansion; 3 pages; retrieved from the internet< https: en.wikipedia.org=“” wiki=“” palatal_expansion=“”> on Mar. 5, 2018</https:>.
Wireless Sensor Networks Magazine, “Embedded Teeth for Oral Activity Recognition”, Jul. 29, 2013, 2 pages; retrieved on Sep. 19, 2016 from the internet www.wsnmagazine.com/embedded-teeth/>.
Witt et al., “The wear-timing measuring device in orthodontics-cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics”; Fortschr Kieferothop; Jun. 1991, vol. 52(3); pp. 117-125.
Wong et al., “Computer-aided design/computer-aided manufacturing surgical guidance for placement of dental implants”: Case report; Implant Dentistry; Sep. 2007, vol. 16(2); pp. 123-130.
Yaltara Software; Visual planner; 1 page; retrieved from the internet(http://yaltara.com/vp/) on Jun. 6, 2008.
Yamada et al.; Simulation of fan-beam type optical computed-tomography imaging of strongly scattering and weakly absorbing media; Applied Optics; 32(25); pp. 4808-4814; Sep. 1, 1993.
Zhang et al., “Visual Speech Features Extraction for Improved Speech Recognition”, 2002 IEEE International conference on Acoustics, Speech and Signal Processing, May 13-17, 2002, vol. 2, 4 pages.
AADR. American Association for Dental Research; Summary of Activities; Los Angeles, CA; p. 195; Mar. 20-23,(year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
Alcaniz et al.; An Advanced System for the Simulation and Planning of Orthodontic Treatments; Karl Heinz Hohne and Ron Kikinis (eds.); Visualization in Biomedical Computing, 4th Intl. Conf, VBC '96, Hamburg, Germany; Springer-Verlag; pp. 511-520; Sep. 22-25, 1996.
Alexander et al.; The DigiGraph Work Station Part 2 Clinical Management; J. Clin. Orthod.; pp. 402-407; (Author Manuscript); Jul. 1990.
Align Technology; Align technology announces new teen solution with introduction of invisalign teen with mandibular advancement; 2 pages; retrieved from the internet (http://investor.aligntech.com/static-files/eb4fa6bb-3e62-404f-b74d-32059366a01b); Mar. 6, 2017.
Allesee Orthodontic Appliance: Important Tip About Wearing the Red White & Blue Active Clear Retainer System; Ailesee Orthodontic Appliances—Pro Lab; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1998.
Allesee Orthodontic Appliances: DuraClearTM; Product information; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1997.
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; ( product information for doctors); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/doctorhtml); 5 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; (product information), 6 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2003.
Allesee Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment;(Patient Information); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/patients.html); 2 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Red, White & Blue Way to Improve Your Smile; (information for patients), 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Allesee Orthodontic Appliances; You may be a candidate for this invisible no-braces treatment; product information for patients; 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Altschuler et al.; Analysis of 3-D Data for Comparative 3-D Serial Growth Pattern Studies of Oral-Facial Structures; AADR Abstracts, Program and Abstracts of Papers, 57th General Session, IADR Annual Session, Mar. 29, 1979-Apr. 1, 1979, New Orleans Marriot; Journal of Dental Research; vol. 58, Special Issue A, p. 221; Jan. 1979.
Altschuler et al.; Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces; Optical Engineering; 20(6); pp. 953-961; Dec. 1981.
Altschuler et al.; Measuring Surfaces Space-Coded by a Laser-Projected Dot Matrix; SPIE Imaging q Applications for Automated Industrial Inspection and Assembly; vol. 182; pp. 187-191; Oct. 10, 1979.
Altschuler; 3D Mapping of Maxillo-Facial Prosthesis; AADR Abstract #607; 2 pages total, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
Andersson et al.; Clinical Results with Titanium Crowns Fabricated with Machine Duplication and Spark Erosion; Acta Odontologica Scandinavica; 47(5); pp. 279-286; Oct. 1989.
Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, L.A. Wells; pp. 13-24; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1989.
Barone et al.; Creation of 3D multi-body orthodontic models by using independent imaging sensors; Sensors; 13(2); pp. 2033-2050; Feb. 5, 2013.
Bartels et al.; An Introduction to Splines for Use in Computer Graphics and Geometric Modeling; Morgan Kaufmann Publishers; pp. 422-425 Jan. 1, 1987.
Baumrind et al, “Mapping the Skull in 3-D,” reprinted from J. Calif. Dent. Assoc, 48(2), 11 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Fall Issue 1972.
Baumrind et al.; A Stereophotogrammetric System for the Detection of Prosthesis Loosening in Total Hip Arthroplasty; NATO Symposium on Applications of Human Biostereometrics; SPIE; vol. 166; pp. 112-123; Jul. 9-13, 1978.
Baumrind; A System for Cranio facial Mapping Through the Integration of Data from Stereo X-Ray Films and Stereo Photographs; an invited paper submitted to the 1975 American Society of Photogram Symposium on Close-Range Photogram Systems; University of Illinois; pp. 142-166; Aug. 26-30, 1975.
Baumrind; Integrated Three-Dimensional Craniofacial Mapping: Background, Principles, and Perspectives; Seminars in Orthodontics; 7(4); pp. 223-232; Dec. 2001.
beautyworlds.com; Virtual plastic surgery—beautysurge.com announces launch of cosmetic surgery digital imaging services; 5 pages; retrieved from the internet (http://www.beautyworlds.com/cosmossurgdigitalimagning.htm); Mar. 2004.
Begole et al.; A Computer System for the Analysis of Dental Casts; The Angle Orthodontist; 51(3); pp. 252-258; Jul. 1981.
Bernard et al.; Computerized Diagnosis in Orthodontics for Epidemiological Studies: A ProgressReport; (Abstract Only), J. Dental Res. Special Issue, vol. 67, p. 169, paper presented at International Association for Dental Research 66th General Session, Montreal Canada; Mar. 9-13, 1988.
Bhatia et al.; A Computer-Aided Design for Orthognathic Surgery; British Journal of Oral and Maxillofacial Surgery; 22(4); pp. 237-253; Aug. 1, 1984.
Biggerstaff et al.; Computerized Analysis of Occlusion in the Postcanine Dentition; American Journal of Orthodontics; 61(3); pp. 245-254; Mar. 1972.
Biggerstaff; Computerized Diagnostic Setups and Simulations; Angle Orthodontist; 40(I); pp. 28-36; Jan. 1970.
Biostar Operation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive,Tonawanda, New York. 14150-5890, 20 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
Blu et al.; Linear interpolation revitalized; IEEE Transactions on Image Processing; 13(5); pp. 710-719; May 2004.
Bourke, Coordinate System Transformation; 1 page; retrived from the internet (http://astronomy.swin.edu.au/' pbourke/prolection/coords) on Nov. 5, 2004; Jun. 1996.
Boyd et al.; Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions With the Invisalipn Appliance; Seminars in Orthodontics; 7(4); pp. 274-293; Dec. 2001.
Brandestini et al.; Computer Machined Ceramic Inlays: In Vitro Marginal Adaptation; J. Dent. Res. Special Issue; (Abstract 305); vol. 64; p. 208; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1985.
Brook et al.; An Image Analysis System for the Determination of Tooth Dimensions from Study Casts: Comparison with Manual Measurements of Mesio-distal Diameter; Journal of Dental Research; 65(3); pp. 428-431; Mar. 1986.
Burstone et al.; Precision Adjustment of the Transpalatal Lingual Arch: Computer Arch Form Predetermination; American Journal of Orthodontics; 79(2);pp. 115-133; Feb. 1981.
Burstone; Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 1); Journal of Clinical Orthodontics; 13(7); pp. 442-453; (interview); Jul. 1979.
Burstone; Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 2); journal of Clinical Orthodontics; 13(8); pp. 539-551 (interview); Aug. 1979.
Cardinal Industrial Finishes; Powder Coatings; 6 pages; retrieved from the internet (http://www.cardinalpaint.com) on Aug. 25, 2000.
Carnaghan, An Alternative to Holograms for the Portrayal of Human Teeth; 4th Int'l. Conf. on Holographic Systems, Components and Applications; pp. 228-231; Sep. 15, 1993.
Chaconas et al,; The DigiGraph Work Station, Part 1, Basic Concepts; Journal of Clinical Orthodontics; 24(6); pp. 360-367; (Author Manuscript); Jun. 1990.
Chafetz et al.; Subsidence of the Femoral Prosthesis, A Stereophotogrammetric Evaluation; Clinical Orthopaedics and Related Research; No. 201; pp. 60-67; Dec. 1985.
Chiappone; Constructing the Gnathologic Setup and Positioner; Journal of Clinical Orthodontics; 14(2); pp. 121-133; Feb. 1980.
Chishti et al.; U.S. Appl. No. 60/050,342 entitled “Procedure for moving teeth using a seires of retainers,” filed Jun. 20, 1997.
Cottingham; Gnathologic Clear Plastic Positioner; American Journal of Orthodontics; 55(1); pp. 23-31; Jan. 1969.
Crawford; CAD/CAM in the Dental Office: Does It Work?; Canadian Dental Journal; 57(2); pp. 121-123 Feb. 1991.
Crawford; Computers in Dentistry: Part 1: CAD/CAM: The Computer Moves Chairside, Part 2: F. Duret A Man With A Vision, Part 3: The Computer Gives New Vision—Literally, Part 4: Bytes 'N Bites The Computer Moves From The Front Desk To The Operatory; Canadian Dental Journal; 54(9); pp. 661-666 Sep. 1988.
Crooks; CAD/CAM Comes to USC; USC Dentistry; pp. 14-17; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Spring 1990.
CSI Computerized Scanning and Imaging Facility; What is a maximum/minimum intensity projection (MIP/MinIP); 1 page; retrived from the internet (http://csi.whoi.edu/content/what-maximumminimum-intensity-projection-mipminip); Jan. 4, 2010.
CURETON; Correcting Maialigned Mandibular Incisors with Removable Retainers; Journal of Clinical Orthodontics; 30(7); pp. 390-395; Jul. 1996.
Curry et al.; Integrated Three-Dimensional Craniofacial Mapping at the Craniofacial Research InstrumentationLaboratory/University of the Pacific; Seminars in Orthodontics; 7(4); pp. 258-265; Dec. 2001.
Cutting et al.; Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures; Optimization and Interaction with Cephalometric and CT-Based Models; Plastic and Reconstructive Surgery; 77(6); pp. 877-885; Jun. 1986.
DCS Dental AG; The CAD/CAM 'DCS Titan System' for Production of Crowns/Bridges; DSC Production; pp. 1-7; Jan. 1992.
Defranco et al.; Three-Dimensional Large Displacement Analysis of Orthodontic Appliances; Journal of Biomechanics; 9(12); pp. 793-801; Jan. 1976.
Dental Institute University of Zurich Switzerland; Program for International Symposium on Computer Restorations: State of the Art of the CEREC-Method; 2 pages; May 1991.
Dentrac Corporation; Dentrac document; pp. 4-13; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
DENT-X; Dentsim . . . Dent-x's virtual reality 3-D training simulator . . . A revolution in dental education; 6 pages; retrieved from the internet (http://www.dent-x.com/DentSim.htm); on Sep. 24, 1998.
Di Muzio et al.; Minimum intensity projection (MinIP); 6 pages; retrieved from the internet (https://radiopaedia.org/articles/minimum-intensity-projection-minip) on Sep. 6, 2018.
Doyle; Digital Dentistry; Computer Graphics World; pp. 50-52 andp. 54; Oct. 2000.
Duret et al.; CAD/CAM Imaging in Dentistry; Current Opinion in Dentistry; 1(2); pp. 150-154; Apr. 1991.
Duret et al.; CAD-CAM in Dentistry; Journal of the American Dental Association; 117(6); pp. 715-720; Nov. 1988.
Duret; The Dental CAD/CAM, General Description of the Project; Hennson International Product Brochure, 18 pages; Jan. 1986.
Duret; Vers Une Prosthese Informatisee; Tonus; 75(15); pp. 55-57; (English translation attached); 23 pages; Nov. 15, 1985.
Economides; The Microcomputer in the Orthodontic Office; Journal of Clinical Orthodontics; 13(11); pp. 767-772; Nov. 1979.
Ellias et al.; Proteomic analysis of saliva identifies potential biomarkers for orthodontic tooth movement; The Scientific World Journal; vol. 2012; Article ID 647240; dio:10.1100/2012/647240; 7 pages; Jul. 2012.
Elsasser; Some Observations on the History and Uses of the Kesling Positioner; American Journal of Orthodontics; 36(5); pp. 368-374; May 1, 1950.
English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7.
Faber et al.; Computerized Interactive Orthodontic Treatment Planning; American Journal of Orthodontics; 73(1); pp. 36-46; Jan. 1978.
Felton et al.; A Computerized Analysis of the Shape and Stability of Mandibular Arch Form; American Journal of Orthodontics and Dentofacial Orthopedics; 92(6); pp. 478-483; Dec. 1987.
Florez-Moreno; Time-related changes in salivary levels of the osteotropic factors sRANKL and OPG through orthodontic tooth movement; American Journal of Orthodontics and Dentofacial Orthopedics; 143(1); pp. 92-100; Jan. 2013.
Friede et al.; Accuracy of Cephalometric Prediction in Orthognathic Surgery; Journal of Oral and Maxillofacial Surgery; 45(9); pp. 754-760; Sep. 1987.
Futterling et al.; Automated Finite Element Modeling of a Human Mandible with Dental Implants; JS WSCG '98-Conference Program; 8 pages; retrieved from the Internet (https://dspace5.zcu.ez/bitstream/11025/15851/1/Strasser_98.pdf); on Aug. 21, 2018.
Gansky; Dental data mining: potential pitfalls and practical issues; Advances in Dental Research; 17(1); pp. 109-114; Dec. 2003.
Gao et al.; 3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure; IEEE Proceedings International Workshop in Medical Imaging and Augmented Reality; pp. 267-271; Jun. 12, 2001.
Gim-Alldent Deutschland, “Das DUX System: Die Technik,” 3 pages; (English Translation Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2002.
Gottleib et al.; JCO Interviews Dr. James A. McNamura, Jr., on the Frankel Appliance: Part 2: Clinical 1-1 Management; Journal of Clinical Orthodontics; 16(6); pp. 390-407; retrieved from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1982&Month=06&ArticleNum+); 21 pages; Jun. 1982.
Grayson; New Methods for Three Dimensional Analysis of Craniofacial Deformity, Symposium: Computerized Facial Imaging in Oral and Maxillofacial Surgery; American Association of Oral and Maxillofacial Surgeons; 48(8) suppl 1; pp. 5-6; Sep. 13, 1990.
Guess et al.; Computer Treatment Estimates In Orthodontics and Orthognathic Surgery; Journal of Clinical Orthodontics; 23(4); pp. 262-268; 11 pages; (Author Manuscript); Apr. 1989.
Heaven et al.; Computer-Based Image Analysis of Artificial Root Surface Caries; Abstracts of Papers #2094; Journal of Dental Research; 70:528; (Abstract Only); Apr. 17-21, 1991.
Highbeam Research: Simulating stress put on jaw. (ANSYS Inc.'s finite element analysis software); 2 pages; retrieved from the Internet (http://static.highbeam.eom/t/toolingampproduction/november011996/simulatingstressputonfa . . . ); on Nov. 5, 2004.
Hikage; Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning; Journal of Japan KA Orthodontic Society; 46(2); pp. 248-269; 56 pages; (English Translation Included); Feb. 1987.
Hoffmann et al.; Role of Cephalometry for Planning of Jaw Orthopedics and Jaw Surgery Procedures; Informatbnen, pp. 375-396; (English Abstract Included); Mar. 1991.
Hojjatie et al.; Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns; Journal of Biomechanics; 23(11); pp. 1157-1166; Jan. 1990.
Huckins; CAD-CAM Generated Mandibular Model Prototype from MRI Data; AAOMS, p. 96: (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1999.
JCO Interviews; Craig Andreiko , DDS, MS on the Elan and Orthos Systems; Interview by Dr. Larry W. White; Journal of Clinical Orthodontics; 28(8); pp. 459-468; 14 pages; (Author Manuscript); Aug. 1994.
JCO Interviews; Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2; Journal of Clinical Orthodontics; 17(12); pp. 819-831; 19 pages; (Author Manuscript); Dec. 1983.
Jerrold; The Problem, Electronic Data Transmission and the Law; American Journal of Orthodontics and Dentofacial Orthopedics; 113(4); pp. 478-479; 5 pages; (Author Manuscript); Apr. 1998.
Jia et al.; Epidermal biofuel cells: energy harvesting from human perspiration; Angewandle Chemie International Edition; 52(28); pp. 7233-7236; Jul. 8, 2013.
Jia et al.; Wearable textile biofuel cells for powering electronics; Journal of Materials Chemistry A; 2(43); pp. 18184-18189; Oct. 14, 2014.
Jones et al.; An Assessment of the Fit of a Parabolic Curve to Pre- and Post-Treatment Dental Arches; British Journal of Orthodontics; 16(2); pp. 85-93; May 1989.
Kamada et.al.; Case Reports On Tooth Positioners Using LTV Vinyl Silicone Rubber; J. Nihon University School of Dentistry; 26(1); pp. 11-29; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1984.
Kamada et.al.; Construction of Tooth Positioners with LTV Vinyl Silicone Rubber and Some Case KJ Reports; J. Nihon University School of Dentistry; 24(1); pp. 1-27; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1982.
Kanazawa et al.; Three-Dimensional Measurements of the Occlusal Surfaces of Upper Molars in a Dutch Population; Journal of Dental Research; 63(11); pp. 1298-1301; Nov. 1984.
Kesling et al.; The Philosophy of the Tooth Positioning Appliance; American Journal of Orthodontics and Oral surgery; 31(6); pp. 297-304; Jun. 1945.
Kesling; Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment; American Journal of Orthodontics and Oral Surgery; 32(5); pp. 285-293; May 1946.
Kim et al.; Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites; Analyst; 139(7); pp. 1632-1636; Apr. 7, 2014.
Kleeman et al.; The Speed Positioner; J. Clin. Orthod.; 30(12); pp. 673-680; Dec. 1996.
Kochanek; Interpolating Splines with Local Tension, Continuity and Bias Control; Computer Graphics; 18(3); pp. 33-41; Jan. 1, 1984.
Kumar et al.; Biomarkers in orthodontic tooth movement; Journal of Pharmacy Bioallied Sciences; 7(Suppl 2); pp. S325-S330; 12 pages; (Author Manuscript); Aug. 2015.
Kunii et al.; Articulation Simulation for an Intelligent Dental Care System; Displays; 15(3); pp. 181-188; Jul. 1994.
Kuroda et al.; Three-Dimensional Dental Cast Analyzing System Using Laser Scanning; American Journal of Orthodontics and Dentofacial Orthopedics; 110(4); pp. 365-369; Oct. 1996.
Laurendeau et al.; A Computer-Vision Technique for the Acquisition and Processing of 3-D Profiles of 7 Dental Imprints: An Application in Orthodontics; IEEE Transactions on Medical Imaging; 10(3); pp. 453-461; Sep. 1991.
Leinfelder et al.; A New Method for Generating Ceramic Restorations: a CAD-CAM System; Journal of the American Dental Association; 118(6); pp. 703-707; Jun. 1989.
Manetti et al.; Computer-Aided Cefalometry and New Mechanics in Orthodontics; Fortschr Kieferorthop; 44; pp. 370-376; 8 pages; (English Article Summary Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1983.
McCann; Inside the ADA; J. Amer. Dent. Assoc, 118:286-294; Mar. 1989.
McNamara et al.; Invisible Retainers; J. Clin Orthod.; pp. 570-578; 11 pages; (Author Manuscript); Aug. 1985.
McNamara et al.; Orthodontic and Orthopedic Treatment in the Mixed Dentition; Needham Press; pp. 347-353; Jan. 1993.
Moermann et al., Computer Machined Adhesive Porcelain Inlays: Margin Adaptation after Fatigue Stress; IADR Abstract 339; J. Dent. Res.; 66(a):763; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1987.
Moles; Correcting Mild Malalignments—As Easy As One, Two, Three; AOA/Pro Corner; 11(2); 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Mormann et al.; Marginale Adaptation von adhasuven Porzellaninlays in vitro; Separatdruck aus:Schweiz. Mschr. Zahnmed.; 95; pp. 1118-1129; 8 pages; (Machine Translated English Abstract); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1985.
Nahoum; The Vacuum Formed Dental Contour Appliance; N. Y. State Dent. J.; 30(9); pp. 385-390; Nov. 1964.
Nash; CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment; Dentistry Today; 9(8); pp. 20, 22-23 and 54; Oct. 1990.
Nishiyama et al.; A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber; The Journal of Nihon University School of Dentistry; 19(2); pp. 93-102 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1977.
Ogawa et al.; Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral muscosa; Journal of Dentistry; 32(3); pp. 219-228; Mar. 2004.
Ogimoto et al.; Pressure-pain threshold determination in the oral mucosa; Journal of Oral Rehabilitation; 29(7); pp. 620-626; Jul. 2002.
Page et al.; Validity and accuracy of a risk calculator in predicting periodontal disease; Journal of the American Dental Association; 133(5); pp. 569-576; May 2002.
Paul et al.; Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics; Oral Surgery and Forensic Medicine Proc. of the 24th Annual Conf. of the IEEE Industrial Electronics Society (IECON '98); vol. 4; pp. 2415-2418; Sep. 4, 1998.
Pinkham; Foolish Concept Propels Technology; Dentist, 3 pages , Jan./Feb. 1989.
Pinkham; Inventor's CAD/CAM May Transform Dentistry; Dentist; pp. 1 and 35, Sep. 1990.
Ponitz; Invisible retainers; Am. J. Orthod.; 59(3); pp. 266-272; Mar. 1971.
Procera Research Projects; Procera Research Projects 1993 {grave over ( )} Abstract Collection; 23 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1993.
Proffit et al.; The first stage of comprehensive treatment alignment and leveling; Contemporary Orthodontics, 3rd Ed.; Chapter 16; Mosby Inc.; pp. 534-537; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000.
Proffit et al.; The first stage of comprehensive treatment: alignment and leveling; Contemporary Orthodontics; (Second Ed.); Chapter 15, MosbyYear Book; St. Louis, Missouri; pp. 470-533 Oct. 1993.
Raintree Essix & ARS Materials, Inc., Raintree Essix, Technical Magazine Table of contents and Essix Appliances, 7 pages; retrieved from the internet (http://www.essix.com/magazine/defaulthtml) on Aug. 13, 1997.
Redmond et al.; Clinical Implications of Digital Orthodontics; American Journal of Orthodontics and Dentofacial Orthopedics; 117(2); pp. 240-242; Feb. 2000.
Rekow et al.; CAD/CAM for Dental Restorations—Some of the Curious Challenges; IEEE Transactions on Biomedical Engineering; 38(4); pp. 314-318; Apr. 1991.
Rekow et al.; Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping; Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 13(1); pp. 344-345 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1991.
Rekow; A Review of the Developments in Dental CAD/CAM Systems; Current Opinion in Dentistry; 2; pp. 25-33; Jun. 1992.
Rekow; CAD/CAM in Dentistry: A Historical Perspective and View of the Future; Journal Canadian Dental Association; 58(4); pp. 283, 287-288; Apr. 1992.
Rekow; Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art; Journal of Prosthetic Dentistry; 58(4); pp. 512-516; Dec. 1987.
Rekow; Dental CAD-CAM Systems: What is the State of the Art?; The Journal of the American Dental Association; 122(12); pp. 43-48; Dec. 1991.
Rekow; Feasibility of an Automated System for Production of Dental Restorations, Ph.D. Thesis; Univ. of Minnesota, 250 pages, Nov. 1988.
Richmond et al.; The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity.; The European Journal of Orthodontics; 14(2); pp. 125-139; Apr. 1992.
Richmond et al.; The Development of a 3D Cast Analysis System; British Journal of Orthodontics; 13(1); pp. 53-54; Jan. 1986.
Richmond; Recording The Dental Cast In Three Dimensions; American Journal of Orthodontics and Dentofacial Orthopedics; 92(3); pp. 199-206; Sep. 1987.
Rudge; Dental Arch Analysis: Arch Form, A Review of the Literature; The European Journal of Orthodontics; 3(4); pp. 279-284; Jan. 1981.
Sakuda et al.; Integrated Information-Processing System In Clinical Orthodontics: An Approach with Use of a Computer Network System; American Journal of Orthodontics and Dentofacial Orthopedics; 101(3); pp. 210-220; 20 pages; (Author Manuscript) Mar. 1992.
Schellhas et al.; Three-Dimensional Computed Tomography in Maxillofacial Surgical Planning; Archives of Otolaryngology—Head and Neck Surgery; 114(4); pp. 438-442; Apr. 1988.
Schroeder et al.; Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey; Chapters 6, 8 & 9, (pp. 153-210,309-354, and 355-428; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1998.
Shilliday; Minimizing finishing problems with the mini-positioner; American Journal of Orthodontics; 59(6); pp. 596-599; Jun. 1971.
Shimada et al.; Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations; Current Oral Health Reports; 2(2); pp. 73-80; Jun. 2015.
Siemens; CEREC—Computer-Reconstruction, High Tech in der Zahnmedizin; 15 pagesl; (Includes Machine Translation); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2004.
Sinclair; The Readers' Corner; Journal of Clinical Orthodontics; 26(6); pp. 369-372; 5 pages; retrived from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1992&Month=06&ArticleNum=); Jun. 1992.
Sirona Dental Systems GmbH, CEREC 3D, Manuel utiiisateur, Version 2.0X (in French); 114 pages; (English translation of table of contents included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2003.
Stoll et al.; Computer-aided Technologies in Dentistry; Dtsch Zahna'rzti Z 45, pp. 314-322; (English Abstract Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
Sturman; Interactive Keyframe Animation of 3-D Articulated Models; Proceedings Graphics Interface '84; vol. 86; pp. 35-40; May-Jun. 1984.
The American Heritage, Stedman's Medical Dictionary; Gingiva; 3 pages; retrieved from the interent (http://reference.com/search/search?q=gingiva) on Nov. 5, 2004.
The Dental Company Sirona: Cerc omnicam and cerec bluecam brochure: The first choice in every case; 8 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2014.
THORLABS; Pellin broca prisms; 1 page; retrieved from the internet (www.thorlabs.com); Nov. 30, 2012.
Tiziani et al.; Confocal principle for macro and microscopic surface and defect analysis; Optical Engineering; 39(1); pp. 32-39; Jan. 1, 2000.
Truax; Truax Clasp-Less(TM) Appliance System; The Functional Orthodontist; 9(5); pp. 22-24, 26-28; Sep.-Oct. 1992.
Tru-Tatn Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1996.
U.S. Department of Commerce, National Technical Information Service, Holodontography: An Introduction to Dental Laser Holography; School of Aerospace Medicine Brooks AFB Tex; Mar. 1973, 40 pages; Mar. 1973.
U.S. Department of Commerce, National Technical Information Service; Automated Crown Replication Using Solid Photography SM; Solid Photography Inc., Melville NY,; 20 pages; Oct. 1977.
Vadapalli: Minimum intensity projection (MinIP) is a data visualization; 7 pages; retrieved from the internet (https://prezi.com/tdmttnmv2knw/minimum-intensity-projection-minip-is-a-data-visualization/) on Sep. 6, 2018.
Van Der Linden et al.; Three-Dimensional Analysis of Dental Casts by Means of the Optocom; Journal of Dental Research; 51(4); p. 1100; Jul.-Aug. 1972.
Van Der Linden; A New Method to Determine Tooth Positions and Dental Arch Dimensions; Journal of Dental Research; 51(4); p. 1104; Jul.-Aug. 1972.
Van Der Zel; Ceramic-Fused-to-Metal Restorations with a New CAD/CAM System; Quintessence International; 24(A); pp. 769-778; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1993.
Van Hilsen et al.; Comparing potential early caries assessment methods for teledentistry; BMC Oral Health; 13(16); doi: 10.1186/1472-6831-13-16; 9 pages; Mar. 2013.
Varady et al.; Reverse Engineering Of Geometric Models'An Introduction; Computer-Aided Design; 29(4); pp. 255-268; 20 pages; (Author Manuscript); Apr. 1997.
Verstreken et al.; An Image-Guided Planning System for Endosseous Oral Implants; IEEE Transactions on Medical Imaging; 17(5); pp. 842-852; Oct. 1998.
Warunek et al.; Physical and Mechanical Properties of Elastomers in Orthodonic Positioners; American Journal of Orthodontics and Dentofacial Orthopedics; 95(5); pp. 388-400; 21 pages; (Author Manuscript); May 1989.
Warunek et.al.; Clinical Use of Silicone Elastomer Applicances; JCO; 23(10); pp. 694-700; Oct. 1989.
Watson et al.; Pressures recorded at te denture base-mucosal surface interface in complete denture wearers; Journal of Oral Rehabilitation 14(6); pp. 575-589; Nov. 1987.
Wells; Application of the Positioner Appliance in Orthodontic Treatment; American Journal of Orthodontics; 58(4); pp. 351-366; Oct. 1970.
Williams; Dentistry and CAD/CAM: Another French Revolution; J. Dent. Practice Admin.; 4(1); pp. 2-5 Jan./Mar. 1987.
Williams; The Switzerland and Minnesota Developments in CAD/CAM; Journal of Dental Practice Administration; 4(2); pp. 50-55; Apr./Jun. 1987.
Windmiller et al.; Wearable electrochemical sensors and biosensors: a review; Electroanalysis; 25(1); pp. 29-46; Jan. 2013.
Wishan; New Advances in Personal Computer Applications for Cephalometric Analysis, Growth Prediction, Surgical Treatment Planning and Imaging Processing; Symposium: Computerized Facial Imaging in Oral and Maxilofacial Surgery; p. 5; Presented on Sep. 13, 1990.
Wolf; Three-dimensional structure determination of semi-transparent objects from holographic data; Optics Communications; 1(4); pp. 153-156; Sep. 1969.
WSCG'98—Conference Program, The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98; pp. 1-7; retrieved from the Internet on Nov. 5, 2004, (http://wscg.zcu.cz/wscg98/wscg98.htm); Feb. 9-13, 1998.
Xia et al.; Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery; IEEE Transactions on Information Technology in Biomedicine; 5(2); pp. 97-107; Jun. 2001.
Yamamoto et al.; Optical Measurement of Dental Cast Profile and Application to Analysis of Three-Dimensional Tooth Movement in Orthodontics; Front. Med. Bioi. Eng., 1(2); pp. 119-130; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1988.
Yamamoto et al.; Three-Dimensional Measurement of Dental Cast Profiles and Its Applications to Orthodontics; Conf. Proc. IEEE Eng. Med. Biol. Soc.; 12(5); pp. 2052-2053; Nov. 1990.
Yamany et al.; A System for Human Jaw Modeling Using Intra-Oral Images; Proc. of the 20th Annual Conf. of the IEEE Engineering in Medicine and Biology Society; vol. 2; pp. 563-566; Oct. 1998.
Yoshii; Research on a New Orthodontic Appliance; The Dynamic Positioner (D.P.); 111. The General Concept of the D.P. Method and Its Therapeutic Effect, Part 1, Dental and Functional Reversed Occlusion Case Reports; Nippon Dental Review; 457; pp. 146-164: 43 pages; (Author Manuscript); Nov. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Concept and Implementation of Transparent Silicone Resin (Orthocon); Nippon Dental Review; 452; pp. 61-74; 32 pages; (Author Manuscript); Jun. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); II. The D.P. Manufacturing Procedure and Clinical Applications; Nippon Dental Review; 454; pp. 107-130; 48 pages; (Author Manuscript); Aug. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III—The General Concept of the D.P. Method and Its Therapeutic Effect, Part 2. Skeletal Reversed Occlusion Case Reports; Nippon Dental Review; 458; pp. 112-129; 40 pages; (Author Manuscript); Dec. 1980.
Zhou et al.; Biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review; Electroanalysis; 24(2); pp. 197-209; Feb. 2012.
Zhou et al.; Bio-logic analysis of injury biomarker patterns in human serum samples; Talanta; 83(3); pp. 955-959; Jan. 15, 2011.
Related Publications (1)
Number Date Country
20190314119 A1 Oct 2019 US
Provisional Applications (2)
Number Date Country
62656289 Apr 2018 US
62735658 Sep 2018 US