Releasable valved coupler

Information

  • Patent Grant
  • 10267445
  • Patent Number
    10,267,445
  • Date Filed
    Tuesday, September 5, 2017
    6 years ago
  • Date Issued
    Tuesday, April 23, 2019
    4 years ago
Abstract
A releasable valved coupler and a method of producing and using such a coupler including a coupler body having a first valve element and a coupler insert having a second valve element, wherein a first valve tip of the first valve element can engage a second valve tip of the second valve element upon insertion of the coupler insert inside of a tubular chamber of the coupler body, whereby the first valve element disengages a first valve seat and the second valve element disengages a second valve seat to open a flow path through the coupler. By moving the coupler body and the coupler insert in outward opposed axial directions, the first and second valve tips can disengage, correspondingly engaging the first valve element with the first valve seat and engaging the second valve element with the second valve seat to close the flow path through the coupler.
Description
I. BACKGROUND OF THE INVENTION

Conventional medical access devices employed for fluid infusion, including intravenous catheters, feeding tubes, or the like, may be unintentionally disengaged from either a fluid reservoir or a user. For example, an ambulatory user may inadvertently catch the fluid line on an object, disrupting the conventional medical access device and potentially causing damage to the fluid reservoir or trauma to the blood vessel or organ receiving the fluid infusion. Accordingly, a need exists for a coupler which can releasably couple a fluid line to a user.


II. SUMMARY OF THE INVENTION

A broad object of a particular embodiment of the invention can be to provide a coupler comprising a coupler body including a coupler body tubular internal surface which communicates between a coupler body first open end and a coupler body second open end, the coupler body tubular internal surface proximate the coupler body first open end defines a first valve guide coupled to a first valve seat having a first valve port, the first valve port communicating with a tubular chamber disposed proximate the coupler body second open end, a first valve element having a first valve body coupled to a first valve tip, the first valve element movable in the first valve guide to sealably engage the first valve seat in a closed position with the first valve tip extending through the first valve port a distance into the tubular chamber, a first valve actuator disposed adjacent the first valve element to facilitate movement of the first valve element toward the closed position, and a first tubular member coupled to a first tubular plug, the first tubular plug coupled to the first valve guide adjacent the first valve actuator, the first tubular member having a first tubular member external surface configured to join a first conduit; and a coupler insert including a coupler insert external surface configured to insert inside of the tubular chamber, a coupler insert tubular internal surface which communicates between a coupler insert first open end and a coupler insert second open end, the coupler insert tubular internal surface defining a second valve guide coupled to a second valve seat having a second valve port, the second valve port aligned with the first valve port upon insertion of the coupler insert inside of the tubular chamber, a second valve element having a second valve body coupled to a second valve tip, the second valve element movable in the second valve guide to sealably engage the second valve seat in a closed position with the second valve tip extending through the second valve port, a second valve actuator disposed adjacent the second valve element to facilitate movement of the second valve element toward the closed position, and a second tubular member coupled to a second tubular plug, the second tubular plug coupled to the second valve guide adjacent the second valve actuator, the second tubular member having a second tubular member external surface configured to join a second conduit; wherein the first valve tip engages the second valve tip upon insertion of the coupler insert inside of the tubular chamber, whereby the first valve element disengages the first valve seat and the second valve element disengages the second valve seat to open a flow path through the coupler.


Another broad object of a particular embodiment of the invention can be to provide a method of producing a coupler, the method comprising providing a coupler body including a coupler body tubular internal surface which communicates between a coupler body first open end and a coupler body second open end, the coupler body tubular internal surface proximate the coupler body first open end defines a first valve guide coupled to a first valve seat having a first valve port, the first valve port communicating with a tubular chamber disposed proximate the coupler body second open end; coupling a first valve element to the first valve guide, the first valve element having a first valve body coupled to a first valve tip, the first valve element movable in the first valve guide to sealably engage the first valve seat in a closed position with the first valve tip extending through the first valve port a distance into the tubular chamber; disposing a first valve actuator adjacent the first valve element to facilitate movement of the first valve element toward the closed position; coupling a first tubular plug to the first valve guide adjacent the first valve actuator; coupling a first tubular member to the first tubular plug, the first tubular member having a first tubular member external surface configured to join a first conduit; providing a coupler insert including a coupler insert external surface configured to insert inside of the tubular chamber and a coupler insert tubular internal surface which communicates between a coupler insert first open end and a coupler insert second open end, the coupler insert tubular internal surface defining a second valve guide coupled to a second valve seat having a second valve port, the second valve port aligned with the first valve port upon insertion of the coupler insert inside of the tubular chamber; coupling a second valve element to the second valve guide, the second valve element having a second valve body coupled to a second valve tip, the second valve element movable in the second valve guide to sealably engage the second valve seat in a closed position with the second valve tip extending through the second valve port; disposing a second valve actuator adjacent the second valve element to facilitate movement of the second valve element toward the closed position; coupling a second tubular plug to the second valve guide adjacent the second valve actuator; and coupling a second tubular member to the second tubular plug, the second tubular member having a second tubular member external surface configured to join a second conduit; wherein the first valve tip engages the second valve tip upon insertion of the coupler insert inside of the tubular chamber, whereby the first valve element disengages the first valve seat and the second valve element disengages the second valve seat to open a flow path through the coupler.


Another broad object of a particular embodiment of the invention can be to provide a method of using a coupler, the method including obtaining a coupler configured as described above, inserting the coupler insert inside of the tubular chamber, engaging the first valve tip with the second valve tip, and disengaging the first valve element from the first valve seat and disengaging the second valve element from the second valve seat to open a flow path through the coupler.


Another broad object of a particular embodiment of the invention can be to provide a method of using a coupler, the method further including moving the coupler body and the coupler insert in outward opposed axial directions, disengaging the first valve tip and the second valve tip, and engaging the first valve element with the first valve seat and engaging the second valve element with the second valve seat to close the flow path through the coupler.


Naturally, further objects of the invention are disclosed throughout other areas of the specification, drawings, and claims.





III. BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is an illustration of a method of using a particular embodiment of the inventive coupler.



FIG. 1B is an illustration of a method of using a particular embodiment of the inventive coupler.



FIG. 2 is a perspective view of a particular embodiment of the inventive coupler.



FIG. 3 is an exploded view of a particular embodiment of the inventive coupler.



FIG. 4 is a top view of a particular embodiment of the inventive coupler.



FIG. 5 is a bottom view of a particular embodiment of the inventive coupler.



FIG. 6 is a first side view of a particular embodiment of the inventive coupler.



FIG. 7 is a second side view of a particular embodiment of the inventive coupler.



FIG. 8 is a first end view of a particular embodiment of the inventive coupler.



FIG. 9 is a second end view of a particular embodiment of the inventive coupler.



FIG. 10A is a cross-sectional view 10A-10A of the particular embodiment of the inventive coupler shown in FIG. 4, wherein a first valve element and a second valve element are positioned in an open position.



FIG. 10B is an exploded view of the particular embodiment of the inventive coupler shown in FIG. 10A, wherein the first valve element and the second valve element are positioned in a closed position.



FIG. 11A is a perspective view of a particular embodiment of a coupler body.



FIG. 11B is a top view of a particular embodiment of a coupler body.



FIG. 11C is a bottom view of a particular embodiment of a coupler body.



FIG. 11D is a first side view of a particular embodiment of a coupler body.



FIG. 11E is a second side view of a particular embodiment of a coupler body.



FIG. 11F is a first end view of a particular embodiment of a coupler body.



FIG. 11G is a second end view of a particular embodiment of a coupler body.



FIG. 11H is a cross-sectional view 11H-11H of the particular embodiment of the coupler body shown in FIG. 11B.



FIG. 12A is a perspective view of a particular embodiment of a coupler insert.



FIG. 12B is a view of a particular embodiment of a coupler insert.



FIG. 12C is a first end view of a particular embodiment of a coupler insert.



FIG. 12D is a second end view of a particular embodiment of a coupler insert.



FIG. 12E is a cross-sectional view 12E-12E of the particular embodiment of the coupler insert shown in FIG. 12B.



FIG. 13A is an enlarged top view of the particular embodiment of the coupler insert shown in FIG. 3.



FIG. 13B is an enlarged bottom view of the particular embodiment of the coupler insert shown in FIG. 3.



FIG. 13C is an enlarged bottom view of the particular embodiment of the coupler insert shown in FIG. 3.



FIG. 14A is a perspective view of a particular embodiment of a valve element.



FIG. 14B is a view of a particular embodiment of a valve element.



FIG. 14C is a first end view of a particular embodiment of a valve element.



FIG. 14D is a second end view of a particular embodiment of a valve element.



FIG. 14E is a cross-sectional view 14E-14E of the particular embodiment of the valve element shown in FIG. 3.



FIG. 14F is a cross-sectional view 14F-14F of the particular embodiment of the valve element shown in FIG. 3.



FIG. 14G is a cross-sectional view 14G-14G of the particular embodiment of the valve element shown in FIG. 14B.



FIG. 15A is a perspective view of a particular embodiment of a tubular member coupled to a tubular plug.



FIG. 15B is a view of a particular embodiment of a tubular member coupled to a tubular plug.



FIG. 15C is a first end view of a particular embodiment of a tubular member coupled to a tubular plug.



FIG. 15D is a second end view of a particular embodiment of a tubular member coupled to a tubular plug.



FIG. 15E is a cross-sectional view 15E-15E of the particular embodiment of the tubular member coupled to the tubular plug shown in FIG. 15B.





IV. DETAILED DESCRIPTION OF THE INVENTION

Now referring primarily to FIG. 1A, which illustrates a method of using a particular embodiment of an inventive coupler (1) including a coupler body (2) having a first valve element (3) movable in a first valve guide (4) to sealably engage a first valve seat (5) in a closed position (6) with a first valve tip (7) extending outward of a first valve port (8) and a coupler insert (9) having a second valve element (10) movable in a second valve guide (11) to sealably engage a second valve seat (12) in a closed position (6) with a second valve tip (13) extending outward of a second valve port (14). By inserting the coupler insert (9) into a tubular chamber (15) of the coupler body (2), the first and second valve elements (3)(10) can be substantially coaxially aligned disposing the first valve tip (7) adjacent the second valve tip (13). Further inward opposed axial movement of the coupler insert (9) within the tubular chamber (15) of the coupler body (2) generates corresponding inward opposed axial movement of the first and second valve tips (7)(13), disposing the first valve port (8) in substantially coaxial adjacent relation with the second valve port (14), concurrently disengaging the first valve element (3) from the first valve seat (5) and disengaging the second valve element (10) from the second valve seat (12), thereby disposing the first and second valve elements (3)(10) in an open position (16) initiating fluid flow (17) through the flow path (18) of the inventive coupler (1).


Now referring primarily to FIG. 1B, by moving the coupler body (2) and the coupler insert (9) in outward opposed axial directions, the coupler insert (9) can be removed from within the tubular chamber (15) of the coupler body (2). Concurrently, the first valve tip (7) can disengage the second valve tip (13) sealably engaging the first and second valve elements (3)(10) with the corresponding first and second valve seats (5)(12), positioning the first and second valve elements (3)(10) in the closed position (6), thereby interrupting the fluid flow (17) through the flow path (18) of the inventive coupler (1).


Now referring primarily to FIG. 2 through FIG. 12H, the inventive coupler (1) can include a coupler body (2) having a coupler body tubular internal surface (19) which communicates between a coupler body first open end (20) and a coupler body second open end (21) (as shown in the examples of FIG. 10A, FIG. 10B, and FIG. 11H), whereby the coupler body tubular internal surface (19) can define the flow path (18) through the coupler body (2). The coupler body tubular internal surface (19) proximate the coupler body first open end (20) can define a first valve guide (4) coupled to a first valve seat (5) having a first valve port (8), which communicates with a tubular chamber (15) disposed proximate the coupler body second open end (21).


Now referring primarily to FIG. 10A, FIG. 10B, and FIG. 14A through FIG. 14G, the inventive coupler (1) can further include a first valve element (3) having a first valve body (22) coupled to a first valve tip (7). The first valve element (3) can be movable in the first valve guide (4) to sealably engage the first valve seat (5) in a closed position (6), whereby the first valve tip (7) extends through the first valve port (8) a distance into the tubular chamber (15). The first valve element (3) sealably engaged with the first valve seat (5) interrupts the flow path (18) of the coupler body (2) between the coupler body first open end (20) and the coupler body second open end (21).


Again referring primarily to FIG. 10A, FIG. 10B, and FIG. 14A through FIG. 14G, the first valve element (3) can be moved toward the closed position (6) by a first valve actuator (23) disposed adjacent the first valve element (3). The first valve actuator (23) can have any of a numerous and wide variety of configurations capable of moving the first valve element (3) toward the closed position (6). As an illustrative example, the first valve actuator (23) can be configured as a first springing element (24), which can be disposed adjacent the first valve element (3) opposite the first valve tip (7). Accordingly, the first springing element (24) in an extended condition (25) can bias the first valve element (3) toward the tubular chamber (15) to sealably engage the first valve seat (5), thereby positioning the first valve element (3) in the closed position (6) (as shown in the example of FIG. 10B). Forcible urging upon the first valve tip (7) can move the first valve element (3) toward the coupler body first open end (20) disposing the first springing element (24) in a compressed condition (26) which disengages the first valve element (3) from the first valve seat (5), thereby positioning the first valve element (3) toward an open position (16) (as shown in the example of FIG. 10A) to open the flow path (18) through the coupler body (2). As to particular embodiments, the first valve element (3) can further include a first actuator receiving recess (27), which can be disposed opposite the first valve tip (7).


Now referring primarily to FIG. 10A, FIG. 10B, and FIG. 15A through FIG. 15E, a first tubular plug (28) can be coupled to the first valve guide (4) adjacent the first valve actuator (23). As to particular embodiments, the first tubular plug (28) can be fixedly coupled to the first valve guide (4) abuttingly engaging the first springing element (24). The first tubular plug (28) can engage the first springing element (24) to position the first valve element (3) in the closed position (6). As to particular embodiments, the first tubular plug (28) can further include a second actuator receiving recess (29), which can be disposed opposite the first actuator receiving recess (27). The first springing element (24) can be received within the first and second actuator receiving recesses (27)(29) to position the first springing element (24) between the first valve element (3) and the first tubular plug (28).


Again referring primarily to FIG. 10A, FIG. 10B, and FIG. 15A through FIG. 15E, a first tubular member (30) can be coupled to the first tubular plug (28). A first tubular member internal surface (31) and a first tubular plug internal surface (32) can define a first pass-through (33) between a first tubular member first end (34) and a first tubular plug second end (35), the first pass-through (33) communicating with the first valve port (8) when the first tubular plug (28) couples within the first valve guide (4).


A portion of the first tubular member (30) can outwardly extend from the coupler body first open end (20) when the first tubular plug (28) couples within the first valve guide (4). The first tubular member (30) can have a first tubular member external surface (36) configured to join a first conduit (37). As to particular embodiments, the first tubular member external surface (36) can include one or more first annular members (38) extending outwardly from the first tubular member external surface (36), the first annular member (38) forming a first protuberance (39) configured to engage a first conduit internal surface (40) of a first conduit (37) telescopingly engaged about the first tubular member external surface (36). Engagement of the first annular member (38) with the first conduit internal surface (40) can limit travel of the first conduit (37) toward the first tubular member first end (34), thereby maintaining the engagement of the first conduit (37) about the first tubular member (30). As such, a first conduit passage (41) defined by the first conduit internal surface (40) can communicate with the first pass-through (33) as part of the flow path (18) between the first conduit passage (41) and the first valve port (8).


As to particular embodiments, the first tubular member (30) can inwardly taper toward the first tubular member first end (34) to facilitate coupling of the first conduit (37) about the first tubular member (30) via the first tubular member first end (34).


Now referring primarily to FIG. 10A, FIG. 10B, and FIG. 12A through FIG. 12E, the inventive coupler (1) can further include a coupler insert (9) having a coupler insert external surface (42) configured to insert inside of the tubular chamber (15) and a coupler insert tubular internal surface (43) which can communicate as part of the flow path (18) between a coupler insert first open end (44) and a coupler insert second open end (45).


The coupler insert tubular internal surface (19) proximate the coupler insert first open end (44) can define a second valve guide (11) coupled to a second valve seat (12) having a second valve port (14), which can align with the first valve port (8) in substantially coaxial adjacent relation upon insertion of the coupler insert (9) inside of the tubular chamber (15). As such, the first valve port (8) can communicate with the second valve port (14) as part of the flow path (18) between the first conduit passage (41) of the first conduit (37) telescopingly engaged about the first tubular member external surface (36) and the coupler insert second open end (45).


Now referring primarily to FIG. 10A, FIG. 10B, and FIG. 14A through FIG. 14G, the inventive coupler (1) can further include a second valve element (10) having a second valve body (46) coupled to a second valve tip (13). The second valve element (10) can be movable in the second valve guide (11) to sealably engage the second valve seat (12) in a closed position (6), whereby the second valve tip (13) extends through the second valve port (14). The second valve element (10) sealably engaged with the second valve seat (12) interrupts the flow path (18) of the coupler body (2) between the coupler insert first open end (44) and the coupler insert second open end (45).


Again referring primarily to FIG. 10A, FIG. 10B, and FIG. 14A through FIG. 14G, the second valve element (10) can be moved toward the closed position (6) by a second valve actuator (47) disposed adjacent the second valve element (10). The second valve actuator (47) can have any of a numerous and wide variety of configurations capable of moving the second valve element (10) toward a closed position (6). As an illustrative example, the second valve actuator (47) can be configured as a second springing element (48), which can be disposed adjacent the second valve element (10) opposite the second valve tip (13). Accordingly, the second springing element (48) in an extended condition (25) can bias the second valve element (10) toward the coupler insert first open end (44) to sealably engage the second valve seat (12), thereby positioning the second valve element (10) in the closed position (6) (as shown in the example of FIG. 10B). Forcible urging upon the second valve tip (13) can move the second valve element (10) toward the coupler insert second open end (45) disposing the second springing element (48) in a compressed condition (26) which disengages the second valve element (10) from the second valve seat (12), thereby positioning the second valve element (10) toward an open position (16) (as shown in the example of FIG. 10A) to open the flow path (18) through the coupler insert (9). As to particular embodiments, the second valve element (10) can further include a first actuator receiving recess (27), which can be disposed opposite the second valve tip (13).


Now referring primarily to FIG. 10A, FIG. 10B, and FIG. 15A through FIG. 15E, a second tubular plug (49) can be coupled to the second valve guide (11) adjacent the second valve actuator (47). As to particular embodiments, the second tubular plug (49) can be fixedly coupled to the second valve guide (11) abuttingly engaging the second springing element (48). The second tubular plug (49) can engage the second springing element (48) to position the second valve element (10) in the closed position (6). As to particular embodiments, the second tubular plug (49) can further include a second actuator receiving recess (29), which can be disposed opposite the first actuator receiving recess (27). The second springing element (48) can be received within the first and second actuator receiving recesses (27)(29) to position the second springing element (48) between the second valve element (10) and the second tubular plug (49).


Again referring primarily to FIG. 10A, FIG. 10B, and FIG. 15A through FIG. 15E, a second tubular member (50) can be coupled to the second tubular plug (49). A second tubular member internal surface (51) and a second tubular plug internal surface (52) can define a second pass-through (53) between a second tubular member second end (54) and a second tubular plug first end (55), the second pass-through (53) communicating with the second valve port (14) when the second tubular plug (49) couples within the second valve guide (11).


A portion of the second tubular member (50) can outwardly extend from the coupler insert second open end (45) and the coupler body second open end (21) when the second tubular plug (49) couples within the second valve guide (11). The second tubular member (50) can have a second tubular member external surface (56) configured to join a second conduit (57). As to particular embodiments, the second tubular member external surface (56) can include one or more second annular members (58) extending outwardly from the second tubular member external surface (56), the second annular member (58) forming a second protuberance (59) configured to engage a second conduit internal surface (60) of a second conduit (57) telescopingly engaged about the second tubular member external surface (56). Engagement of the second annular member (58) with the second conduit internal surface (60) can limit travel of the second conduit (57) toward the second tubular member second end (54), thereby maintaining the engagement of the second conduit (57) about the second tubular member (50). As such, a second conduit passage (61) defined by the second conduit internal surface (60) can communicate with the second pass-through (53) as part of the flow path (18) between the second conduit passage (61) and the second valve port (14).


As to particular embodiments, the second tubular member (50) can inwardly taper toward the second tubular member second end (54) to facilitate coupling of the second conduit (57) about the second tubular member (50) via the second tubular member second end (54).


Now referring primarily to FIG. 14A through FIG. 14G, the first valve body (22) can further include at least one axial undulation (62) along a first valve body external surface (63). When the first valve element (3) couples within the first valve guide (4), a crest portion (64) of the axial undulation (62) can be disposed adjacent to the coupler body tubular internal surface (19) and a trough portion (65) of the axial undulation (62) can be disposed distal from the coupler body tubular internal surface (19), forming an axial channel (66) between the first valve body external surface (63) and the coupler body tubular internal surface (19). The axial channel (66) can form part of the flow path (18) between the first tubular member first end (34) and the first valve port (8). As to particular embodiments, the first valve body (22) can include a plurality of axial undulations (62) in spaced apart relation, which can provide a plurality of axial channels (66) between the first valve body external surface (63) and the coupler body tubular internal surface (19) (as shown in the example of FIG. 14E).


Again referring primarily to FIG. 14A through FIG. 14G, the second valve body (46) can further include at least one axial undulation (62) along a second valve body external surface (67). When the second valve element (10) couples within the second valve guide (11), a crest portion (64) of the axial undulation (62) can be disposed adjacent to the coupler insert tubular internal surface (43) and a trough portion (65) of the axial undulation (62) can be disposed distal from the coupler insert tubular internal surface (43), forming an axial channel (66) between the second valve body external surface (67) and the coupler insert tubular internal surface (43). The axial channel (66) can form part of the flow path (18) between the second tubular member second end (54) and the second valve port (14). As to particular embodiments, the second valve body (46) can include a plurality of axial undulations (62) in spaced apart relation, which can provide a plurality of axial channels (66) between the second valve body external surface (67) and the coupler insert tubular internal surface (43) (as shown in the example of FIG. 14F).


Now referring primarily to FIG. 10A, FIG. 10B, and FIG. 11H, the coupler body (2) can further include a detent (68) disposed proximate the coupler body tubular internal surface (19). The detent (68) can be configured for releasable fixed axial positioning of the coupler insert (9) inside of the tubular chamber (15). As to particular embodiments, the detent (68) can be configured as an annular groove (69) disposed in the coupler body tubular internal surface (19) of the tubular chamber (15) proximate the coupler body second open end (21).


Now referring primarily to FIG. 3, FIG. 10A, FIG. 10B, and FIG. 12A through FIG. 13C, the coupler insert (9) can further include at least one radially extending member (70) coupled in circumferentially spaced apart relation about the coupler insert external surface (42). The radially extending member (70) disposed about the coupler insert external surface (42) can be configured to matingly engage with the annular groove (69) to fix an axial position of the coupler insert (9) inside of the tubular chamber (15). As such, a coupler insert (9) can be retained within the tubular chamber (15), thereby engaging the first and second valve tips (7)(13) to position the first and second valve elements (3)(10) in the open position (16) initiating fluid flow (17) through the flow path (18) of the inventive coupler (1). As to particular embodiments, a plurality of radially extending members (70) can be coupled in circumferentially spaced apart relation about the coupler insert external surface (42).


As to particular embodiments, the inventive coupler (1) can further include a plurality of coupler inserts (9) interchangeably insertable into the tubular chamber (15) of the coupler body (2). The one or more radially extending members (70) can be dissimilarly configured between each one of the plurality of coupler inserts (9) to allow selectable retentive arrest of the one or more radially extending members (70) within the annular groove (69). As an illustrative example, the one or more radially extending members (70) can vary in radially extending member height (71) between the plurality of coupler inserts (9) interchangeably insertable into the tubular chamber (15), whereby the selectable retentive arrest can increase with corresponding increase in the radially extending member height (71) (as shown in the example of FIG. 13A through FIG. 13C). Accordingly, a coupler insert (9) having one or more radially extending members (70) with a greater radially extending member height (71) can be retentively retained within the tubular chamber (15) of the coupler body (2) more so than a coupler insert (9) having one or more radially extending members (70) with a lesser radially extending member height (71). As such, the coupler insert (9) having the one or more radially extending members (70) with the greater radially extending member height (71) can require greater separation forces to disengage from the tubular chamber (15) in relation to the coupler insert (9) having the one or more radially extending members (70) with the lesser radially extending member height (71).


Now referring primarily to FIG. 3, FIG. 10A, FIG. 10B, FIG. 12A, FIG. 12B, and FIG. 12E, the inventive coupler (1) can further have a coupler insert seal (72) including an annular recess (73) disposed in the coupler insert external surface (42) proximate the coupler insert first open end (44) and an annular sealing member (74) disposed in the annular recess (73). The annular sealing member (74) can be configured to sealably engage the coupler body tubular internal surface (19) of the tubular chamber (15). When sealably engaged with the coupler body tubular internal surface (19), the annular sealing member (74) can function to further fix the axial position of the coupler insert (9) inside of the tubular chamber (15).


Now referring primarily to a FIG. 2 through FIG. 7, and FIG. 11A through FIG. 11E, the coupler body (2) can further include a gripping surface (75) coupled to a coupler body external surface (76). The gripping surface (75) can include a pair of recess elements (77) disposed in opposed relation in the coupler body external surface (76) proximate the coupler body first open end (20). As to particular embodiments, a plurality raised elements (78) can be disposed in spaced apart relation on each one of the pair of recess elements (77).


A method of producing a particular embodiment of the inventive coupler (1) can include providing a coupler body (2) including a coupler body tubular internal surface (19) which communicates between a coupler body first open end (20) and a coupler body second open end (21), whereby the coupler body tubular internal surface (19) proximate the coupler body first open end (20) defines a first valve guide (4) coupled to a first valve seat (5) having a first valve port (8), the first valve port (8) communicating with a tubular chamber (15) disposed proximate the coupler body second open end (21).


The method can further include coupling a first valve element (3) to the first valve guide (4), the first valve element (3) having a first valve body (22) coupled to a first valve tip (7). The first valve element (3) can be movable in the first valve guide (4) to sealably engage the first valve seat (5) in a closed position (6) with the first valve tip (7) extending through the first valve port (8) a distance into the tubular chamber (15). The method can further include disposing a first valve actuator (23) adjacent the first valve element (3) to facilitate movement of the first valve element (3) toward the closed position (6).


The method can further include coupling a first tubular plug (28) to the first valve guide (4) adjacent the first valve actuator and coupling a first tubular member (30) to the first tubular plug (28), the first tubular member (30) having a first tubular member external surface (36) configured to join a first conduit (37).


The method can further include providing a coupler insert (9) including a coupler insert external surface (42) configured to insert inside of the tubular chamber (15) and a coupler insert tubular internal surface (43) which communicates between a coupler insert first open end (44) and a coupler insert second open end (45), the coupler insert tubular internal surface (19) defining a second valve guide (11) coupled to a second valve seat (12) having a second valve port (14), the second valve port (14) aligned with the first valve port (8) upon insertion of the coupler insert (9) inside of the tubular chamber (15).


The method can further include coupling a second valve element (10) to the second valve guide (11), the second valve element (10) having a second valve body (46) coupled to a second valve tip (13). The second valve element (10) can be movable in the second valve guide (11) to sealably engage the second valve seat (12) in a closed position (6) with the second valve tip (13) extending through the second valve port (14). The method can further include disposing a second valve actuator (47) adjacent the second valve element (10) to facilitate movement of the second valve element (10) toward the closed position (6).


The method can further include coupling a second tubular plug (49) to the second valve guide (11) adjacent the second valve actuator (47) and coupling a second tubular member (50) to the second tubular plug (49), the second tubular member (50) having a second tubular member external surface (56) configured to join a second conduit (57).


The first valve tip (7) can engage the second valve tip (13) upon insertion of the coupler insert (9) inside of the tubular chamber (15), whereby the first valve element (3) disengages the first valve seat (5) and the second valve element (10) disengages the second valve seat (12) to open a flow path (18) through the inventive coupler (1).


As to particular embodiments, the method can further include configuring at least one axial undulation (62) along a first valve body external surface (63) of the first valve body (22).


As to particular embodiments, the method can further include configuring at least one axial undulation (62) along a second valve body external surface (67) of the second valve body (46).


As to particular embodiments, the method can further include disposing a detent (68) proximate the coupler body tubular internal surface (19) of the coupler body (2), the detent (68) configured for releasable fixed axial positioning of the coupler insert (9) inside of the tubular chamber (15).


As to particular embodiments, the method can further include configuring the detent (68) as an annular groove (69) and disposing the annular groove (69) in the coupler body tubular internal surface (19) of the tubular chamber (15) proximate the coupler body second open end (21).


As to particular embodiments, the method can further include coupling at least one radially extending member (70) about the coupler insert external surface (42) of the coupler insert (9), the radially extending member (70) configured to matingly engage with the annular groove (69) to fix an axial position of the coupler insert (9) inside of the tubular chamber (15).


As to particular embodiments, the method can further include providing a plurality of coupler inserts (9) interchangeably insertable into the tubular chamber (15) of the coupler body (2), the at least one radially extending member (70) dissimilarly configured between each one of the plurality of coupler inserts (9) to allow selectable retentive arrest of the at least one radially extending member (70) within the annular groove (69). As to particular embodiments, the at least one radially extending member (70) can vary in radially extending member height (71) between the plurality of coupler inserts (9) interchangeably insertable into the tubular chamber (15), the selectable retentive arrest increasing with corresponding increase in the radially extending member height (71).


As to particular embodiments, the method can further include providing a coupler insert seal (72) including an annular recess (73) disposed in the coupler insert external surface (42) proximate the coupler insert first open end (20) and an annular sealing member (74) disposed in the annular recess (73), the annular sealing member (74) configured to sealably engage the coupler body tubular internal surface (19) of the tubular chamber (15).


As to particular embodiments, the method can further include coupling a gripping surface (75) to a coupler body external surface (76) of the coupler body (2), the gripping surface (75) including a pair of recess elements (77) disposed in opposed relation in the coupler body external surface (76) proximate the coupler body first open end (20) and a plurality raised elements (78) disposed in spaced apart relation on each one of the pair of recess elements (77).


As to particular embodiments, elements of the inventive coupler (1) can be entirely formed of the same material, or alternatively, various elements of the inventive coupler (1) can be formed from different materials. The inventive coupler (1) or elements of the inventive coupler (1) can be produced from any of a wide variety of materials, including substantially inflexible materials, resiliently flexible materials, resiliently deformable materials, or the like, or combinations thereof. By way of non-limiting example, the material can include or consist of: rubber, rubber-like material, plastic, plastic-like material, acrylic, polyamide, polyester, polypropylene, polyethylene, polyvinyl chloride-based materials, silicone-based materials, or the like, or combinations thereof. Additional non-limiting examples can include polymeric materials or resins, for example thermoplastics, such as acrylic, nylon, polybenzimidazole, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polytetrafluoroethylene, or the like, or combinations thereof; thermosets, such as polyester fiberglass, polyurethanes, rubber, polyoxybenzylmethylenglycolanhydride, urea-formaldehyde foam, melamine resin, epoxy resin, polyimides, cynate esters, polycyanurates, polyester resin, or the like, or combinations thereof; elastomers, such as natural polyisoprene, synthetic polyisoprene, polybutadiene, chloropene rubber, butyl rubber, styrene-butadiene rubber, nitrile rubber, ethylene propylene rubber, epichlorohydrin rubber, polyacrylic rubber, silicone rubber, fluorosilicone rubber, fluoroelastomers, perfluoroelastomers, polyether block amides, chlorosulfonated polyethylene, ethylene-vinyl acetate, thermal plastic elastomer (TPE), or the like, or combinations thereof.


As to particular embodiments, the inventive coupler (1) or elements of the inventive coupler (1) can be produced from any of a wide variety of processes depending upon the application, such as press molding, injection molding, fabrication, machining, printing, three-dimensional printing, or the like, or combinations thereof, as one piece or assembled from a plurality of pieces into an embodiment of the inventive coupler (1) or provided as a plurality of pieces for assembly into an embodiment of the inventive coupler (1).


A method of using a particular embodiment of the inventive coupler (1) can include obtaining an inventive coupler (1) having elements as described above, inserting the coupler insert (9) inside of the tubular chamber (15), engaging the first valve tip (7) with the second valve tip (13), and disengaging the first valve element (3) from the first valve seat (5) and disengaging the second valve element (10) from the second valve seat (12) to open a flow path (18) through the inventive coupler (1).


Now referring primarily to FIG. 1A and FIG. 10A, as to particular embodiments having a first conduit (37) telescopingly engaged about the first tubular member external surface (36) and a second conduit (57) telescopingly engaged about the second tubular member external surface (56), fluid can flow through the inventive coupler (1) by ingressing from the first conduit passage (41) of the first conduit (37) to the first pass-through (33), flowing through the first valve guide (4) coupled to the first valve seat (5), the first valve port (8), the second valve port (14), the second valve guide (11) coupled to the second valve seat (5), and the second pass-through (53), egressing from the second tubular member second end (54) to the second conduit passage (61) of the second conduit (57). As to other particular embodiments, fluid can flow through the inventive coupler (1) by ingressing from the second conduit passage (61) of the second conduit (57) to the second pass-through (53), flowing through the second valve guide (11) coupled to the second valve seat (12), the second valve port (14), the first valve port (8), the first valve guide (4) coupled to the first valve seat (5), and the first pass-through (33), egressing from the first tubular member first end (34) to the first conduit passage (41) of the first conduit (37). As such, the inventive coupler (1) can fluidicly couple the first and second conduit passages (41)(61).


The method can further include moving the coupler body (2) and the coupler insert (9) in outward opposed axial directions, disengaging the first valve tip (7) and the second valve tip (13), and engaging the first valve element (3) with the first valve seat (5) and engaging the second valve element (10) with the second valve seat (12) to close the flow path (18) through the inventive coupler (1). As such, the fluid flow (17) through the inventive coupler (1) can be interrupted by the first and second valve elements (3)(10). Correspondingly, the fluid flow (17) between the first and second conduits (37)(57) can be interrupted without a substantial loss of fluid from the first and second conduit passages (41)(61).


As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. The invention involves numerous and varied embodiments of a releasable valved coupler and methods for making and using such releasable valved couplers including the best mode.


As such, the particular embodiments or elements of the invention disclosed by the description or shown in the figures or tables accompanying this application are not intended to be limiting, but rather exemplary of the numerous and varied embodiments generically encompassed by the invention or equivalents encompassed with respect to any particular element thereof. In addition, the specific description of a single embodiment or element of the invention may not explicitly describe all embodiments or elements possible; many alternatives are implicitly disclosed by the description and figures.


It should be understood that each element of an apparatus or each step of a method may be described by an apparatus term or method term. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all steps of a method may be disclosed as an action, a means for taking that action, or as an element which causes that action. Similarly, each element of an apparatus may be disclosed as the physical element or the action which that physical element facilitates. As but one example, the disclosure of a “coupler” should be understood to encompass disclosure of the act of “coupling”—whether explicitly discussed or not—and, conversely, were there effectively disclosure of the act of “coupling”, such a disclosure should be understood to encompass disclosure of a “coupler” and even a “means for coupling.” Such alternative terms for each element or step are to be understood to be explicitly included in the description.


In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such interpretation, common dictionary definitions should be understood to included in the description for each term as contained in the Random House Webster's Unabridged Dictionary, second edition, each definition hereby incorporated by reference.


All numeric values herein are assumed to be modified by the term “about”, whether or not explicitly indicated. For the purposes of the present invention, ranges may be expressed as from “about” one particular value to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value to the other particular value. The recitation of numerical ranges by endpoints includes all the numeric values subsumed within that range. A numerical range of one to five includes for example the numeric values 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, and so forth. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. When a value is expressed as an approximation by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. The term “about” generally refers to a range of numeric values that one of skill in the art would consider equivalent to the recited numeric value or having the same function or result. Similarly, the antecedent “substantially” means largely, but not wholly, the same form, manner or degree and the particular element will have a range of configurations as a person of ordinary skill in the art would consider as having the same function or result. When a particular element is expressed as an approximation by use of the antecedent “substantially,” it will be understood that the particular element forms another embodiment.


Moreover, for the purposes of the present invention, the term “a” or “an” entity refers to one or more of that entity unless otherwise limited. As such, the terms “a” or “an”, “one or more” and “at least one” can be used interchangeably herein.


Thus, the applicant(s) should be understood to claim at least: i) each of the releasable valved couplers herein disclosed and described, ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these devices and methods, iv) those alternative embodiments which accomplish each of the functions shown, disclosed, or described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, ix) methods and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, x) the various combinations and permutations of each of the previous elements disclosed.


The background section of this patent application provides a statement of the field of endeavor to which the invention pertains. This section may also incorporate or contain paraphrasing of certain United States patents, patent applications, publications, or subject matter of the claimed invention useful in relating information, problems, or concerns about the state of technology to which the invention is drawn toward. It is not intended that any United States patent, patent application, publication, statement or other information cited or incorporated herein be interpreted, construed or deemed to be admitted as prior art with respect to the invention.


The claims set forth in this specification, if any, are hereby incorporated by reference as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incorporated content of such claims as additional description to support any of or all of the claims or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incorporated content of such claims or any element or component thereof from the description into the claims or vice-versa as necessary to define the matter for which protection is sought by this application or by any subsequent application or continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incorporated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon.


Additionally, the claims set forth in this specification, if any, are further intended to describe the metes and bounds of a limited number of the preferred embodiments of the invention and are not to be construed as the broadest embodiment of the invention or a complete listing of embodiments of the invention that may be claimed. The applicant does not waive any right to develop further claims based upon the description set forth above as a part of any continuation, division, or continuation-in-part, or similar application.

Claims
  • 1. A coupler, comprising: a coupler body including: a coupler body internal surface which communicates between a coupler body first open end and a coupler body second open end, said coupler body internal surface proximate said coupler body second open end defining a tubular chamber;an annular groove disposed in said coupler body internal surface of said tubular chamber;a coupler insert including: a coupler insert external surface insertable inside of said tubular chamber; anda plurality of radially extending members disposed in circumferentially spaced apart relation about said coupler insert external surface, said plurality of radially extending members disposable in said annular groove to allow releasable retentive arrest of said coupler insert inside of said tubular chamber.
  • 2. The coupler of claim 1, further comprising a plurality of coupler inserts interchangeably insertable into said tubular chamber of said coupler body, said plurality radially extending members dissimilarly configured between each one of said plurality of coupler inserts to allow selectable retentive arrest of said plurality of radially extending members within said annular groove.
  • 3. The coupler of claim 2, wherein said plurality of radial extending members vary in member height between said plurality of coupler inserts interchangeably insertable into said tubular chamber, said selectable retentive arrest increasing with corresponding increase in said member height.
  • 4. The coupler of claim 1, wherein said coupler body tubular internal surface proximate said coupler body first open end defines a first valve guide coupled to a first valve seat having a first valve port which communicates with said tubular chamber disposed proximate said coupler body second open end; and a first valve element having a first valve body, said first valve element movable in said first valve guide to sealably engage said first valve seat in a closed position.
  • 5. The coupler of claim 4, wherein a coupler insert internal surface defines a second valve guide coupled to a second valve seat having a second valve port, said second valve port aligned with said first valve port upon insertion of said coupler insert inside of said tubular chamber; and a second valve element having a second valve body, said second valve element movable in said second valve guide to sealably engage said second valve seat in a closed position.
  • 6. The coupler of claim 5, further comprising: a first valve tip coupled to said first valve body, said first valve tip extending through said first valve port a distance into said tubular chamber in said closed position of said first valve body; anda second valve tip coupled to said second valve body, said second valve tip extending through said second valve port in said closed position of second valve body, wherein said first valve tip engages said second valve tip upon insertion of said coupler insert inside of said tubular chamber, whereby said first valve element disengages said first valve seat and said second valve element disengages said second valve seat to open a flow path through said coupler.
  • 7. The coupler of claim 6, further comprising: a first valve actuator adjacent said first valve element to facilitate movement of said first valve element toward said closed position; anda second valve actuator adjacent said second valve element to facilitate movement of said second valve element toward said closed position.
  • 8. The coupler of claim 6, further comprising at least one axial undulation along a first valve body external surface of said first valve body.
  • 9. The coupler of claim 8, further comprising at least one axial undulation along a second valve body external surface of said second valve body.
  • 10. The coupler of claim 1, further comprising a coupler insert seal including: an annular recess disposed in said coupler insert external surface proximate said coupler insert first open end; andan annular sealing member disposed in said annular recess, said annular sealing member configured to sealably engage said coupler body internal surface of said tubular chamber.
  • 11. The coupler of claim 1, wherein said coupler body further comprises a gripping surface coupled to a coupler body external surface, said gripping surface including: a pair of recess elements disposed in opposed relation in said coupler body external surface proximate said coupler body first open end; anda plurality of raised elements disposed in spaced apart relation on each one of said pair of recess elements.
  • 12. A method of producing a coupler, comprising: configuring a coupler body, including: a coupler body internal surface which communicates between a coupler body first open end and a coupler body second open end, said coupler body internal surface proximate said coupler body second open end defining a tubular chamber;an annular groove disposed in said coupler body internal surface of said tubular chamber;configuring a coupler insert, including: a coupler insert external surface insertable inside of said tubular chamber; anda plurality of radially extending members disposed in circumferentially spaced apart relation about said coupler insert external surface, said plurality of radially extending members disposable in said annular groove to allow releasable retentive arrest of said coupler insert inside of said tubular chamber.
  • 13. The method of claim 12, further comprising configuring a plurality of coupler inserts interchangeably insertable into said tubular chamber of said coupler body, said plurality radially extending members dissimilarly configured between each one of said plurality of coupler inserts to allow selectable retentive arrest of said plurality of radially extending members within said annular groove.
  • 14. The method of claim 13, further comprising varying member height of said plurality of radial extending members between said plurality of coupler inserts interchangeably insertable into said tubular chamber, said selectable retentive arrest increasing with corresponding increase in said member height.
  • 15. The method of claim 12, further comprising configuring said a coupler body internal surface proximate said coupler body first open end to define a first valve guide coupled to a first valve seat having a first valve port which communicates with said tubular chamber disposed proximate said coupler body second open end; and movably disposing a first valve body in said first valve guide to sealably engage said first valve seat in a closed position.
  • 16. The method of claim 15, further comprising configuring said coupler insert internal surface to define a second valve guide coupled to a second valve seat having a second valve port, said second valve port aligned with said first valve port upon insertion of said coupler insert inside of said tubular chamber; and movably disposing a second valve body in said second valve guide to sealably engage said second valve seat in a closed position.
  • 17. The method of claim 16, further comprising: coupling a first valve tip to said first valve body, said first valve tip extending through said first valve port a distance into said tubular chamber in said closed position of said first valve body; andcoupling a second valve tip coupled to said second valve body, said second valve tip extending through said second valve port in said closed position of second valve body,wherein said first valve tip engages said second valve tip upon insertion of said coupler insert inside of said tubular chamber, whereby said first valve element disengages said first valve seat and said second valve element disengages said second valve seat to open a flow path through said coupler.
  • 18. The method of claim 17, further comprising: disposing a first valve actuator adjacent said first valve element to facilitate movement of said first valve element toward said closed position; anddisposing a second valve actuator adjacent said second valve element to facilitate movement of said second valve element toward said closed position.
  • 19. The method of claim 16, further comprising disposing at least one axial undulation along a first valve body external surface of said first valve body.
  • 20. The method of claim 19, further comprising at least one axial undulation along a second valve body external surface of said second valve body.
  • 21. The method of claim 12, further comprising a coupler insert seal including: disposing an annular recess in said coupler insert external surface proximate said coupler insert first open end; anddisposing an annular sealing member in said annular recess, said annular sealing member configured to sealably engage said coupler body internal surface of said tubular chamber.
  • 22. The method of claim 12, further comprising coupling a gripping surface to a coupler body external surface, said gripping surface including: a pair of recess elements disposed in opposed relation in said coupler body external surface proximate said coupler body first open end; anda plurality of raised elements disposed in spaced apart relation on each one of said pair of recess elements.
  • 23. A method of using a coupler, the method comprising: obtaining a coupler body, including: a coupler body internal surface which communicates between a coupler body first open end and a coupler body second open end, said coupler body internal surface proximate said coupler body second open end defining a tubular chamber;an annular groove disposed in said coupler body internal surface of said tubular chamber;obtaining a coupler insert, including: a coupler insert external surface insertable inside of said tubular chamber; anda plurality of radially extending members disposed in circumferentially spaced apart relation about said coupler insert external surface,inserting said coupler insert into said tubular chamber of said coupler body; anddisposing said plurality of radially extending members in said annular groove allowing releasable retentive arrest of said coupler insert inside of said tubular chamber.
  • 24. The method of claim 23, further comprising: moving said coupler body and said coupler insert in outward opposed axial directions;disengaging said plurality of radially extending members from said groove; andremoving said coupler insert from inside of said tubular chamber.
  • 25. The method of claim 24, further comprising: disengaging said first valve tip and said second valve tip; andengaging said first valve element with said first valve seat and engaging said second valve element with said second valve seat to close said flow path through said coupler.
  • 26. The method of claim 23, wherein a coupler body internal surface proximate said coupler body first open end further including: a first valve guide coupled to a first valve seat having a first valve port, said first valve port communicating with a tubular chamber disposed proximate said coupler body second open end; anda first valve element having a first valve body coupled to a first valve tip, said first valve element movable in said first valve guide to sealably engage said first valve seat in a closed position with said first valve tip extending through said first valve port a distance into said tubular chamber, andwherein said coupler insert internal surface further includes: a second valve guide coupled to a second valve seat having a second valve port, said second valve port aligned with said first valve port upon insertion of said coupler insert inside of said tubular chamber;a second valve element having a second valve body coupled to a second valve tip, said second valve element movable in said second valve guide to sealably engage said second valve seat in a closed position with said second valve tip extending through said second valve port;engaging said first valve tip with said second valve tip; anddisengaging said first valve element from said first valve seat and disengaging said second valve element from said second valve seat to open a flow path through said coupler.
Parent Case Info

This United States Patent Application is a continuation of U.S. patent application Ser. No. 14/481,500, filed Sep. 9, 2014, now U.S. Pat. No. 9,752,714, issued Sep. 5, 2017, which is a continuation-in-part of U.S. Design patent application Ser. No. 29/486,449, filed Mar. 28, 2014, now U.S. Design Pat. No. D746447, issued Dec. 29, 2015, each hereby incorporated by reference herein.

US Referenced Citations (258)
Number Name Date Kind
115917 Wharton Jun 1871 A
198402 Marsden Dec 1877 A
921691 Friday May 1909 A
2218318 Pfauser Oct 1940 A
2444888 Baumgardner Jul 1948 A
2451218 Hengst Oct 1948 A
2490363 Lang Dec 1949 A
2823932 Schigut Feb 1958 A
3291152 Comer Dec 1966 A
3460801 Norton Aug 1969 A
3592231 Lamb Jul 1971 A
3719194 Anderson et al. Mar 1973 A
3916929 Brown Nov 1975 A
4220174 Spitz Sep 1980 A
4340049 Munsch Jul 1982 A
4436125 Blenkush Mar 1984 A
4500118 Blenkush Feb 1985 A
4541457 Blenkush Sep 1985 A
4630847 Blenkush Dec 1986 A
4703957 Blenkush Nov 1987 A
4733692 Kotake et al. Mar 1988 A
4877145 Manner Oct 1989 A
4903995 Blenkush et al. Feb 1990 A
4934655 Blenkush et al. Jun 1990 A
4946200 Blenkush et al. Aug 1990 A
5009252 Faughn Apr 1991 A
5033777 Blenkush Jul 1991 A
5052725 Meyer et al. Oct 1991 A
5076615 Sampson Dec 1991 A
5104158 Meyer et al. Apr 1992 A
5165733 Sampson Nov 1992 A
5178303 Blenkush et al. Jan 1993 A
D339417 Sampson et al. Sep 1993 S
5257833 McNaughton Nov 1993 A
5259894 Sampson Nov 1993 A
5295339 Manner Mar 1994 A
5316041 Ramacier, Jr. et al. May 1994 A
5322518 Schneider et al. Jun 1994 A
5353836 deCler et al. Oct 1994 A
5390702 Smith, III Feb 1995 A
5391150 Richmond Feb 1995 A
D357307 Ramacier, Jr. et al. Apr 1995 S
5460413 Sampson Oct 1995 A
5494074 Ramacier, Jr. et al. Feb 1996 A
5529085 Richards et al. Jun 1996 A
D372093 Sampson et al. Jul 1996 S
D375160 Sampson et al. Oct 1996 S
5564752 Sampson Oct 1996 A
5639064 deCler et al. Jun 1997 A
D384731 Ramacier, Jr. et al. Oct 1997 S
5695221 Sunderhaus Dec 1997 A
D388876 Sampson Jan 1998 S
5704106 Sampson et al. Jan 1998 A
5788215 Ryan Aug 1998 A
5799987 Sampson Sep 1998 A
5820614 Erskine et al. Oct 1998 A
5826610 Bodhaine Oct 1998 A
5845943 Ramacier, Jr. et al. Dec 1998 A
5848811 Sampson Dec 1998 A
5848997 Erskine et al. Dec 1998 A
5869803 Noguchi et al. Feb 1999 A
5911403 deCler et al. Jun 1999 A
5937885 Sampson Aug 1999 A
5938244 Meyer Aug 1999 A
5975489 deCler et al. Nov 1999 A
6024124 Braun et al. Feb 2000 A
6082401 Braun et al. Jul 2000 A
6095191 Smith, III Aug 2000 A
6146374 Erskine et al. Nov 2000 A
6161578 Braun et al. Dec 2000 A
6206040 Smith, III Mar 2001 B1
6231089 deCler et al. May 2001 B1
6382593 deCler et al. May 2002 B1
6471252 Moretti Oct 2002 B1
6626419 deCler et al. Sep 2003 B2
6649829 Garber et al. Nov 2003 B2
6692040 McKay et al. Feb 2004 B1
6705591 deCler Mar 2004 B2
6848602 deCler et al. Feb 2005 B2
6871669 Meyer et al. Mar 2005 B2
D503778 Wicks Apr 2005 S
6897374 Garber et al. May 2005 B2
6902144 deCler Jun 2005 B2
6916007 deCler et al. Jul 2005 B2
6962275 deCler et al. Nov 2005 B2
6978800 deCler et al. Dec 2005 B2
7080665 Whall Jul 2006 B2
7163022 Whall Jan 2007 B2
7249788 Muhammad Jul 2007 B2
7306197 Parrino Dec 2007 B2
7394375 Johnson Jul 2008 B2
7434842 Schmidt Oct 2008 B2
7448653 Jensen et al. Nov 2008 B2
7469472 deCler et al. Dec 2008 B2
7488446 Meyer et al. Feb 2009 B2
7514025 Hofmann et al. Apr 2009 B2
7546857 Chadbourne et al. Jun 2009 B2
7547047 deCler et al. Jun 2009 B2
7562906 Schmidt Jul 2009 B2
D602128 Williams et al. Oct 2009 S
7601142 House Oct 2009 B2
7631660 deCler et al. Dec 2009 B2
7647954 Garber et al. Jan 2010 B2
7658205 Edelman Feb 2010 B1
D612019 Williams et al. Mar 2010 S
D612021 Schmidt Mar 2010 S
7695020 Schmidt Apr 2010 B2
7708025 Johnson May 2010 B2
7757974 Hofmann et al. Jul 2010 B2
7770939 Jensen et al. Aug 2010 B2
7806139 Packham et al. Oct 2010 B2
7841357 Rankin Nov 2010 B2
D629894 Lombardi, III et al. Dec 2010 S
D630320 Lombardi, III et al. Jan 2011 S
7875346 Hofmann et al. Jan 2011 B2
7878553 Wicks et al. Feb 2011 B2
D634840 Lombardi, III et al. Mar 2011 S
D639398 Wilhelm Jun 2011 S
7954374 Rankin Jun 2011 B2
7954515 Gerst Jun 2011 B2
D642244 Wilhelm Jul 2011 S
D645547 Lombardi et al. Sep 2011 S
D649240 Lewis et al. Nov 2011 S
D649938 Erickson et al. Dec 2011 S
D649939 Erickson et al. Dec 2011 S
D650478 Lewis Dec 2011 S
D652510 Lombardi, III et al. Jan 2012 S
D652511 Lombardi, III et al. Jan 2012 S
D654573 Lombardi et al. Feb 2012 S
8113546 Jensen et al. Feb 2012 B2
D655393 Whitaker Mar 2012 S
8162242 Hofmann et al. Apr 2012 B2
D663022 Lombardi, III et al. Jul 2012 S
8235426 Pisula, Jr. et al. Aug 2012 B2
8388873 Hofmann et al. Mar 2013 B2
8397756 Packham et al. Mar 2013 B2
8448994 Pisula, Jr. et al. May 2013 B2
RE44310 Chadbourne et al. Jun 2013 E
8491016 Williams et al. Jul 2013 B2
8596688 Pisula, Jr. et al. Dec 2013 B2
D698440 Lombardi, III et al. Jan 2014 S
D699841 Lombardi, III et al. Feb 2014 S
8650671 Schuster Feb 2014 B1
8795256 Smith Aug 2014 B1
D712537 Lombardi et al. Sep 2014 S
8897756 Skog et al. Nov 2014 B2
8945091 Williams et al. Feb 2015 B2
D724703 Downs Mar 2015 S
9027968 Gerst May 2015 B2
9046205 Whitaker et al. Jun 2015 B2
9157560 Rehder et al. Oct 2015 B2
9186494 Fangrow Nov 2015 B2
9266257 Hofmann et al. Feb 2016 B2
9279530 Schmidt Mar 2016 B2
9283344 Sheffer Mar 2016 B2
9364653 Williams et al. Jun 2016 B2
9371921 Whitaker Jun 2016 B2
D761395 Plackner et al. Jul 2016 S
9388929 Lewis et al. Jul 2016 B2
D762826 Plackner et al. Aug 2016 S
9464741 Lewis et al. Oct 2016 B2
9498800 Hofmann et al. Nov 2016 B2
9506590 Wilhelm et al. Nov 2016 B2
9752714 Ira Sep 2017 B2
9763508 Reishus Sep 2017 B2
20010035220 Russell Nov 2001 A1
20020011730 Stickan Jan 2002 A1
20020014608 deCler et al. Feb 2002 A1
20020074533 DeCler et al. Jun 2002 A1
20020101076 Barrier Aug 2002 A1
20020129858 Meyer et al. Sep 2002 A1
20020170731 Garber et al. Nov 2002 A1
20020190453 Wilhelm et al. Dec 2002 A1
20030062498 DeCler et al. Apr 2003 A1
20030062501 DeCler Apr 2003 A1
20030196703 DeCler et al. Oct 2003 A1
20040130438 Garber Jul 2004 A1
20040169368 Garber et al. Sep 2004 A1
20040173769 DeCler Sep 2004 A1
20040222180 Wicks et al. Nov 2004 A1
20040232175 DeCler et al. Nov 2004 A1
20050001425 DeCler et al. Jan 2005 A1
20050012330 Schmidt Jan 2005 A1
20050057042 Wicks Mar 2005 A1
20050076964 Whall Apr 2005 A1
20050082828 Wicks et al. Apr 2005 A1
20050084410 Meyer et al. Apr 2005 A1
20050127117 DeCler et al. Jun 2005 A1
20050211934 Garber et al. Sep 2005 A1
20050237241 Garber et al. Oct 2005 A1
20050247371 Chadbourne et al. Nov 2005 A1
20060048849 DeCler Mar 2006 A1
20060076419 Johnson Apr 2006 A1
20060138704 DeCler et al. Jun 2006 A1
20060186233 Holm et al. Aug 2006 A1
20060196556 Johnson Sep 2006 A1
20060207345 Rankin Sep 2006 A1
20060231137 Whall Oct 2006 A1
20070001452 Friel Jan 2007 A1
20070025811 Wilhelm Feb 2007 A1
20070066965 Coambs Mar 2007 A1
20070169825 Packham et al. Jul 2007 A1
20070209716 Rankin Sep 2007 A1
20080011785 Braun et al. Jan 2008 A1
20080061553 Schmidt Mar 2008 A1
20080067807 DeCler et al. Mar 2008 A1
20080191069 Hofmann et al. Aug 2008 A1
20080277924 Jensen et al. Nov 2008 A1
20090188575 Williams et al. Jul 2009 A1
20090256355 Wicks et al. Oct 2009 A1
20090284007 Schmidt Nov 2009 A1
20100001516 Pisula, Jr. et al. Jan 2010 A1
20100006157 Gerst Jan 2010 A1
20100006162 Rankin Jan 2010 A1
20100019487 deCler et al. Jan 2010 A1
20100043988 Hofmann et al. Feb 2010 A1
20100155979 Hofmann et al. Jun 2010 A1
20100230950 Williams et al. Sep 2010 A1
20100295295 Schmidt Nov 2010 A1
20100301599 Jensen et al. Dec 2010 A1
20110012340 Packham et al. Jan 2011 A1
20110062701 Downs et al. Mar 2011 A1
20110121035 Greter et al. May 2011 A1
20110127767 Wicks et al. Jun 2011 A1
20110204621 Whitaker et al. Aug 2011 A1
20110204622 Lewis et al. Aug 2011 A1
20110210541 Lewis et al. Sep 2011 A1
20120031515 Whitaker Feb 2012 A1
20120068457 Pisula, Jr. et al. Mar 2012 A1
20120161051 Williams et al. Jun 2012 A1
20120179052 Wilhelm et al. Jul 2012 A1
20120259237 Axelrod Oct 2012 A1
20120286185 Spolski Nov 2012 A1
20130030387 Williams et al. Jan 2013 A1
20130092271 Downs et al. Apr 2013 A1
20130099489 Williams et al. Apr 2013 A1
20130207380 Williams et al. Aug 2013 A1
20130289517 Williams et al. Oct 2013 A1
20130333767 Schmidt Dec 2013 A1
20130334814 Tiberghien Dec 2013 A1
20140060675 Wilhelm et al. Mar 2014 A1
20140260554 Rankin Sep 2014 A1
20140261819 Vranish Sep 2014 A1
20150028586 Gerst et al. Jan 2015 A1
20150076815 Lombardi, III et al. Mar 2015 A1
20150090915 Vranish Apr 2015 A1
20150135502 Rankin et al. May 2015 A1
20150231369 Gray et al. Aug 2015 A1
20150260325 Quick Sep 2015 A1
20160018037 Nichols et al. Jan 2016 A1
20160033068 Wilhelm Feb 2016 A1
20160046130 Burdge et al. Feb 2016 A1
20160102791 Johnson et al. Apr 2016 A1
20160208971 Lewis et al. Jul 2016 A1
20160208972 Lewis et al. Jul 2016 A1
20160243348 Williams et al. Aug 2016 A1
20160305574 Burdge Oct 2016 A1
20170009919 Lewis et al. Jan 2017 A1
Non-Patent Literature Citations (5)
Entry
PCT International Patent Application No. PCT/US2017/014189; International Search Report and Written Opinion of the International Searching Authority, dated May 23, 2017, 13 pages total.
4salebyinventor.com. Break Away Valve for IV's. Website http://4salebyinventor.com, originally downloaded Jun. 20, 2014, 2 total pages.
Halkey-Roberts Corp. Robertsite Male Luer Valves. Trade show event, Booth 2139, Mar. 25, 2014, total 3 pages.
Design U.S. Appl. No. 29/486,449, filed Mar. 28, 2014.
U.S. Appl. No. 14/481,500, filed Sep. 9, 2014.
Related Publications (1)
Number Date Country
20170363240 A1 Dec 2017 US
Continuations (1)
Number Date Country
Parent 14481500 Sep 2014 US
Child 15696001 US
Continuation in Parts (1)
Number Date Country
Parent 29486449 Mar 2014 US
Child 14481500 US