The present invention relates to improvements in clutch systems and clutch release bearing assemblies. More particularly, this invention relates to sealing systems for release bearings.
It is desired to provide a release bearing assembly which is resistant to wear and effective at both keeping debris out of a cavity in which a roller bearing is disposed and retaining grease within the cavity.
In one preferred embodiment, the claimed release bearing assembly provides an improved means that is resistant to wear and effective at both keeping debris out of a cavity in which a roller bearing is disposed and retaining grease within the cavity. Such a release bearing assembly has a bearing housing with front and rear openings for receipt of an input shaft of a transmission. The bearing housing has a body mounting at least one grease fitting. The bearing housing has a generally radially inward extending flange intersected by the front opening. A bearing is provided with radially spaced apart inner and outer races. The outer race of the bearing is engaged by an interior of the housing in a non-rotative manner. A front slinger is provided having a first portion bordering an outer periphery of the bearing front opening and a second portion at least partially covering an annular spacing between the bearing inner and outer races. A rear slinger is provided contacting the outer race and forming an annular groove portion adjacent the annular spacing of the inner and outer races. The rear slinger can have reservoirs in the groove portion for storage of grease. A backer plate enclosing the rear slinger within the bearing housing can also be provided.
An exemplary motor vehicle clutch assembly 10 is shown in
A retainer 21, encircling a sleeve 36 is engaged by a plurality of apply springs 24 and levers 26. Levers 26 pivotably contact an adjusting mechanism 28 and engage pressure plate 18. Apply springs 24 bias levers 26 against pressure plate 18.
An optional clutch brake 30 is disposed between a feature fixed to or integral with a transmission housing 32 and a clutch release bearing assembly 34. Clutch brake 30 has a disc member rotatably coupled to input shaft 12. When the release bearing assembly 34 is moved against clutch brake 30, the speed of input shaft 12 is gradually halted due to the compressive frictional contact between the disc member and the engaging surfaces of brake 30.
Referring additionally to
Release bearing assembly 34, best shown in
Roller bearing 40 as shown in
Front circular opening 56 has a diameter that is larger than an inside diameter of inner race 60 and smaller than an outside diameter of outer race 62. Flange portion 46 is therefore able to retain roller bearing 40 while allowing sleeve 36 to enter cavity 54.
A front slinger 90 is axially biased against inner race 60 by a retainer spring 82. Spring 82 is disposed between front slinger 90 and another thrust plate (
The front slinger 90 has a main body portion 92 bordering a periphery of front opening 56. Main body portion 92 has a plurality of spring end reception pockets 91 to receive an end 83 of the spring. Pocket 91 reception of the spring end 83 insures that there is no relative rotation between the spring end 83 and front slinger 90. Main body portion 92 has stud projections 94 (radially aligned with and axially opposite pockets 91) which makes contact with inner race 60 of bearing 40 and rotates therewith. Front slinger 90 also has projecting radially outward from the main body 92 a generally planar extension 96. Planar extension 96 covers a major annular portion of the spacing between the bearing inner 60 and outer 62 races, thereby providing a cover against the influx of debris and also providing a cover which retains grease within the spacing between the inner and outer races of the bearing. Planar extension 96 is spaced axially away from bearing races 60 and 62 by studs 94. The release bearing housing 42 has a step portion 59 which is larger in diameter than the planar extension 96 or opening 56. Accordingly, grease attempting to escape axially forward from roller 64 will have a serpentine or U-shaped path along an inner surface 97 of the planar extension 96 radially outward toward step 59 and then axially forward and radially inward before it can escape out the front opening 56. The front slinger 90 is typically fabricated from a high temperature tolerant fiberglass reinforced nylon material or other suitable alternatives.
In abutting contact on the rear end of the outer race 62 of the bearing is a rear slinger 100. The rear slinger 100 has a main body 102 that is separate from the rear backer 44. The main body 102 has a rim portion 103 connected with a circumferential groove portion 104. Axially intersecting circumferential groove portion 104 and extending there through is a plurality of lubricant reservoirs 106. The groove portion 104 also has diverters 108. Diverters 108 have curvilinear directional surfaces 110. Diverters 108 are aligned generally with the grease fittings 65. Diverters 108 direct the flow of grease along the groove portion 104 to a plurality of reservoirs 106. Rear slinger 100 also has extending almost perpendicular therefrom a series of fingers or posts 112. Post 112 interacts with corner sections 114 of the bearing housing to ensure the orientation of the rear slinger 100 is angularly correct so that diverters 108 are adjacent their respective grease fittings. Additionally, posts 112 are inclined approximately 2-4° from perpendicular to cause the rear slinger 100 to grab onto the outer race 62 of the bearing. Rear slinger 100 is typically fabricated from a high temperature tolerant plastic such as fiber reinforced nylon or other suitable alternatives. Rear slinger 100 has rearward extending stud feet 120 to provide assured spacing with respect to backer plate 44. Rear slinger 100 as mentioned previously has abutting contact with outer race 62 and generally seals off a portion of the annular spacing between the inner and outer races with the exception of the lubricant reservoirs 106 which function to retain grease within the bearing housing generally adjacent to the rollers 6. Rear slinger 100, as mentioned previously, has a grease guiding function. Grease injected through grease fitting 65 (
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
The present application is a continuation-in-part of U.S. patent application Ser. No. 12/323,891, filed Nov. 26, 2008, which claims priority to U.S. Provisional Patent Application Ser. No. 61/024,633, filed Jan. 30, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/708,249, filed Feb. 20, 2007 (issued U.S. Pat. No. 7,712,595, issued May 11, 2010). The present application additionally claims priority to U.S. Provisional Patent Application Ser. No. 61/326,343, filed Apr. 21, 2010. The disclosures of all related applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2387602 | Murden | Oct 1945 | A |
3903992 | Chivukula et al. | Sep 1975 | A |
4204720 | Otani | May 1980 | A |
5687826 | Kinoshita et al. | Nov 1997 | A |
7712595 | McCutcheon et al. | May 2010 | B2 |
8087507 | Geiger et al. | Jan 2012 | B2 |
8534926 | Suzuki et al. | Sep 2013 | B2 |
20080196993 | McCutcheon et al. | Aug 2008 | A1 |
20090071790 | Geiger et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 2009145216 | Dec 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20110253500 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
61024633 | Jan 2008 | US | |
61326343 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12323891 | Nov 2008 | US |
Child | 13066647 | US | |
Parent | 11708249 | Feb 2007 | US |
Child | 12323891 | US |