Relevancy improvement through targeting of information based on data gathered from a networked device associated with a security sandbox of a client device

Information

  • Patent Grant
  • 9703947
  • Patent Number
    9,703,947
  • Date Filed
    Monday, August 1, 2016
    8 years ago
  • Date Issued
    Tuesday, July 11, 2017
    7 years ago
Abstract
A method, apparatus, and system related to relevancy improvement through targeting of information based on data gathered from a networked device associated with a security sandbox of a client device are disclosed. In one embodiment, a system may comprise a networked device, a relevancy-matching server, and a client device. The networked device may be configured to generate a preliminary data and/or a primary data associated with a user and automatically announce a sandbox-reachable service of the networked device to a discovery module. The relevancy-matching server may be configured to match a targeted data with the primary data based on a relevancy factor associated with the user. The client device may be configured to automatically process an identification data of the networked device and/or the sandbox-reachable service of the networked device from the discovery module and to automatically associate with the networked device based on the identification data.
Description
FIELD OF TECHNOLOGY

This disclosure relates generally to the technical field of networking, data recognition systems, and data recommendation systems. More particularly, this disclosure relates to a method, apparatus, and system of relevancy improvement through targeting of information based on data gathered from a networked device associated with a security sandbox of a client device in one example embodiment.


BACKGROUND

A networked device (e.g., a television, a set-top box, a computer, a multimedia display, an audio device, a weather measurement device, a geolocation device) may have access to an information associated with a user. For example, the information may comprise an identification of a movie viewed by the user, a weather information, a geolocation information, and/or a behavioral characteristic of the user when the user interacts with the networked device. However, the user may need to configure the networked device to share the information with an other networked device. For example, the user may need to read a manual to understand a configuration protocol. The user may be unable to understand the configuration protocol. As such, the user may spend a significant amount of customer support time in configuring the networked device. Alternatively, the user may need to expend a significant amount of financial resources for a network administrator to assist the user in configuring the networked device. As a result, the user may give up and remain unable to configure the networked device to share the information with the other networked device.


Furthermore, the networked device may present to the user an information that is irrelevant to the user. As a result, the user may get tired, annoyed, and/or bored with the networked device. Additionally, the user may waste a significant amount of time processing the information that is irrelevant to the user. Therefore, a revenue opportunity may be missed, because an interested party (e.g., a content creator, a retailer, a manufacturer, an advertiser) may be unable to access an interested audience. In addition, the user may be inconvenienced when the information on the networked device and the client device remain independent of each other.


SUMMARY

A method, apparatus, and system related to relevancy improvement through targeting of information based on data gathered from a networked device associated with a security sandbox of a client device are disclosed. In one aspect, a system may comprise a networked device, a relevancy-matching server, and a client device. The networked device may be configured to generate a preliminary data and/or a primary data associated with a user. The networked device may be further configured to automatically announce a sandbox-reachable service of the networked device to a discovery module. Additionally, the networked device may be configured to automatically announce the primary data along with the sandbox-reachable service of the networked device to the discovery module. The relevancy-matching server may be configured to match a targeted data with the primary data based on a relevancy factor associated with the user.


The client device may be further configured to automatically process an identification data of the networked device and/or the sandbox-reachable service of the networked device from the discovery module. The client device may also be configured to automatically associate with the networked device through a sandboxed application of the client device communicatively coupled to the sandbox-reachable service based on the identification data. In addition, the client device may be configured to process an embedded object from the relevancy-matching server through the sandboxed application. Further, the client device may be configured to gather the primary data through the embedded object and/or the sandboxed application. Still further, the client device may be configured to communicate the primary data to the relevancy-matching server through the embedded object.


The client device may be configured to constrain an executable environment in a security sandbox, execute the sandboxed application in the executable environment, and automatically establish a communication session between the sandboxed application and the sandbox-reachable service through a cross-site scripting technique, an appended header, a same origin policy exception, and/or an other mode of bypassing a number of access controls of the security sandbox. The other mode of bypassing the number of access controls of the security sandbox may enable a discovery and/or a pairing. The discovery may be performed via a multicast-based discovery protocol, a broadcast-based discovery protocol, and/or an anycast-based discovery protocol. The pairing may be performed via an entry of a short code and/or an account name in the client device and/or the networked device.


The client device may be configured to process the identification data in a manner such that the client device is configured to access the discovery module of a pairing server and/or extend the security sandbox with the discovery module and a relay module added to the security sandbox. The pairing server may be configured to receive in an announcement from the networked device and to communicate to the client device the identification data comprising a global unique identifier (GUID), an alphanumeric name, a hardware address associated with the networked device, a public address pair associated with the sandbox-reachable service of the networked device, and/or a private address pair associated with the sandbox-reachable service of the networked device when a shared network is determined to be commonly associated with the client device and the networked device. The discovery module may comprise a discovery algorithm. The discovery algorithm may utilize a protocol comprising a Bonjour® protocol, a Simple Service Discovery Protocol (SSDP) protocol, a local service discovery (LSD) uTorrent® protocol, a multicast protocol, an anycast protocol, and/or a local area network (LAN)-based protocol that discovers a number of services in a LAN based on a broadcast from an operating system service, the security sandbox, the client device, the sandbox-reachable service, and/or the networked device.


The embedded object may comprise a script, an image, a player, an iframe, and/or an other external media included in the sandboxed application. When the embedded object comprises a statically rendered object, the sandboxed application may be configured to gather the primary data from the networked device through the communication session. Further, when the embedded object comprises an executable code, the embedded object may be configured to gather the primary data from the networked device through the communication session.


In another exemplary embodiment, the system may further comprise an intermediary server. The intermediary server may be configured to process the preliminary data from the networked device and/or the client device. The intermediary server may be further configured to generate the primary data based on the preliminary data. Still further, the intermediary server may be configured to communicate the primary data to any of a number of devices with an access to the identification data of the networked device and/or the sandbox-reachable service of the networked device.


The relevancy-matching server may be configured to render the targeted data to the user through the sandboxed application of the client device. The client device may be determined to be associated with the user based on a unique identifier that is unlikely to change. Alternatively, the relevancy-matching server may be configured to render the targeted data to the user through the networked device.


The primary data may comprise a content identification, a number of descriptive metadata associated with the content identification, a content identification history, a monitored event, a geolocation, a weather information, a Media Access Control (MAC) address of the client device, a private Internet Protocol (IP) address, and/or an other data stored in a volatile memory and/or a non-volatile memory. The relevancy-matching server may be configured to match the targeted data with the primary data in a manner such that the relevancy-matching server may be configured to search a storage for a matching item and/or a related item based on the relevancy factor comprising a category of the primary data, a behavioral history of the user, a category of the sandboxed application, and/or an other information associated with the user.


The methods, system, and/or apparatuses disclosed herein may be implemented in any means for achieving various aspects, and may be executed in a form of machine readable medium embodying a set of instruction that, when executed by a machine, causes the machine to perform any of the operations disclosed herein. Other features will be apparent from the accompanying drawing and from the detailed description that follows.





BRIEF DESCRIPTION OF DRAWINGS

Example embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is a block diagram depicting a system of automatic bidirectional communication between multiple devices, according to one embodiment.



FIG. 2 is a block diagram depicting a system of bidirectional communication between a relevancy-matching server 200, a client device 100, and a networked device 102, according to one embodiment.



FIG. 3 is a block diagram depicting a system of performing a discovery through a pairing server 300, according to one embodiment.



FIG. 4 is a block diagram depicting a system of bidirectional communication between the client device 100 and the networked device 102 using an extension 404 of a security sandbox 104, according to one embodiment.



FIG. 5 is a block diagram depicting the client device 100 gathering a primary data 500 through a sandboxed application 112 and communicating the primary data 500 to the relevancy-matching server 200 through an image 502, according to one embodiment.



FIG. 6 is a block diagram depicting the client device 100 gathering the primary data 500 through an executable code 600 and communicating the primary data 500 to the relevancy-matching server 200 through the executable code 600, according to one embodiment.



FIG. 7 is a block diagram depicting the client device 100 residing on a separate network from the networked device 102 and gathering the primary data 500 from an intermediary server 700, according to one embodiment.



FIG. 8 is a block diagram depicting the relevancy-matching server 200 communicating a targeted data 800 to the client device 100 and the networked device 102, according to one embodiment.



FIG. 9 is a block diagram depicting the relevancy-matching server 200 communicating the targeted data 800 to the client device 100 associated with a user 902, according to one embodiment.



FIG. 10 is a block diagram of a system including a content identification server 1006 configured for automatic bidirectional communication with a number of capture servers 1008A, 1008B, the client device 100, and the networked device 102, according to one embodiment.



FIG. 11 is a block diagram of a system of automatic bidirectional communication between the client device 100 and the networked device 102 involving the content identification server 1006 and a plurality of other networked devices 1400A, 1400B, according to one embodiment.



FIG. 12 is a block diagram of a content identification (CID) service 1002 generating a CID data 1200 based on a media data 1004, according to one embodiment.



FIG. 13 is a block diagram of a system of determining an identification 1304 of the media data 1004 involving the content identification server 1006 communicatively coupled to the number of capture servers 1008A, 1008B, according to one embodiment.



FIG. 14 is a block diagram of a system of determining the identification 1304 of the media data 1004 involving the content identification server 1006 and the plurality of other networked devices 1400A, 1400B, according to one embodiment.



FIG. 15 is a block diagram depicting the content identification server 1006 configured to generate an annotated metadata 1504, according to one embodiment.



FIG. 16 is a block diagram depicting the content identification server 1006 configured to generate an identifying metadata 1602, according to one embodiment.



FIG. 17 is a block diagram of a system of determining the identification 1304 of the media data 1004 involving a watermark data 1204, according to one embodiment.



FIG. 18 is a block diagram of a system of determining the identification 1304 of the media data 1004 involving an identifying information 1208, according to one embodiment.



FIG. 19 is a block diagram of a system of determining the identification 1304 of the media data 1004 involving a fingerprint data 1202 and an other fingerprint data 1906, according to one embodiment.



FIG. 20 is a table 2050 depicting a determination of the identification 1304 of the media data 1004 by comparing a fingerprint data sequence 2000 to a fingerprint database 1900, according to one embodiment.



FIG. 21 is a table 2150 depicting a determination of a recurring sequence 2102, according to one embodiment.



FIG. 22 is a block diagram of a system of determining the identification 1304 of the media data 1004 involving a descriptive metadata 1206 and an other watermark data 2200, according to one embodiment.



FIG. 23 is a block diagram of the content identification server 1006 gathering the CID data 1200 and a plurality of other CID data 1402, 1404, according to one embodiment.



FIG. 24 is a table view of the content identification server 1006 gathering a provisional identification 2400 of the media data 1004 and a number of other provisional identifications 2400 of a number of other media data 1108, 1112, according to one embodiment.



FIG. 25 is a table view of the content identification server 1006 determining the identification 1304 of the media data 1004 based on a consensus, according to one embodiment.



FIG. 26 is a block diagram of the content identification server 1006 using the identification 1304 of the media data 1004 to identify the other fingerprint data 2602, according to one embodiment.





Other features of the present embodiments will be apparent from the accompanying drawings and from the detailed description that follows.


DETAILED DESCRIPTION

Example embodiments, as described below, relate to a method, an apparatus, and a system related to relevancy improvement through targeting of information based on data gathered from a networked device associated with a security sandbox of a client device, according to one or more embodiments.



FIG. 1 is a block diagram depicting a system of automatic bidirectional communication (e.g., sending and receiving information in both directions without prior configuration by a human) between multiple devices, according to one embodiment. FIG. 1 shows a client device 100, a networked device 102, a security sandbox 104, an executable environment 106, a processor 108, a memory 110, a sandboxed application 112, a sandbox-reachable service 114, a communication session 116, a cross-site scripting technique 118, an appended header 120, a same origin policy exception 122, and an other mode 124. The client device 100 communicates bidirectionally with the networked device 102 of FIG. 1.


According to one embodiment, the client device 100 may be a computer, a smartphone, and/or an other hardware that may be configured to initiate contact with a server to make use of a resource. The client device 100 may constrain the executable environment 106 in the security sandbox 104. The client device 100 may also execute the sandboxed application 112 in the executable environment 106 using the processor 108 and the memory 110. Further, the client device 100 may automatically establish the communication session 116 between the sandboxed application 112 and the sandbox-reachable service 114 of the networked device 102. The communication session 116 may be established between the sandboxed application 112 and the sandbox-reachable service 114 through the cross-site scripting technique 118, the appended header 120, the same origin policy exception 122, and/or the other mode 124 of bypassing a number of (e.g., at least one) access controls of the security sandbox 104.


According to one embodiment, the networked device 102 may be a geolocation device, a hygrometer, a thermometer, a barometer, an anemometer, a television, an audio device, a game console, a set top box, an other computer, and/or an other hardware connected by a number of communications channels that allow sharing of a number of resources and/or a number of information. The networked device 102 may perform a number of sandbox-reachable services (e.g., a geolocation service, a hygrometer service, a thermometer service, an anemometer service, a barometer service, a content identification service 1002, a Media Access Control address service, a private Internet Protocol address service) using a processor and a memory. Thus, the networked device 102 may generate a primary data 500 and/or a preliminary data 702. The primary data 500 and/or the preliminary data 702 may be associated with a user 902.


The networked device 102 may also be configured to automatically announce the sandbox-reachable service 114 of the networked device 102 to a discovery module 302 prior to an establishment of the communication session 116 between the sandboxed application 112 and the sandbox-reachable service 114. A service agent module of the networked device 102 may coordinate a number of communications with the discovery module 302 by listening on a socket, acting as a means for a number of services on the networked device 102 to discover each other, and/or announcing on behalf of the number of services. An announcement may identify the sandbox-reachable service 114 being offered and how to reach the sandbox-reachable service 114 (e.g., by communicating an identification data 304 of the networked device 102 and/or the sandbox-reachable service 114 of the networked device 102). Thus, the client device 100 may be configured to automatically process the identification data 304 of the networked device 102 and/or the sandbox-reachable service 114 of the networked device 102 from the discovery module 302. The client device 100 may also be configured to automatically associate with the networked device 102 through the sandboxed application 112 of the client device 100 communicatively coupled to the sandbox-reachable service 114 based on the identification data 304.


For example, the geolocation service may be announced by performing a HTTP POST to a URL http://flingo.tv/fling/announce with a body

















{









“service” : “gps” ,



“model_id” : “Foo GPS Z5” ,



“guid” : “8df5f7271e36cdbc4db4513a9e660817ff0fa94a” ,



“description” : “Service providing local GPS coordinates”









}











The announcement may also contain the primary data 500. Thus, the announcement may contain the body

















{









“service” : “gps” ,



“model_id” : “Foo GPS Z5” ,



“guid” : “8df5f7271e36cdbc4db4513a9e660817ff0fa94a” ,



“description” : “Service providing local GPS coordinates” ,



“latitude” : 43.60336,



“longitude” : −110.7362









}











Alternatively, the primary data 500 may be separated from a service description such that the URL specifies the service description while the body specifies the primary data 500 provided by the service. For example,
    • http://flingo.tv/fling/announce?service=gps&model_id=Foo+GPS+Z5&guid=8df5f7271e36cdbc4db4513a9e660817ff0fa94a&description=Service+providing+local+GPS+coordinates


      with the body

















{









“latitude” : 43.60336,



“longitude” : −110.7362









}











The primary data 500 may take an XML format, a JSON format, a binary format, and/or an other format. A wireless base station may be instrumented with a number of networked devices (e.g., a set of sensors) to announce the primary data 500 about an environment.


The networked device 102 may also announce an availability of the sandbox-reachable service 114 across a range of public addresses such that the sandboxed application 112 communicates with the sandbox-reachable service 114 in any one of the range of public addresses. However, the range of public addresses may be known by a pairing server 300 such that the announcement of the availability of the sandbox-reachable service 114 across the range of public addresses is unnecessary. Thus, the sandbox-reachable service 114 may communicate a global unique identifier (GUID) 704, an alphanumeric name, and/or a private address pair of the sandbox-reachable service 114 to the pairing server 300. The private address pair may comprise (e.g., include, but not be limited to) a private Internet Protocol (IP) address and a port number associated with the sandbox-reachable service 114.


Further, the networked device 102 may render (e.g., present, transmit in a consumable format, deliver) a media data 1004 to the user 902. The media data 1004 may comprise a television program, a movie, a musical composition, a newspaper article, a web page, or an advertisement. When the networked device 102 comprises a media device (e.g., a hardware that renders a published information), the networked device 102 may comprise a networked media device, an other networked media device 1106A, 1106B, and/or a heterogeneous (e.g., incompatible with an operating system and/or the sandboxed application 112 of the client device 100) networked media device.


The content identification (CID) service 1000, 1002 and/or an other CID service 1104, 1110 may comprise a provision of a discrete function of identifying the content of the media data 1004 and/or an other media data 1108, 1112, 1904 within a systems environment. The CID service 1000, 1002 and/or the other CID service 1104, 1110 may employ a number of methods (e.g., a fingerprinting method, a watermarking method, a metadata extraction method) for determining an identification 1304 (e.g., a content identification) of the media data 1004. The CID service 1000, 1002 and/or the other CID service 1104, 1110 may be a hardware, a software, a firmware, and/or an integrated circuit. The sandbox-reachable service 114 may comprise the CID service 1002 of the networked device 102. The CID service 1002 of the networked device 102 may also communicate the identification 1304 of the media data 1004 to the sandboxed application 112 through the communication session 116 and/or the announcement.


For example, the networked device 102 offering the CID service 1002 may announce http://flingo.tv/fling/announce with the body














{









“service” : “cid” ,



“make” : “Whiz Bang” ,



“model_id” : “WZB1000” ,



“description” : “Identifies content currently being viewed on the



TV.” ,



“private_ip” : [ “192.168.1.12:8080” ]







}










The sandboxed application 112 may then discover the number of sandbox-reachable services. For example, the sandboxed application 112 may use the cross-site scripting technique 118 based on a script tag (e.g., using a JSONP technique, using a jQuery® JavaScript library).














<script type=”text/javascript”>









function cb (x) {









var s = JSON.stringify (x,undefined, 4) ;



document.getElementById (“result”).innerHTML = “<pre>” +



s + “</pre>” ;









}



function jsonp ( url, cb ) {









$.ajax( { url : url, dataType : ‘jsonp’ , success : cb,









error : function ( ) {









alert ( “jsonp failed for url=” + url ) ;









} ,



timeout : 5000 } ) ;









}



var doit = function ( ) {









jsonp ( ‘http://flingo.tv/fling/discover’ , cb ) ;









}



$ (document).ready (doit) ;







</script>










Thus, the sandboxed application 112 containing a list of a number of devices and/or a number of services on a network (e.g., a local area network, a multicast network, an anycast network, a multilan network, a private network, and/or an other collection of hardware interconnected by communication channels that allow sharing of resources and information) is created.














{









“count” : 1,



“yourip” : “208.90.215.161”,



“interval” : 900,



“devices” : [









 {









“model_id” : “WZB1000”,



“description” : “Whiz Bang 1000 100\” OLED TV”,



“make” : Whiz Bang Inc.”,



“t” : 1325643090,



“services” : [









{









“description” : “Identifies content currently



being viewed on the TV.”,



“service” : “cid”,



“t” : 1325643090,



“version” :



“2011-12-29T22:10:56-cc4dc7b20cle”,



“private_ip” : [“192.168.1.12:8080”],



“name” : “FLINGO Content ID”









},



{









“description” : “Service for playing flung



videos.”,



“service” : “flingo”,



“name” : “Fling Queue”,









}









],



“guid” : “8821877d58ce99ef54aa370419529e2fab40dad2”,









},









]







}










A discovery may also be limited to the number of devices providing a particular service. For example, the discovery may be limited to a number of CID services 1000, 1002 by querying http://flingo.tv/fling/discover?service=cid


The sandboxed application 112 may then extract the GUID 704 of the networked device 102. The sandboxed application 112 may also query the sandbox-reachable service 114 of the networked device 102 (e.g., using JSONP).

















<script>









. . .



jsonp(http://flingo.tv/cid/content_id?guid= + guid, id_cb) ;



. . .



function id_cb(id) {









alert( “content_id=” + id.content_id ) ;









}









</script>











Thus, the sandboxed application 112 may obtain the identification 1304 of the media data 1004 from the CID service 1002. Similarly, the sandboxed application 112 may obtain the primary data 500 from the sandbox-reachable service 114 of an intermediary networked device that communicates with a sandbox-unreachable service of the networked device 102.


Additionally, the identification 1304 of the media data 1004 may be used to query for a number of metadata associated with the identification 1304 of the media data 1004. For example, the identification 1304 “t:22343:959030” may correspond to “The Office” episode titled “Ben Franklin.”














$ curl “http://flingo.tv/cid/metadata?content_id= t:22343:959030”


{


“show_url” : “http://www.tv.com/shows/the-office/” ,


“show_id” : “22343” ,


“content_type” : “tv_show” ,


“show_desc” : “The Office: Based on the popular British series of the


same name, this faster-paced American version follows the daily


interactions of a group of . . .” ,


“timestamp” : 1313480002.472693,


“ep_desc” : “Michael celebrates Phyllis’ wedding shower by bringing


two performers into the office: a stripper and a Ben Franklin impersonator.


Meanwhile, Karen confronts Pam about her past history with Jim.” ,


“ep_url” : “http://www.tv.com/shows/the-office/ben-franklin-959030/” ,


“ep_id” : “959030” ,


“guide” : “TV.com” ,


. . .


}









The security sandbox 104, the processor 108, and the memory 110 each exist within the client device 100 of FIG. 1 and communicate bidirectionally with each other. According to one embodiment, the security sandbox 104 may be the operating system on which the sandboxed application 112 is hosted, a browser application of the operating system, and/or an other mechanism for separating a number of running programs to execute an untested code and/or a number of untrusted programs from a number of unverified third-parties, a number of suppliers, a number of untrusted users, and/or a number of untrusted websites.


Each of a number of applications of a web browser and/or a mobile device may be constrained inside the security sandbox 104. The security sandbox 104 may constrain what each of the number of applications is allowed to do. For example, the security sandbox 104 may limit access to the network, thereby making it difficult for the client device 100 to find the networked device 102 of the user 902 and/or to obtain information directly from the networked device 102. Such information may include what is currently playing on the networked device 102.


The mobile device may also impose the security sandbox 104. The security sandbox 104 of the mobile device may exist at an operating system level. The operating system of the mobile device may differ from a traditional operating system in that the traditional operating system mostly applied a security to the user 902, a number of individual files, and/or a number of individual directories so that a user application could not corrupt the traditional operating system. This is different from having a separate security sandbox for each of the number of applications so that each of the number of applications cannot access a data of an other application and/or limiting a specific application from having access to a number of operating system services (e.g., a GPS service, a network service).


According to one embodiment, the processor 108 may be a central processing unit (CPU), a microprocessor, an integrated circuit such as an application-specific integrated circuit (ASIC), a hardwired electronic logic circuit, a discrete element circuit, a programmable logic device such as a field-programmable gate array (FPGA), and/or an other part of a computer system that carries out the instructions of a program by performing the arithmetical, logical, and/or input/output operations of the system. According to one embodiment, the memory 110 may be a random access memory (RAM), a read only memory (ROM), a flash memory, and/or an other machine-readable storage media.


The executable environment 106 exists within the security sandbox 104 of FIG. 1. According to one embodiment, the executable environment 106 may be a virtual machine, a jail, a scripting language interpreter, a scratch space on a disk and/or a memory, and/or an other tightly controlled set of resources in which to run a number of guest programs.


The sandboxed application 112 exists within the executable environment 106 of FIG. 1. According to one embodiment, the sandboxed application 112 and/or an other sandboxed application may be an untested code, an untrusted program (e.g., from an untrusted web page), and/or an other software that can be executed with an appropriate runtime environment of the security sandbox 104.


The sandbox-reachable service 114 exists within the networked device 102 of FIG. 1. According to one embodiment, the sandbox-reachable service 114 may be a smart television application, a set top box application, an audio device application, a game console application, a computer application, and/or an other service that can be discovered and/or communicated with from within the security sandbox 104. The sandbox-reachable service 114 may comprise the other sandboxed application when the sandbox-reachable service 114 is constrained by the security sandbox 104 of a device in which the sandbox-reachable service 114 resides.


The communication session 116 exists between the client device 100 and the networked device 102 of FIG. 1. According to one embodiment, the communication session 116 may be an information interchange between two terminals. The communication session 116 may exist directly between the client device 100 and the networked device 102. Alternatively, the communication session 116 may exist indirectly between the client device 100 and the networked device 102 (e.g., through the pairing server 300).


The cross-site scripting technique 118 exists as a component of the communication session 116 of FIG. 1. According to one embodiment, the cross-site scripting technique 118 may be a type of a computer security vulnerability that enables an injection of a client-side script to bypass the number of access controls.


The appended header 120 also exists as a component of the communication session 116 of FIG. 1. According to one embodiment, the appended header 120 may be a mechanism (e.g., a cross-origin resource sharing) that allows a cross-domain request by adding a new header (e.g., an origin header, a referrer header).


Additionally, the same origin policy exception 122 exists as a component of the communication session 116 of FIG. 1. According to one embodiment, the same origin policy exception 122 may be a technique for relaxing a rule preventing an access to a number of methods and/or a number of properties across a number of pages on a number of different sites. For example, a hyperlink, a form, a script 706, a frame, a header, and/or an image 502 may be used to establish the communication session 116.


Further, the other mode 124 exists as a component of the communication session 116 of FIG. 1. According to one embodiment, the other mode 124 may be a mechanism of bypassing the number of access controls of the security sandbox 104. The other mode 124 may enable the discovery via a multicast-based discovery protocol, a broadcast-based discovery protocol, and/or an anycast-based discovery protocol. The other mode 124 may also enable a pairing via an entry of a short code and/or an account name in the client device 100 and/or the networked device 102. For example, the other mode 124 may comprise a Facebook® Connect feature and/or an OAuth service.



FIG. 2 depicts a system of bidirectional communication between a relevancy-matching server 200, the client device 100, and the networked device 102, according to one embodiment. FIG. 2 shows the client device 100, the networked device 102, the sandboxed application 112, the sandbox-reachable service 114, the communication session 116, the relevancy-matching server 200, a storage 202, and an embedded object 204.


The relevancy-matching server 200 exists in the cloud 712 and is communicatively coupled to the storage 202, the client device 100, and the networked device 102 of FIG. 2. According to one embodiment, the relevancy-matching server 200 may be a computer hardware system dedicated to matching, using a processor and a memory, a targeted data 800 with the primary data 500 based on a relevancy factor associated with the user 902. The relevancy factor may comprise a category of the primary data 500, a behavioral history of the user 902, a category of the sandboxed application 112, and/or an other information associated with the user 902. The relevancy-matching server 200 may comprise a computer, a plurality (e.g., at least two) of computers, and/or a peer-to-peer network of computers. The relevancy-matching server 200 may be the pairing server 300 and/or an intermediary server 700. The relevancy-matching server 200 may also be configured to render the targeted data 800 to the user 902 through the networked device 102 and/or the sandboxed application 112 of the client device 100.


The storage 202 also exists in the cloud 712 and is communicatively coupled to the relevancy-matching server 200 of FIG. 2. According to one embodiment, the storage 200 may be a technology comprising a number of computer components and/or a recording media used to retain a digital data. The storage 200 may be a volatile memory, a non-volatile memory, a disk, and/or an other repository of the targeted data 800. The storage 200 may exist within the relevancy-matching server 200. Alternatively, the storage 200 may be external to the relevancy-matching server 200. The storage 200 may also reside on a different network from the relevancy-matching server 200. The relevancy-matching server 200 may match the targeted data 800 with the primary data 500 by searching the storage 200 for a matching item and/or a related item based on the relevancy factor.


The embedded object 204 exists within the sandboxed application 112 of FIG. 2. According to one embodiment, the embedded object 204 may be the script 706, the image 502, a player, an iframe, and/or an other external media included in the sandboxed application 112. The sandboxed application 112 of the client device 100 may process the embedded object 204 from the relevancy-matching server 200 (e.g., by pulling in the embedded object 204 from the relevancy-matching server 200). The client device 100 may also gather the primary data 500 through the embedded object 204 and/or the sandboxed application 112. When the embedded object 204 comprises a statically rendered object (e.g., the image 502), the sandboxed application 112 may be configured to gather the primary data 500 from the networked device 102 through the communication session 116. When the embedded object 204 comprises an executable code 600 (e.g., the script 706, the player, the iframe), the executable code 600 may be configured to gather the primary data 500 from the networked device 102 through the communication session 116 (e.g., by discovering and querying a number of reachable devices for the primary data 500).


For example, the user 902 may visit example.com and download a web page index.html from example.com. The index.html web page may pull in the script 706 <SCRIPT> *s* from the relevancy-matching server 200 example_ads.com. The script 706 may use an extension 404 and/or the pairing server 300 to discover and query the networked device 102 for the primary data 500. If the primary data 500 comprises the identification 1304 of the media data 1004, the script 706 may pull in a JavaScript code that uses a XMLHttpRequest to perform a HTTP GET request to an URL http://flingo.tv/fling/discover?service=cid


A discovery service (e.g., detects the number of devices and/or the number of services on the network) may return a list of the number of devices in the network of the user 902 that offer the CID service 1000, 1002. If one of the number of devices has the GUID 704 “f51eba3ab7c3410379e9dcfeb58bb3d3878a2978”, the script 706 may query for the identification 1304 of the media data 1004 using http://flingo.tv/cid/content_id?guid=f51eba3ab7c3410379e9dcfeb58bb3d3878a2978


A state for the networked device 102 with the GUID 704 may be maintained inside a content identification server 1006 (e.g., a computer hardware system dedicated to identifying a content of the media data 1004 and/or the other media data 1108, 1112, 1904 using a processor and a memory). In response, the content identification server 1006 may return

















{









“count” : 253,



“rel_ts” : 262604,



“content_id” : “SH006197570000”,



“ts” : 1344045862604,



“notifications” : [ ]









}










The client device 100 may communicate the primary data 500 to the relevancy-matching server 200 through the embedded object 204. When the relevancy-matching server 200 has the primary data 500, the relevancy-matching server 200 may use the primary data 500 to select the targeted data 800 to render to the user 902. The relevancy-matching server 200 may synchronize the targeted data 800 on the client device 100 to the primary data 500 on the networked device 102.


For example, a web page starting from zero knowledge may query the networked device 102 offering the sandbox-reachable service 114 to learn the temperature and/or the humidity in the locale of the user. The web page may then be automatically modified accordingly.



FIG. 3 depicts a system of performing the discovery through the pairing server 300, according to one embodiment. FIG. 3 shows the client device 100, the networked device 102, the sandboxed application 112, the sandbox-reachable service 114, the pairing server 300, the discovery module 302, and the identification data 304.


The pairing server 300 exists in the cloud 712 and is communicatively coupled to the client device 100 and the networked media device 102 of FIG. 3. According to one embodiment, the pairing server 300 may be a computer hardware system dedicated to enabling, using a processor and a memory, the communication session 116 between the sandboxed application 112 and the sandbox-reachable service 114. The pairing server 300 may comprise a computer, a plurality of computers, and/or a peer-to-peer network of computers. The pairing server 300 may also be the relevancy-matching server 200 and/or the intermediary server 700.


The client device 100 may be configured to process the identification data 304 of the networked device 102 and/or the sandbox-reachable service 114 of the networked device 102 in a manner such that the client device 100 is configured to access the discovery module 302 of the pairing server 300. The pairing server 300 may be configured to receive in the announcement from the networked device 102 and to communicate to the client device 100 the identification data 304 when a shared network is determined to be commonly associated with the client device 100 and the networked device 102.


The pairing server 300 may also provide a relay service (e.g., transmits a data between two terminals that are incapable of communicating directly) between the client device 100 and the networked device 102. A WebSocket (e.g., a web technology providing a number of full-duplex communications channels over a single Transmission Control Protocol connection) and/or a long-polling message query interface may be used to reduce a latency of a message delivery in a manner such that a polling period between a number of consecutive pollings may be less than a timeout period of a session through the relay service. However, when the pairing server 300 communicates the hardware address of the networked device 102 (e.g., a MAC address) and/or the private address pair of the sandbox-reachable service 114 to the client device 100, the client device 100 may communicate directly with the networked device 102 (i.e. bypassing the relay service of the pairing server 300).


The discovery module 302 exists within the pairing server 300 of FIG. 3. According to one embodiment, the discovery module 302 may be a self-contained component that performs the discovery service. The discovery module 302 may also be a software, a hardware, a firmware, and/or an integrated circuit. The client device 100 may access the discovery module 302 of the pairing server 300 to perform the discovery.


The identification data 304 exists between the pairing server 300 and the client device 100 as well as between the pairing server 300 and the networked device 102 of FIG. 3. According to one embodiment, the identification data 304 may comprise a geolocation, the GUID 704, the alphanumeric name, the hardware address associated with the networked device 102, a public address pair (e.g., a public Internet Protocol address and a port number) associated with the sandbox-reachable service 114 of the networked device 102, and/or the private address pair associated with the sandbox-reachable service 114 of the networked device 102. The identification data 304 may enable the communication session 116 between the client device 100 and the networked device 102 when the client device 100 and the networked device 102 no longer reside on the shared network.



FIG. 4 is a block diagram depicting a system of bidirectional communication between the client device 100 and the networked device 102 using the extension 404 of the security sandbox 104, according to one embodiment. FIG. 4 shows the client device 100, the networked device 102, the sandboxed application 112, the sandbox-reachable service 114, the discovery module 302, the identification data 304, a discovery algorithm 400, a relay module 402, and the extension 404.


The discovery algorithm 400 exists within the discovery module 302 of FIG. 4. According to one embodiment, the discovery algorithm 400 may be a procedure for detecting the number of devices and/or the number of services on the network. The discovery algorithm 400 may utilize a protocol comprising a Bonjour® protocol, a Simple Service Discovery Protocol (SSDP) protocol, a local service discovery (LSD) uTorrent® protocol, a multicast protocol, an anycast protocol, and/or a local area network (LAN)-based protocol that discovers a number of services in a LAN 708 based on a broadcast from any one of an operating system service, the security sandbox 104, the client device 100, the sandbox-reachable service 114, and the networked device 102.


The relay module 402 exists within the extension 404 and communicates with the sandboxed application 112, the discovery module 302, and the sandbox-reachable service 114 of FIG. 4. According to one embodiment, the relay module 402 may be a self-contained component that performs the relay service. The relay module 402 may also be a software, a hardware, a firmware, and/or an integrated circuit.


The extension 404 of the security sandbox 104 exists within the client device 100 of FIG. 4. According to one embodiment, the extension 404 may be a program adding a number of capabilities of the discovery module 302 and/or the relay module 402 to the sandboxed application 112. The extension 404 may be a plugin, an add-on, and/or an addition to a core functionality (e.g., a modification of a core code and/or a runtime) of the sandboxed application 112. The client device 100 may extend the security sandbox 104 with the discovery module 302 and the relay module 402 added to the security sandbox 104. The sandboxed application 112 of the client device 100 may use the extension 404 to process the identification data 304 of the networked device 102 and/or the sandbox-reachable service 114 of the networked device 102.


When the client device 100 pairs with the networked device 102, the automatic bidirectional communication may comprise the client device 100 pushing the media data 1004 to the networked device 102. According to one exemplary embodiment, the sandboxed application 112 of the client device 100 may be a web browser. The user may visit a web page and drag a bookmark from the web page to a bookmark bar of the web browser. The bookmark may comprise a bookmarklet (e.g., the bookmark that contains a number of JavaScript commands). The bookmarklet may not be constrained to a same origin policy and may send and/or receive a number of results using a XmlHttpRequest exchanged directly with the discovery service and/or the relay service.


A bookmarklet remote procedure call (RPC) may communicate a private broadcast to the number of services in the network. Alternatively, the bookmarklet RPC may send a discovery request to the discovery service to find the number of services in the network and then communicate via the relay service with the number of services in the network. If the discovery service and/or the relay service returns a number of private address pairs, the bookmarklet may use the XmlHttpRequest to directly communicate with the number of devices in the network and/or perform a number of RPC calls.


The bookmarklet may forward a property (e.g., a window.location.href property) that returns the URL of the web page to the discovery service and/or the relay service. A new web page may be opened to request that the user confirm an intent to push the media data 1004 to the networked device 102. A form may be presented to request that the user select the networked device 102 to receive the media data 1004. The discovery service and/or the relay service may discover a number of networked media devices sharing a local network based on an IP address of the client device 100.


A device (e.g., the pairing server 300, the client device 100, a server) in which the discovery service and/or the relay service exists and/or an other device (e.g., an other server) to which the discovery service and/or the relay service communicates the URL of the web page may extract a raw URL. The device and/or the other device may also use a fragile code to extract a metadata from the web page. For example, http://www.youtube.com/watch?v=FMRg11hQLds corresponds to a YouTube® web page with an embedded video. The YouTube® web page contains three metadata tags. A thumbnail for each video may also be obtained by pulling a video identifier out of the URL using http://i3.ytimg.com/vi/FMRg11hQLds/default.jpg and/or http://i3.ytimg.com/vi/FMRg11hQLds/hqdefault.jpg. A number in “i3” may be changeable between “i1” and “i4” while returning a same image. The number of results comprising the raw URL, the metadata, and/or the thumbnail may be communicated to the number of networked media devices sharing the local network.


The bookmarklet RPC may be used to retrieve the number of results from the device and/or the other device. The number of results may be displayed in an alert and/or passed to a Document Object Model of the web page (e.g., if an error occurs). The bookmarklet RPC may also be used to obtain an information from the networked device 102. The bookmarklet may then pass the information on to a third-party website. For example, the bookmarklet may send the XmlHttpRequest to the networked device 102 discovered by the discovery service of the pairing server 300. The bookmarklet may query for the identification 1304 of the media data 1004 currently being rendered by the networked device 102. The bookmarklet may then pass the identification 1304 as a number of query-value parameters to a metadata association server (e.g., an IMDb® database) to obtain the number of metadata about the media data 1004 presently being rendered by the networked device 102.


In another embodiment, the automatic bidirectional communication may also comprise the client device 100 communicating an object (e.g., a data upon which an operation is performed) of a function (e.g., open a web page, play a video, play a musical composition, display a video game graphic) of the sandboxed application 112 and/or a request (e.g., a longpoll HTTP request, a command to play a song) to perform the function of the sandboxed application 112 to the heterogeneous networked media device. The sandboxed application 112 of the client device 100 may establish the communication session 116 with the sandbox-reachable service 114 of the heterogeneous networked media device using the pairing server 300, the extension 404, and/or the remote access token. The sandbox-reachable service 114 of the heterogeneous networked media device may comprise a sandboxed application function service (e.g., a web page opener service, a video playing service, a music playing service, a video game playing service). For example, the user 902 may pick up an iPhone® and open an App that plays music. When the user 902 gets home, the music stops playing on an iPhone® and immediately starts playing on a Bose® audio system. However, the user 902 retains the volume and playback controls for the music on the iPhone®.


The sandboxed application 112 may be configured to communicate with the other sandboxed application in a manner such that the client device 100 may be configured to offer the sandboxed application 112 as sandbox-reachable service to the other sandboxed application and/or forward a number of communications to the other sandboxed application through the relay service. The other sandboxed application may comprise the sandboxed application function service of the heterogeneous networked media device. For example, a web page may communicate with an other web page in the same manner in which the webpage communicated with the sandbox-reachable service 114 through the communication session 116 (e.g., the webpage may forward the request to the relay service, and the other web page may long poll the relay service for the request).


The sandboxed application function service may be configured to communicate with the sandboxed application 112 of the client device 100 in a manner such that the sandboxed application function service may be configured to incorporate a first executable code (e.g., a callback comprising an argument in a query string) into an invocation procedure of the sandboxed application function service, generate a second executable code (e.g., a return result that calls the callback with the return result), and execute the first executable code with the second executable code. According to one embodiment, the invocation procedure may a sandbox-reachable (e.g., using JSONP) service call. For example, the invocation procedure may be a remote procedure call (RPC).


The client device 100 may be configured to retain a number of control operations (e.g., a playback operation, a rewind operation, a navigation operation) of the sandboxed application 112 when the heterogeneous networked media device is configured to perform the function of the sandboxed application 112. For example, a video game may be displayed on the heterogeneous networked media device while the client device 100 may be used to play the video game.


The relay service may be configured to forward the request to perform the function of the sandboxed application 112 from the client device 100 to the heterogeneous networked media device. The heterogeneous networked media device may be configured to constantly listen for the request through a connection application comprising a polling application, a streaming application, a WebSocket application, and/or a long-polling application. The long-polling application may be configured to optimize a polling period between a long-polling and a consecutive long-polling in a manner such that the polling period is less than a timeout period of the long-polling.


For example, the sandboxed application function service may always be running. The sandboxed application function service may communicate a message query (e.g, an initiation of a process of retrieving an asynchronous communication) to the relay service by HTTP long-polling the relay service and/or a device providing the relay service. By optimizing the polling period such that the polling period is less than the timeout period of the session of the relay service, the heterogeneous networked media device may constantly listen for the request. If an “open” message arrives as the body to the longpoll HTTP request, the heterogeneous networked media device may open a fullscreen window containing the web page.


In another exemplary embodiment, the heterogeneous networked media device may be configured to run a sandboxed application server (e.g., a computer hardware and/or a computer software dedicated to providing a data to the sandboxed application 112, the other sandboxed application, and/or the sandboxed application function service). For example, the sandboxed application server may comprise a web server. The sandboxed application server may comprise a computer, a plurality of computers, and/or a peer-to-peer network of computers. The sandboxed application server may also be the sandboxed application function service, the heterogeneous networked media device, the pairing server, and/or the trusted intermediary server. Further, the sandboxed application server 700 may be a firmware and/or an integrated circuit.


The sandboxed application server may be configured to provide the sandboxed application function service. The sandboxed application function service may also be configured to process the object of the function of the sandboxed application 112 from the client device 100 and to perform the function of the sandboxed application 112 through the sandboxed application server.


For example, the object may comprise a URI of a web page. The user 902 may navigate to a web page *w* using the client device 100. The web page *w* may discover the heterogeneous networked media device and communicate an intent of the user 902 to open a web page *v*. The heterogeneous networked media device may run the sandboxed application server (e.g., the web server) that offers the sandboxed application function service. The sandboxed application function service may provide the invocation procedure at a URL “http://x:y/open” where x refers to an IP address and/or a domain name of the heterogeneous networked media device and y is a port that provides the sandboxed application function service.


The sandboxed application 112 may communicate the object (e.g., POST a URL *u* to http://x:y/open) causing the sandboxed application server to open the web page *v* pointing at the URL *u*. The sandboxed application 112 may communicate with the invocation procedure using the first executable code comprising the argument in the query string of http://x:y/open. The return result may be the second executable code (e.g., a JSON script) that calls the first executable code.


The sandboxed application 112 may communicate the URI of the webpage to the sandboxed application server that offers the sandboxed application function service. The sandboxed application server may then open a browser window pointing at the URI of the web page.


A trusted intermediary (e.g., a computer hardware and/or a computer software that enforces and/or prompts the user 902 to set a number of communication policies) may be configured to request an authorization to perform the function of the sandboxed application 112 through the heterogeneous networked media device. The trusted intermediary may also be configured to store the authorization in the sandboxed application 112 and/or a trusted intermediary server (e.g, a server from which the trusted intermediary is downloaded). Additionally, the trusted intermediary may be configured to request the authorization through the client device 100.


For example, the trusted intermediary may be the pairing server 300, an iframe, a browser window, a browser tab, a new web page, etc. When the trusted intermediary comprises the iframe, the number of communication policies may be enforced from within the client device 100. The sandboxed application 112 may communicate the object to the sandboxed application function service of the heterogeneous networked media device. The sandboxed application server in the heterogeneous networked media device offering the sandboxed application function service may return the trusted intermediary comprising the iframe asking the user 902 whether to permit the web page to open on the heterogeneous networked media device. Thus, the iframe may prompt the user 902 for the authorization through the sandboxed application 112. The trusted intermediary may store the authorization with the trusted intermediary in a web browser as a cookie. The authorization may also be stored in the trusted intermediary server (e.g., the pairing server 300, the sandbox application server).



FIG. 5 is a block diagram depicting the client device 100 gathering the primary data 500 through the sandboxed application 112 and communicating the primary data 500 to the relevancy-matching server 200 through the image 502, according to one embodiment. FIG. 5 shows the client device 100, the networked device 102, the sandboxed application 112, the sandbox-reachable service 114, the relevancy-matching server 200, the storage 202, the primary data 500, and the image 502.


The primary data 500 exists between the sandbox-reachable service 114 and the sandboxed application 112 as well as between the image 502 and the relevancy-matching server 200 of FIG. 5. According to one embodiment, the primary data 500 may comprise the identification 1304 (e.g., a title, an episode number) of the media data 1004, a number of descriptive metadata 1206 (e.g., a face recognition, a voice recognition, a music recognition, a product recognition, a brand name recognition) associated with the identification 1304 of the media data 1004, a content identification history (e.g., a viewing history, a listening history, a subset of the media data 1004 previously rendered by the networked device 102), a monitored event 802, the geolocation (e.g., a GPS coordinate, a Geo-IP coordinate), a weather information, the Media Access Control (MAC) address of the client device 100, a private Internet Protocol (IP) address, and/or an other data stored in a volatile memory and/or a non-volatile memory (e.g., a hard disk drive, a solid state drive, a RAM).


The image 502 exists within the sandboxed application 112 of FIG. 5. According to one embodiment, the image 502 may be a HTML tag that incorporates a number of in-line graphics into an HTML document. The embedded object 204 may comprise the image 502. The sandboxed application 112 may query the sandbox-reachable service 114 for the primary data 500. The sandboxed application 112 may also pull in the image 502 from the relevancy-matching server 200. The image 502 may then be used to pass along the primary data 500 to the relevancy-matching server 200. Thus, the identification data 304 of the client device 100 and/or the networked device 102 may remain unknown to the relevancy-matching server 200.



FIG. 6 is a block diagram depicting the client device 100 gathering the primary data 500 through the executable code 600 and communicating the primary data 500 to the relevancy-matching server 200 through the executable code 600, according to one embodiment. FIG. 6 shows the client device 100, the networked device 102, the sandboxed application 112, the sandbox-reachable service 114, the relevancy-matching server 200, the storage 202, the primary data 500, and the executable code 600.


The executable code 600 exists within the sandboxed application 112 and communicates with the sandbox-reachable service 114 and the relevancy-matching server 200 of FIG. 6. According to one embodiment, the executable code 600 may be the script 706, the player, the iframe, and/or an other set of instructions that runs within the client device 100. The sandboxed application 112 may pull in the executable code 600 from the relevancy-matching server 200. The executable code 600 may be configured to gather the primary data 500 from the sandbox-reachable service 114 and/or the networked device 102. The executable code 600 may then be used to pass along the primary data 500 to the relevancy-matching server 200. Thus, the identification data 304 of the client device 100 and/or the networked device 102 may remain unknown to the relevancy-matching server 200.



FIG. 7 is a block diagram depicting the client device 100 residing on a separate network from the networked device 102 and gathering the primary data 500 from the intermediary server 700, according to one embodiment. FIG. 7 shows the client device 100, the networked device 102, the sandboxed application 112, the sandbox-reachable service 114, the relevancy-matching server 200, the storage 202, the primary data 500, the intermediary server 700, the preliminary data 702, the GUID 704, the script 706, the LAN 708, a cellular network 710, and the cloud 712.


The intermediary server 700 exists within the cloud 712 and is communicatively coupled to the client device 100 and the networked device 102 of FIG. 7. According to one embodiment, the intermediary server 700 may be a computer hardware system dedicated to generating the primary data 500 based on the preliminary data 702 using a processor and a memory. The intermediary server 700 may comprise a computer, a plurality of computers, and/or a peer-to-peer network of computers. The intermediary server 700 may also be the pairing server 300 and/or the relevancy-matching server 200. The intermediary server 700 may be configured to process the preliminary data 702 from the networked device 102 and/or the client device 100 and to generate the primary data 500 based on the preliminary data 702. The intermediary server 700 may also be configured to communicate the primary data 500 to any of a number of devices with the access to the identification data 304 of the networked device 102 and/or the sandbox-reachable service 114 of the networked device 102 (e.g., via a remote access token).


For example, the intermediary server 700 may be the content identification server 1006. The intermediary server 700 may process the preliminary data 702 comprising a watermark data 1204 extracted by the CID service 1002 of the networked device 102. The intermediary server 700 may compare the watermark data 1204 to a watermark database 1700 to determine the identification 1304 of the media data 1004 associated with the watermark data 1204. Thus, the intermediary server 700 may generate the primary data 500 comprising the identification 1304 of the media data 1004 based on the watermark data 1204.


The intermediary server 700 may then communicate the primary data 500 to the client device 100 if the client device 100 knows the identification data 304 of the networked device 102 and/or the sandbox-reachable service 114 comprising the CID service 1002. For example, the client device 100 may have obtained the GUID 704 of the networked device 102 from the discovery module 302 of the pairing server 300 when the client device 100 and the networked device 102 previously resided on the shared network. The client device 100 may have stored the GUID 704 in the remote access token (e.g., a cookie). Thus, the client device 100 may query the intermediary server 700 for the identification 1304 of the media data 1004 using the GUID 704 of the networked device 102. The intermediary server 700 may act as a trusted intermediary to enforce a policy regarding which of the number of devices may access the primary data 500 of the networked device 102.


The preliminary data 702 exists between the networked device 102 and the intermediary server 700 of FIG. 7. According to one embodiment, the preliminary data 702 may be an information associated with the user 902 that is generated by the networked device 102. The preliminary data 702 may be identical to the primary data 500 (e.g., a content identifying metadata extracted by the networked device 102). Alternatively, the preliminary data 702 may need to be converted into the primary data 500 to be usable by the relevancy-matching server 200 (e.g., a digital fingerprint generated by the networked device 102 that must be compared to a fingerprint database 1900 by the intermediary server 700 to generate the identification 1304 of the media data 1004). The preliminary data 702 may comprise a CID data 1200, 1300 automatically generated by the CID service 1000, 1002 based on the media data 1004. The preliminary data 702 may also comprise a timestamp of the CID data 1200, 1300 and/or a device identifier (e.g., a model identifier, a GUID, a Media Access Control address, an Internet Protocol address). The timestamp may be automatically generated by the CID service 1000, 1002. The timestamp may exist within the content of the media data 1004.


The GUID 704 exists between the client device 100 and the intermediary server 700 of FIG. 7. According to one embodiment, the GUID 704 may be a reference number used to uniquely identify a location of a data object. The GUID 704 of the networked device 102 and/or the sandbox-reachable service 114 may be used by the client device 100 to access the primary data 500 generated by the intermediary server 700. The identification data 304 may comprise the GUID 704. The identification data 304 may also comprise the geolocation of the networked device 102. The client device 100 may also store the geolocation in the remote access token. The geolocation may be used to authenticate the communication session 116 between the client device 100 and the networked device 102 (e.g., by confirming that the client device 100 and the networked device 102 currently and/or previously shared the geolocation of the networked device 102). The geolocation may also be used by the client device 100 to obtain the primary data 500 of the networked device 102 through the intermediary server 700.


The script 706 exists within the sandboxed application 112 of FIG. 7. According to one embodiment, the script 706 may be a program written for a software environment that automates an execution of a number of tasks. The embedded object 204 and/or the executable code 600 may comprise the script 706. The script 706 may gather the primary data 500 from the intermediary server 700 and communicate the primary data 500 to the relevancy-matching server 200.


The LAN 708 is associated with the networked device 102 of FIG. 7. According to one embodiment, the LAN 708 may be a collection of a number of links and a number of nodes that interconnects a number of devices in a limited area.


The cellular network 710 is associated with the client device 100 of FIG. 7. According to one embodiment, the cellular network 710 may be a radio network distributed over a number of land areas served by a fixed-location transceiver. The client device 100 on the cellular network 710 may obtain the primary data 500 of the networked device 102 on the LAN 708 through the intermediary server 700.


The cloud 712 is associated with the intermediary server 700, the relevancy-matching server 200, and the storage 202 of FIG. 7. According to one embodiment, the cloud 712 may be a remote location accessible over the Internet that makes available a number of computing resources. The intermediary server 700, the relevancy-matching server 200, and the storage 202 may each reside in a different remote location.


For example, the identification 1304 of the media data 1004 may be communicated via the cloud 712. The networked device 102 may communicate the identification 1304 of the media data 1004 to a server in the cloud 712. The server in the cloud 712 may then store and/or forward the identification 1304 of the media data 1004 to any of the number of devices that are paired (e.g., have access to the identification data 304) with the networked device 102. A communication of the identification 1304 of the media data 1004 may occur immediately and/or at a later time (e.g., to retarget a client-device advertisement a number of hours after the user saw the content associated with the identification 1304 of the media data 1004). Using the relay service of the server in the cloud 712 to relay the identification 1304 of the media data 1004 may be necessary if the client device 100 cannot establish a direct connection to the networked device 102 (e.g., when the client device 100 is a mobile phone using a wireless 4G data network while the networked device 102 is behind a firewall on a wired ISP).



FIG. 8 is a block diagram depicting the relevancy-matching server 200 communicating the targeted data 800 to the client device 100 and the networked device 102, according to one embodiment. FIG. 8 shows the client device 100, the networked device 102, the sandboxed application 112, the sandbox-reachable service 114, the relevancy-matching server 200, the storage 202, the embedded object 204, the targeted data 800, and the monitored event 802.


The targeted data 800 exists between the relevancy-matching server 200 and the client device 100 as well as between the relevancy-matching server 200 and the networked device 102 of FIG. 8. According to one embodiment, the targeted data 800 may comprise a content recommendation, an advertisement, a product recommendation, and/or an other information related to the primary data 500. The targeted data 800 may comprise the matching item and/or the related item in the storage 202. The targeted data 800 may be communicated to the client device 100 and/or the networked device 102.


The monitored event 802 exists between the networked device 102 and the client device 100 of FIG. 8. According to one embodiment, the monitored event 802 may be an interaction between the user 902 and the networked device 102. For example, the targeted data 800 may comprise an interactive advertisement. The interaction between the user 902 and the networked device 102 may become the primary data 500 of the networked device 102. The interaction may then be communicated to the client device 100.



FIG. 9 is a block diagram depicting the relevancy-matching server 200 communicating the targeted data 800 to the client device 100 associated with the user 902, according to one embodiment. FIG. 9 shows the client device 100, the relevancy-matching server 200, the targeted data 800, a unique identifier 900 of the client device 100, and the user 902.


The unique identifier 900 exists between the client device 100 and the relevancy-matching server 200 of FIG. 9. According to one embodiment, the unique identifier 900 may be a reference information of the client device 100. The unique identifier 900 of the client device 100 may be used as a pseudonym for the user 902.


The networked device 102 may have a better view of the network than the sandboxed application 112. The networked device 102 may see the unique identifier 900 of the client device 100 on a number of packets as the number of packets transit within the network. Thus, the networked device 102 may generate and/or communicate the unique identifier 900 to the sandboxed application 112.


The unique identifier 900 may also be used to generate a user profile. The targeted data 800 may be initialized by a number of triggers comprising a number of closed captions, a logo detection, a metadata, a face detection, a voice detection, and/or the monitored event 802. The targeted data 800 and/or the primary data 500 may be synchronized across a plurality of devices by creating the user profile in a user profile server. The user profile server may be the pairing server 300, the relevancy-matching server 200, and/or the intermediary server 700. The user profile server may create the user profile by aggregating a number of login information from a number of different services (e.g., a Facebook® service, a Google® service, a Myspace® service, a Windows Live® service, a Yahoo!® service, an OpenID® service). The user profile may also comprise a name, an email address, a gender, a birthday, a timezone, a website, a phone number, a profile picture, an address, a status, a number of interests, a music, a number of movies, a number of television shows, a number of books, a number of friends, a relationship status, and/or an employment information. The user profile may be associated with the client device 100 using the unique identifier 900 of the client device 100. The number of login information may be communicated to any of the plurality of devices.


The user 902 is associated with the client device 100 of FIG. 9. According to one embodiment, the user 902 may be a human who utilizes the client device 100. The client device 100 may communicate the unique identifier 900 to the relevancy-matching server 200. The client device 100 may be associated with the user 902 based on the unique identifier 900 that is unlikely to change. The relevancy-matching server 200 may identify the client device 100 using the unique identifier 900. The relevancy-matching server 200 may also communicate the targeted data 800 tailored for the user 902 to the client device 100 with the unique identifier 900 associated with the user 902.



FIG. 10 is a block diagram of a system including the content identification server 1006 configured for automatic bidirectional communication with a number of capture servers 1008A, 1008B, the client device 100, and the networked device 102, according to one embodiment. FIG. 10 shows the client device 100, the networked device 102, the CID service 1000, 1002, the media data 1004, the content identification server 1006, a capture server 1008A, 1008B, and a media transmission node 1010A, 1010B.


The CID service 1000 exists in the client device 100, and the CID service 1002 exists in the networked device 102 of FIG. 10. The CID service 1000, 1002 of the networked device 102, the client device 100, and/or any of the number of devices that currently and/or previously shared the network with the networked device 102 (e.g., that have the access to the identification data 304) may communicate the preliminary data 702 to the content identification server 1006.


The CID service 1002 of the networked device 102 may exist at a chipset level of the networked device 102. The CID service 1002 of the networked device 102 may also be integrated into a chipset of the networked device 102. Further, the CID service 1002 of the networked device 102 may be integrated into a video pipeline and/or an audio pipeline. Still further, the CID service 1002 of the networked device 102 may access a buffer (e.g., a frame buffer, a video buffer, an audio buffer).


In one embodiment, the CID service 1000 of the client device 100 and/or the sandboxed application 112 may process and/or generate the CID data 1300 and/or the identification 1304 of the media data 1004 by accessing the CID service 1002 of the networked device 102 through the communication session 116. In another embodiment, the CID service 1000 of the client device 100 and/or the sandboxed application 112 may process and/or generate the CID data 1300 and/or the identification 1304 of the media data 1004 by using a sandbox-reachable service of an intermediary device to access a sandbox-unreachable CID service of the networked device 102. In yet another embodiment, the sandboxed application 112 may retrieve the identification 1304 of the media data 1004 from the sandbox-reachable service of the intermediary device. For example, an audio content identification library on the intermediary device may return the identification 1304 of the media data 1004 to the sandboxed application 112.


Alternatively, the CID service 1000 of the client device 100 may generate the CID data 1300 by capturing (e.g., processing and/or replicating at least a portion of) the media data 1004 rendered by the networked device 102 (e.g., using the extension 404 to allow the sandboxed application 112 to access the CID service 1000 and/or a capture device of the client device 100, using a loopback interface to allow the sandboxed application 112 to access the CID service 1000 and/or a capture device of the client device 100 by testing a number of ports). Thus, the CID service 1000 of the client device 100 may be subject to a greater amount of signal noise than the CID service 1002 of the networked device 102. Yet another alternative may entail the CID service 1000 generating the CID data 1300 by using the intermediary device to capture the media data 1004 (e.g., by establishing a communication session between the client device 100 and the intermediary device to access a sandbox-reachable CID service of the intermediary device and/or to access the capture device of the intermediary device).


For example, when the sandbox-reachable service 114 of the networked device 102 comprises the CID service 1002 of the networked device 102, the sandboxed application 112 of the client device 100 may process the CID data 1200 automatically generated by the CID service 1002 of the networked device 102 through the communication session 116. The communication session 116 may be established using the discovery service and/or the relay service of the pairing server 300, the extension 404, and/or the remote access token.


When the CID service 1002 of the networked device 102 comprises a sandbox-unreachable service, the sandboxed application 112 of the client device 100 may process the CID data 1200 through the sandbox-reachable service of the intermediary device. The sandbox-reachable service of the intermediary device may be configured to utilize a discovery protocol unavailable to the security sandbox 104 of the client device 100 and to process the CID data 1200 from the sandbox-unreachable CID service of the networked device 102. The client device 100 may establish the communication session between the sandboxed application 112 and the sandbox-reachable service of the intermediary device using the discovery service and/or the relay service of the pairing server 300, the extension 404, and/or the remote access token.


Alternatively, the sandboxed application 112 of the client device 100 may access the capture device (e.g., a camera, a microphone) to capture the media data 1004 rendered by the networked device 102. The networked device 102 may comprise the media device that is unconnected from the network of the client device 100. The sandboxed application 112 may use the extension 404 to add the capture device of the client device 100 and/or the CID service 1000 of the client device 100 to the security sandbox 104 of the client device 100. The CID service 1000 may also be made into the extension 404 so that a number of calls from JavaScript running in the sandboxed application 112 may query the CID service 1000 running on the same device as the sandboxed application 112. Further, the sandboxed application 112 of the client device 100 may access the sandbox-reachable CID service and/or the capture device of the intermediary device through the communication session 116 between the sandboxed application 112 and the intermediary device.


The sandboxed application 112 may also use the loopback interface (e.g., a loopback address, 127.0.0.1, a localhost) to access the CID service 1000 of the client device 100 and/or the capture device of the client device 100. The sandboxed application 112 may query a number of well-known ports for the CID service 1000 of the client device 100 and/or the capture device of the client device 100. Alternatively, the sandboxed application 112 may query the number of ports associated with a number of private IP addresses returned from the discovery service. The sandboxed application 112 may associate a port with the CID service 1000 of the client device 100 and/or the capture device of the client device 100 by looking for a valid service-specific handshake and/or an other valid service-specific query response. The sandboxed application 112 may then communicate with the CID service 1000 of the client device 100 and/or the capture device of the client device 100 through the port. An available service discovered using the loopback interface may also be added to a list of network services even if the available service was not otherwise announced.


The media data 1004 exists in the networked device 102 of FIG. 10. According to one embodiment, the media data 1004 and/or the other media data 1108, 1112, 1904 may be a published information rendered to the user 902. The media data 1004 may be rendered to the user 902 by the networked device 102. The other media data 1108, 1112 may be rendered by a number of other networked media devices 1106A, 1106B. The other media data 1904 may be captured by the capture server 1008A, 1008B.


The content identification server 1006 exists in the cloud 712 and is communicatively coupled to the client device 100, the networked device 102, and the number of capture servers 1008A, 1008B of FIG. 10. The content identification server 1006 may comprise a computer, a plurality of computers, and/or a peer-to-peer network of computers. The content identification server 1006 may also be the relevancy-matching server 200, the pairing server 300, and/or the intermediary server 700.


The content identification server 1006 may be configured to automatically determine the identification 1304 of the media data 1004 previously and/or presently being rendered by the networked device 102. The content identification server 1006 may be configured to process the preliminary data 702 (e.g., the CID data 1200, 1300, the timestamp, the device identifier) from the networked device 102, the client device 100, and/or any of the number of devices that currently and/or previously shared the network with the networked media device 102. The content identification server 1006 may also be configured to process an other CID data 1302, 1306, 1402, 1404 automatically generated by the other CID service 1104, 1110 based on the other media data 1108, 1112, 1904. Further, the content identification server 1006 may be configured to process an other timestamp of the other CID data 1302, 1306, 1402, 1404 and/or an other device identifier from the other CID service 1104, 1110. The other timestamp may exist within the content of the other media data 1108, 1112, 1904.


The capture server 1008A, 1008B exists between the content identification server 1006 and the media transmission node 1010A, 1010B of FIG. 10. According to one embodiment, the capture server 1008A, 1008B may comprise a computer hardware system dedicated to processing and/or replicating at least a portion of the other media data 1904 at the media transmission node 1010A, 1010B, detecting a characteristic 1502 (e.g., a closed captioning, a sound, a text, a voice, a face, a music, a logo, a location, a name, a scene, a word of interest, a product, and/or an other object that may potentially identify the other media data 1904) of the other media data 1904, and/or storing the other media data 1904 in a persistent storage (e.g., a disk). The other CID service 1104, 1110 may exist in the capture server 1008A, 1008B. The capture server 1008A, 1008B may comprise a computer, a plurality of computers, and/or a peer-to-peer network of computers. The capture server 1008A, 1008B may also be the relevancy-matching server 200, the pairing server 300, the intermediary server 700, and/or the content identification server 1006.


The media transmission node 1010A, 1010B is communicatively coupled to the capture server 1008A, 1008B of FIG. 10. According to one embodiment, the media transmission node 1010A, 1010B may comprise a television broadcasting station, a radio broadcasting station, a cable headend, a connection point in a home, and/or an other point in a media distribution network. The capture server 1008A, 1008B may be collocated with a number of servers at the media transmission node 1010A, 1010B. The capture server 1008A, 1008B may be configured to automatically generate the other CID data 1302, 1306 of the other media data 1904 captured at the media transmission node 1010A, 1010B and/or an other timestamp of the other CID data 1302, 1306 through the other CID service 1104, 1110 using a processor and a memory. The capture server 1008A, 1008B may also be configured to communicate the other CID data 1302, 1306, the other timestamp, and/or the other device identifier to the content identification server 1006.



FIG. 11 is a block diagram of a system of automatic bidirectional communication between the client device 100 and the networked device 102 involving the content identification server 1006 and a plurality of other networked devices 1400A, 1400B, according to one embodiment. FIG. 11 shows the client device 100, the networked device 102, the CID service 1000, 1002, the media data 1004, the content identification server 1006, an other client device 1102, an other CID service 1104, 1110, the other networked media device 1106A, 1106B, the other media data 1108, 1112, and an other electronic program guide 1100.


The other CID service 1104 exists within the other client device 1102, and the other CID service 1110 exists within the other networked media device 1106B of FIG. 11. The other CID service 1104, 1110 may exist in the plurality of other networked devices 1400A, 1400B (e.g., a number of other client devices 1102 and/or the number of other networked media devices 1106A, 1106B within a limited geographic proximity to the networked device 102). The plurality of other networked devices 1400A, 1400B may be configured to automatically generate the other CID data 1402, 1404 of the other media data 1108, 1112 and/or the other timestamp of the other CID data 1402, 1404 through the other CID service 1104, 1110 using a processor and a memory. The plurality of other networked devices 1400A, 1400B may also be configured to communicate the other CID data 1402, 1404, the other timestamp, and/or the other device identifier to the content identification server 1006.


The media data 1004 exists within the networked device 102, the other media data 1108 exists within the other networked media device 1106A, and the other media data 1112 exists within the other networked media device 1106B of FIG. 11. The other media data 1108 may be rendered by the other networked media device 1106A. The other media data 1112 may be rendered by the other networked media device 1106B.


The content identification server 1006 exists in the cloud 712 and is communicatively coupled to the client device 100, the networked device 102, the other client device 1102, and the other networked media device 1106B of FIG. 11. The content identification server 1006 may be configured to process a plurality of other CID data 1402, 1404 of the number of other media data 1108, 1112, a number of other timestamps of the plurality of other CID data 1402, 1404, and/or a number of other device identifiers from a plurality of other CID services 1104, 1110. Further, the content identification server 1006 may automatically determine the identification 1304 of the media data 1004 and/or the other media data 1108, 1112 through a crowdsourcing based on a consensus of a provisional identification 2400 of the media data 1004 and a number of other provisional identifications 2400 of the number of other media data 1108, 1112.


The other electronic program guide 1100 exists in the cloud 712 and is communicatively coupled to the content identification server 1006 of FIG. 11. According to one embodiment, an electronic program guide and/or the other electronic program guide 1100 may be a schedule of a number of programs, a number of channels 2100, and/or a number of times. The electronic program guide and/or the other electronic program guide 1100 may be available through a set-top box and/or the Internet.



FIG. 12 is a block diagram of the CID service 1002 generating the CID data 1200 based on the media data 1004, according to one embodiment. FIG. 12 shows the media data 1004, the CID data 1200, a fingerprint data 1202, the watermark data 1204, a descriptive metadata 1206, and an identifying information 1208.


The CID data 1200 exists at the end of an arrow depicting a process of generating the CID data 1200 from the media data 1004 of FIG. 12. The CID data 1200, 1300 and/or the other CID data 1302, 1306, 1402, 1404 may be a reference information derived from and/or associated with the media data 1004 and/or the other media data 1108, 1112, 1904. The CID service 1000, 1002 of the networked device 102, the client device 100, and/or any of the number of devices that currently and/or previously shared the network with the networked device 102 may automatically generate the CID data 1200, 1300. The other CID service 1104, 1110 of the capture server 1008A, 1008B and/or the plurality of other networked devices 1400A, 1400B may automatically generate the other CID data 1302, 1306, 1402, 1404. The CID data 1200, 1300 may comprise the fingerprint data 1202, the watermark data 1204, the descriptive metadata 1206, and/or the identifying information 1208. The other CID data 1302, 1306, 1402, 1404 may comprise an other fingerprint data 1906, 2302, 2306, 2602, an other watermark data 2200, 2304, an other descriptive metadata 2308, and/or an other identifying information 1800.


The fingerprint data 1202 exists adjacent to the CID data 1200 in an exploded view of the CID data 1200 of FIG. 12. According to one embodiment, the CID service 1000, 1002 and/or the other CID service 1104, 1110 may be configured to automatically generate the fingerprint data 1202 and/or the other fingerprint data 1906, 2302, 2306, 2602 in a manner such that the CID service 1000, 1002 and/or the other CID service 1104, 1110 is configured to detect, extract (e.g., replicate a portion of), quantize (e.g., round a value to a unit of precision), and/or hash (e.g., map a large data set to a small data set) a number of characteristic features and/or a number of other characteristic features of the media data 1004 and/or the other media data 1108, 1112, 1904. The fingerprint data 1202 may comprise a fingerprint data sequence 2000, and the other fingerprint data 1906, 2302, 2306, 2602 may comprise an other fingerprint data sequence. The CID service 1000, 1002 and/or the other CID service 1104, 1110 may also be configured to communicate the fingerprint data 1202 and/or the other fingerprint data 1906, 2302, 2306, 2602 to the content identification server 1006.


The watermark data 1204 also exists adjacent to the CID data 1200 in the exploded view of the CID data 1200 of FIG. 12. According to one embodiment, the CID service 1000, 1002 and/or the other CID service 1104, 1110 may be configured to automatically generate the watermark data 1204 and/or the other watermark data 2200, 2304 in a manner such that the CID service 1000, 1002 and/or the other CID service 1104, 1110 is configured to detect and to extract an embedded signal of the media data 1004 and/or the other media data 1108, 1112, 1904. The content identification server 1006 may be configured to process the watermark data 1204 and/or the other watermark data 2200, 2304 from the CID service 1000, 1002 and/or the other CID service 1104, 1110. The content identification server 1006 may also be configured to compare the watermark data 1204 and/or the other watermark data 2200, 2304 to a known watermark data in the watermark database 1700.


Further, the content identification server 1006 may be configured to associate the identification 1304 and/or the provisional identification 2400 (e.g., when the other CID data 1402, 1404 is processed from the plurality of other networked devices 1400A, 1400B) of the media data 1004 with the identification of the known watermark data when the watermark data 1204 is identical to the known watermark data. Similarly, the content identification server 1006 may be configured to associate the identification 1304 and/or an other provisional identification 2400 of the other media data 1108, 1112, 1904 with the identification of the known watermark data when the other watermark data 2200, 2304 is identical to the known watermark data.


The descriptive metadata 1206 exists adjacent to the CID data 1200 in the exploded view of the CID data 1200 of FIG. 12. According to one embodiment, the CID service 1000, 1002 and/or the other CID service 1104, 1110 may be configured to automatically generate the descriptive metadata 1206 and/or the other descriptive metadata 2308 in a manner such that the CID service 1000, 1002 and/or the other CID service 1104, 1110 may be configured to process a descriptive data (e.g., a channel number, a title, an episode number, a summary, a callsign) and/or an other descriptive data added to the media data 1004 and/or the other media data 1108, 1112, 1904. The CID service 1000, 1002 and/or the other CID service 1104, 1110 may also communicate the descriptive metadata 1206 and/or the other descriptive metadata 2308 to the content identification server 1006. However, if the descriptive metadata 1206 and/or the other descriptive metadata 2308 identifies the content of the media data 1004 and/or the other media data 1108, 1112, the CID service 1000, 1002 and/or the other CID service 1104, 1110 of the plurality of other networked devices 1400A, 1400B may not need to communicate the descriptive metadata 1206 and/or the other descriptive metadata 2308 to the content identification server 1006.


The content identification server 1006 may be configured to process the descriptive metadata 1206 and/or the other descriptive metadata 2308 from the client device 100, the networked device 102, the capture server 1008A, 1008B, and/or the plurality of other networked devices 1400A, 1400B. When the descriptive metadata 1206 identifies the content of the media data 1004, the content identification server 1006 may be further configured to associate the descriptive metadata 1206 with the identification 1304 and/or the provisional identification 2400 of the media data 1004. When the other descriptive metadata 2308 identifies the content of the other media data 1108, 1112, 1904, the content identification server 1006 may be further configured to associate the other descriptive metadata 2308 with the identification 1304 and/or the other provisional identification 2400 of the other media data 1108, 1112, 1904.


The identifying information 1208 exists adjacent to the CID data 1200 in the exploded view of the CID data 1200 of FIG. 12. According to one embodiment, the CID service 1000, 1002 and/or the other CID service 1104, 1110 may be configured to generate the identifying information 1208 and/or the other identifying information 1800 in a manner such that the CID service 1000, 1002 and/or the other CID service 1104, 1110 may be configured to retrieve the identifying information 1208 (e.g., a title, an episode number, a summary, a channel number, a callsign) and/or the other identifying information 1800 from a tuner 2300 (e.g., a television tuner, a radio tuner, a quadrature amplitude modulation tuner, an Advanced Television Systems Committee tuner, a stream decoder), an other tuner 1902, the electronic program guide, and/or the other electronic program guide 1100. The capture server 1008A, 1008B, the plurality of other networked devices 1400A, 1400B, and/or the content identification server 1006 may access the other tuner 1902 and/or the other electronic program guide 1100.


For example, the networked device 102 may identify the channel number based on the tuner 2300. The CID service 1002 may access the electronic program guide to retrieve the title of the media data 1004 currently scheduled for the channel number. The CID service 1000, 1002 and/or the other CID service 1104, 1110 may also communicate the identifying information 1208 and/or the other identifying information 1800 to the content identification server 1006. However, if the identifying information 1208 and/or the other identifying information 1800 identifies the media data 1004 and/or the other media data 1108, 1112, the CID service 1000, 1002 and/or the other CID service 1104, 1110 may not need to communicate the identifying information 1208 and/or the other identifying information 1800 to the content identification server 1006.


The content identification server 1006 may be configured to process the identifying information 1208 and/or the other identifying information 1800 from the client device 100, the networked device 102, the capture server 1008A, 1008B, and/or the plurality of other networked devices 1400A, 1400B. When the identifying information 1208 identifies the content of the media data 1004, the content identification server 1006 may be further configured to associate the identifying information 1208 with the identification 1304 and/or the provisional identification 2400 of the media data 1004. When the other identifying information 1800 identifies the content of the other media data 1108, 1112, 1904, the content identification server 1006 may be further configured to associate the other identifying information 1800 with the identification 1304 and/or the other provisional identification 2400 of the other media data 1108, 1112, 1904.


When the descriptive metadata 1206 identifies a channel 2100 of the networked device 102, the content identification server 1006 may be further configured to associate the media data 1004 with the other media data 1904 identified by the capture server 1008A, 1008B configured to monitor the channel 2100 identified by the descriptive metadata 1206. When the identifying information 1208 identifies the channel 2100 of the networked device 102, the content identification server 1006 may be further configured to associate the media data 1004 with the other media data 1904 identified by the capture server 1008A, 1008B configured to monitor the channel 2100 identified by the identifying information 1208.


When the descriptive metadata 1206 and/or the identifying information 1208 identifies the channel 2100 of the networked device 102, the content identification server 1006 may also be configured to retrieve a content identifying information (e.g., a title) associated with the channel 2100 from the other electronic program guide 1100 communicatively coupled with the content identification server 1006 and to associate the content identifying information with the provisional identification 2400 of the media data 1004. Additionally, when the other descriptive metadata 2308 and/or the other identifying information 1800 identifies the channel 2100 of the number of other networked media devices 1106A, 1106B, the content identification server 1006 may be configured to retrieve the content identifying information associated with the channel 2100 from the other electronic program guide 1100 communicatively coupled with the content identification server 1006 and to associate the content identifying information with the other provisional identification 2400 of the other media data 1108, 1112.



FIG. 13 is a block diagram of a system of determining the identification 1304 of the media data 1004 involving the content identification server 1006 communicatively coupled to the number of capture servers 1008A, 1008B, according to one embodiment. FIG. 13 shows the client device 100, the networked device 102, the content identification server 1006, the number of capture servers 1008A, 1008B, the CID data 1200, 1300, the other CID data 1302, 1306, and the identification 1304.


The identification 1304 of the media data 1004 exists between the content identification server 1006 and the client device 100 as well as between the content identification server 1006 and the networked device 102 of FIG. 13. According to one embodiment, the identification 1304 of the media data 1004 and/or the other media data 1108, 1112, 1904 may comprise a title, an episode number, a channel number, a device identifier, and/or an other reference information associated with the media data 1004 and/or the other media data 1108, 1112, 1904.


The capture server 1008A, 1008B and/or the content identification server 1006 may access a greater amount of computational resources and a greater amount of memory resources with which to determine the identification 1304 of the media data 1004 and/or the other media data 1904. The greater amount of computational resources and the greater amount of memory resources of the capture server 1008A, 1008B and/or the content identification server 1006 may be conducive to limiting the CID service 1000, 1002 to identifying the channel 2100 of the networked device 102. Thus, the other CID service 1104, 1110 of the capture server 1008A, 1008B along with the content identification server 1006 may determine the identification 1304 of the media data 1004 at a faster rate. The greater amount of computational resources and the greater amount of memory resources of the capture server 1008A, 1008B and/or the content identification server 1006 may also be conducive to separately analyzing an audio portion of the media data 1004 and a video portion of the media data 1004. Thus, the other CID service 1104, 1110 of the capture server 1008A, 1008B along with the content identification server 1006 may always analyze the audio portion of the other media data 1904 corresponding to the media data 1004 in a manner such that the CID service 1000, 1002 may simply query the content identification server 1006 for the identification 1304 of the audio portion. The CID service 1000, 1002 may be limited to analyzing the video portion of the media data 1004 to the extent of identifying the channel 2100 of the networked device 102.


The content identification server 1006 and/or the capture server 1008A, 1008B may also be configured to communicate the identification 1304 of the media data 1004, the channel 2100, the descriptive metadata 1206, and/or the other descriptive metadata 2308 to the networked device 102, the client device 100, the metadata association server, a content recommendation server (e.g., a computer hardware system dedicated to suggesting a published information related to the media data 1004), and/or any of the number of devices with the access to the identification data 304 of the networked device 102 and/or the sandbox-reachable service 114 of the networked media device 102 (e.g., via the remote access token). Thus, the content identification server 1006 may act as a trusted intermediary to enforce a policy regarding which of the number of devices may access the identification 1304 of the media data 1004, the channel 2100, the descriptive metadata 1206, and/or the other descriptive metadata 2308.


The networked device 102, the client device 100, and/or the number of devices may perform any of a number of functions with the identification 1304 of the media data 1004. For example, the number of devices may render a number of recommendations and/or a related media data (e.g., the published information sharing a commonality with the media data 1004) to the user 902. The number of recommendations and/or the related media data may be initialized by a number of triggers comprising a number of closed captions, a logo detection, the descriptive metadata 1206, a detection of the characteristic 1502, and/or a manual event trigger.


For example, the relevancy-matching server 200 may comprise the content recommendation server configured to automatically associate, using a processor and a memory, the identification (e.g., a title, an episode number) of the related media data with the CID data 1200, 1300 of the media data 1004 presently being rendered by the networked device 102, the identification 1304 of the media data 1004, and/or the number of metadata associated with the identification 1304 of the media data 1004. The content recommendation server may comprise a computer, a plurality of computers, and/or a peer-to-peer network of computers. The content recommendation server may also be the content identification server 1006, the metadata association server, the intermediary server 700, and/or the pairing server 300.


The CID service 1000, 1002 may communicate the CID data 1200, 1300, the identification 1304 of the media data 1004, and/or the number of metadata associated with the identification 1304 of the media data 1004 to the content recommendation server. The content identification server 1006 may also communicate the identification 1304 of the media data 1004 to the content recommendation server. The metadata association server may also communicate the number of metadata associated with the identification 1304 of the media data 1004 to the content recommendation server. The content recommendation server may be configured to communicate the identification of the related media data to the networked device 102, the client device 100, the metadata association server, and/or any of the number of devices with the access to the identification data 304.


The relevancy-matching server may also comprise the metadata association server configured to automatically associate, using a processor and a memory, the CID data 1200, 1300 of the media data 1004 presently being rendered by the networked device 102, the identification of the related media data, and/or the identification 1304 of the media data 1004 with the number of metadata associated with the identification 1304 of the media data 1004 and/or the number of metadata associated with the identification of the related media data. The metadata association server may also comprise a computer, a plurality of computers, and/or a peer-to-peer network of computers. The metadata association server may be an optional intermediary server between the content identification server 1006 and the content recommendation server. The metadata association server may also be the content identification server 1006, the content recommendation server, the intermediary server 700, and/or the pairing server 300.


The CID service 1000, 1002 may communicate the CID data 1200, 1300 and/or the identification 1304 to the metadata association server. The content identification server 1006 may also communicate the identification 1304 to the metadata association server. The content recommendation server may communicate the identification of the related media data to the metadata association server. The metadata association server may generate the number of metadata associated with the identification 1304 of the media data 1004 and/or the number of metadata associated with the identification of the related media data by accessing Tribune®, Rovi®, IMDb®, and/or an other source for the number of metadata about the media data 1004 and/or the related media data. The metadata association server may be configured to communicate the number of metadata associated with the identification 1304 of the media data 1004 and/or the number of metadata associated with the identification of the related media data to the content recommendation server, the networked device 102, the client device 100, and/or any of the number of devices with the access to the identification data 304.


Further, the relevancy-matching server 200 may comprise a related media data provider (e.g., a computer hardware system dedicated to transmitting the related media data using a processor and a memory). The related media data provider may comprise a computer, a plurality of computers, and/or a peer-to-peer network of computers. The related media data provider may also be the content identification server 1006, the metadata association server, the content recommendation server, the intermediary server 700, the capture server 1008A, 1008B, and/or the pairing server 300.


When the related media data provider is the capture server 1008A, 1008B, a synchronized viewing may be enabled. The synchronized viewing may augment the media data 1004 with the related media data that is being broadcasted. The capture server 1008A, 1008B may capture an audio portion of the media data 1004 separately from a video portion of the media data 1004. The capture server 1008A, 1008B may then use a number of timestamps of the other CID data 1302, 1306 to correlate the audio portion of the media data 1004 and/or the related media data to the video portion of the media data 1004 and/or the related media data based on a choice of the user 902.


For example, the user 902 may view the video portion of the media data 1004 and switch between the audio portion of the media data 1004 and the audio portion of the related media data. Alternatively, the user may listen to the audio portion of the media data 1004 and switch between the video portion of the media data 1004 and the video portion of the related media data. The media data 1004 and the related media data may be the media data 1004 broadcasted on a number of different channels. Thus, the user 902 may select a superior audio portion and/or a superior video portion.


According to one embodiment, the client device 100 may be configured to render the related media data to the user 902 through the networked device 102 and/or the client device 100. The sandboxed application 112 may be configured to process the identification of the related media data from the content recommendation server. The sandboxed application 112 may also be configured to suggest the identification of the related media data to the user 902. Further, the sandboxed application 112 may be configured to process a request to render the related media data through the networked device 102 and/or the client device 100 based on a selection of the user 902. Still further, the sandboxed application 112 may be configured to communicate the request and/or the related media data to the networked device 102 when the selection comprises the request to render the related media data through the networked device 102. The networked device 102 and/or the client device 100 may be configured to retrieve the related media data from the related media data provider.


In another embodiment, the content identification server 1006, the metadata association server, and/or the content recommendation server may also be used to automatically update an initial user interface (UI) of the networked device 102 with the identification 1304 of the media data 1004, the identification of the related media data, the number of metadata associated with the identification 1304 of the media data 1004, and/or the number of metadata associated with the identification of the related media data. The initial UI may comprise a number of UI elements and/or a number of pages. The networked device 102 may be configured to automatically update and/or display the initial UI. The initial UI may be displayed prior to, after, and/or simultaneously with (e.g., overlaid upon, alongside) a rendering of an initial media data (e.g., the media data 1004 that is rendered immediately following a hardware startup sequence of the networked device 102).


A number of user interactions may trigger the networked device 102 to display the initial UI. For example, the initial UI may be displayed when the user 902 logs into and/or pairs with the networked device 102. The initial UI may also be displayed when the user 902 otherwise interacts with the networked device 102 from the client device 100 (e.g., when the client device 100 is used as a remote control and/or a companion application to the networked device 102).


Further, the initial UI may be displayed when the user 902 and/or an unrecognized user is detected. For example, the networked device 102 may access and/or be communicatively coupled to a camera that detects the user 902 and/or the unrecognized user. The camera may identify the user 902 using a facial recognition algorithm. The networked device 102 may also access and/or be communicatively coupled to a microphone that detects the user 902 and/or the unrecognized user. The microphone may identify the user 902 using a voice recognition algorithm. Thus, the initial UI that is customized (e.g., based on a prior usage, a number of policy settings, and/or a demographic profile) for the user 902 and/or the unrecognized user may be displayed when the user 902 and/or the unrecognized user is within a certain proximity of the networked device 102.


For example, a certain initial UI may be displayed when a male child is detected. A different initial UI may be displayed when an adult woman approaches the male child. If the unrecognized user is detected, the networked device 102 may create a user profile. The user profile may be based on a number of analytics comprising the prior usage, the number of policy settings, and/or the demographic profile. The initial UI may be customized based on the user profile.


The prior usage may comprise a number of identifications of a number of previously rendered media data (e.g., the primary data 500) in the client device 100, the networked device 102, and/or any of the number of devices that currently and/or previously shared the network with the networked device 102. The networked device 102, the client device 100, the content identification server 1006, the metadata association server, the content recommendation server, the intermediary server 700, the relevancy-matching server 200, and/or any of the number of devices that currently and/or previously shared the network with the networked device 102 may be configured to retrieve, aggregate, and/or store the number of identifications of the number of previously rendered media data.


The number of identifications of the number of previously rendered media data may be stored in an identification database. The identification database may be associated with the user profile, the network, the networked device 102, the client device 100, and/or any of the number of devices that currently and/or previously shared the network with the networked device 102. The identification database may reside in the networked device 102, the client device 100, the content identification server 1006, the metadata association server, the content recommendation server, the intermediary server 700, the relevancy-matching server 200, and/or any of the number of devices that currently and/or previously shared the network with the networked device 102.


The networked device 102, the client device 100, the content identification server 1006, the metadata association server, the content recommendation server, and/or any of the number of devices that currently and/or previously shared the network with the networked device 102 may be configured to compare the identification of the related media data to the identification database and to determine the identification of the related media data to be an unrendered related media data (e.g., a missed episode). The initial UI may not be updated with the identification of the related media data when the identification of the related media data comprises a previously rendered media data. The networked device 102, the client device 100, the content identification server 1006, the metadata association server, the content recommendation server, the intermediary server 700, the relevancy-matching server 200, and/or any of the number of devices that currently and/or previously shared the network with the networked device 102 may be configured to automatically update the initial UI.


Additionally, the initial UI may be configured to display a number of channels and/or the number of identifications of the number of previously rendered media data based on a number of occurrences of the number of channels and/or the number of identifications of the previously rendered media data in the identification database. For example, the initial UI may display a number of favorite channels and/or a number of favorite media data. Further, the networked device 102 may be configured to access the electronic program guide and to retrieve the occurrence of a presently renderable media data (e.g., a program that has already started, a program that is about to start) from the electronic program guide. The presently renderable media data may comprise the related media data. In addition, the initial UI may be configured to change the channel 2100 rendered by the networked device 102 based on a selection of the user 902 and/or an other user. For example, the initial UI may access a remote control interface (e.g., via an infrared blaster) of a set-top box to effect a channel change.


Thus, the initial UI may display the media data 1004, the related media data, the identification 1304 of the media data 1004, the identification of the related media data, the number of metadata associated with the media data 1004, the number of metadata associated with the related media data, the presently renderable media data, the identification of the presently renderable media data, and/or the number of identifications of the number of previously rendered media data. The initial UI may also display a history of the number of previously rendered media data (e.g., a list of the 10 most recently viewed shows). The initial UI may also comprise a link to the related media data provider. The related media data may be rendered to the user 902 and/or the other user based on an action comprising a click-through action, a subscription action, and/or a purchase action (e.g., a pay-per-view purchase).



FIG. 14 is a block diagram of a system of determining the identification 1304 of the media data 1004 involving the content identification server 1006 and the plurality of other networked devices 1400A, 1400B, according to one embodiment. FIG. 14 shows the client device 100, the networked device 102, the content identification server 1006, the other electronic program guide 1100, the CID data 1200, 1300, the other CID data 1402, 1404, the identification 1304, and the plurality of other networked devices 1400A, 1400B.


The content identification server 1006 may be configured to automatically determine the identification 1304 of the media data 1004 through the crowdsourcing. The crowdsourcing may be based on the consensus of the provisional identification 2400 and a plurality of other provisional identifications 2400. The content identification server 1006 may be configured to aggregate the provisional identification 2400 and the plurality of other provisional identifications 2400. The consensus may be algorithmically determined based on a number of criteria comprising a predetermined percentage of a predetermined number of samples, a reliability of the provisional identification 2400, and/or an other factor affecting a confidence score (e.g., measures an accuracy of the identification 1304 of the media data 1004) of the consensus.


The crowdsourcing may be used as an alternative or as a supplement to the capture server 1008A, 1008B. For example, the crowdsourcing may be used as the alternative to the capture server 1008A, 1008B in an area in which the capture server 1008A, 1008B has not been deployed. The crowdsourcing may be used as the supplement to the capture server 1008A, 1008B to detect a discrepancy between the identification 1304 of the media data 1004 determined using the capture server 1008A, 1008B and the identification 1304 of the media data 1004 using the crowdsourcing.



FIG. 15 is a block diagram depicting the content identification server 1006 configured to generate an annotated metadata 1504, according to one embodiment. FIG. 15 shows the client device 100, the networked device 102, the content identification server 1006, the capture server 1008A, a characteristics database 1500, the characteristic 1502, and the annotated metadata 1504.


The characteristics database 1500 exists within the content identification server 1006 of FIG. 15. According to one embodiment, the characteristics database 1500 may be a structured collection of information about a number of potentially identifying features of the other media data 1904.


The characteristic 1502 exists between the content identification server 1006 and the capture server 1008A of FIG. 15. The capture server 1008A, 1008B may be configured to store the other media data 1904 captured at the media transmission node 1010A, 1010B in a non-volatile memory (e.g., a disk). The other media data 1904 captured at the media transmission node 1010A, 1010B may be retrieved from a buffer of a predetermined length in the capture server 1008A, 1008B. The capture server 1008A, 1008B may be configured to detect the characteristic 1502 of the other media data 1904 captured at the media transmission node 1010A, 1010B. The capture server 1008A, 1008B may use a number of quadrature amplitude modulation (QAM) tuner cards and/or receive a video signal over IP using a number of Moving Pictures Expert Group (MPEG)-2 streams and/or MPEG4 including a number of data packets containing the closed captioning. The capture server 1008A, 1008B may also be configured to communicate the characteristic 1502 to the content identification server 1006.


The content identification server 1006 may be configured to process the characteristic 1502 from the capture server 1008A, 1008B. The content identification server 1006 may also be configured to identify the characteristic 1502 by comparing the characteristic 1502 to the characteristics database 1500.


The characteristics database 1500 may also exist in the capture server 1008A, 1008B. For example, when the characteristics database 1500 exists in the capture server 1008A, 1008B, the capture server 1008A, 1008B may be configured to identify the characteristic 1502 by comparing the characteristic 1502 to the characteristics database 1500.


In another embodiment, the capture server 1008A, 1008B may communicate the other media data 1904 to the content identification server 1006. Thus, the content identification server 1006 may be configured to detect the characteristic 1502 of the other media data 1904.


The annotated metadata 1504 exists between the content identification server 1006 and the client device 100 as well as between the content identification server 1006 and the networked device 102 of FIG. 15. According to one embodiment, the annotated metadata 1504 may comprise a machine-readable information describing the characteristic 1502. The content identification server 1006 and/or the capture server 1008A, 1008B may be configured to generate the annotated metadata 1504 associated with the other media data 1904 captured at the media transmission node 1010A, 1010B. The characteristic 1502 may be annotated in the annotated metadata 1504. The annotated metadata 1504 may comprise the descriptive metadata 1206 and/or the other descriptive metadata 2308.


The content identification server 1006 and/or the capture server 1008A, 1008B may communicate the annotated metadata 1504 to the networked device 102, the client device 100, and/or any of the number of devices with the access to the identification data 304 of the networked device 102 and/or the sandbox-reachable service 114 of the networked device 102. The networked device 102, the client device 100, and/or the number of devices may long poll and/or maintain a web socket open to the content identification server 1006 and/or the capture server 1008A, 1008B in a manner such that when the content identification server 1006 and/or the capture server 1008A, 1008B identifies the characteristic 1502, the content identification server 1006 and/or the capture server 1008A, 1008B may communicate the annotated metadata 1504 to the networked device 102, the client device 100, and/or the number of devices.



FIG. 16 is a block diagram depicting the content identification server 1006 configured to generate an identifying metadata 1602, according to one embodiment. FIG. 16 shows the client device 100, the networked device 102, the content identification server 1006, the capture server 1008A, the characteristics database 1500, an identifying characteristic 1600, and the identifying metadata 1602.


The identifying characteristic 1600 exists between the content identification server 1006 and the capture server 1008A of FIG. 16. According to one embodiment, the identifying characteristic 1600 may comprise the characteristic 1502 that may identify a recurring sequence 2102 (e.g., an advertisement). The capture server 1008A, 1008B may be configured to detect the identifying characteristic 1600 of the other media data 1904 associated with the recurring sequence 2102. The capture server 1008A, 1008B may also be configured to communicate the identifying characteristic 1600 to the content identification server 1006.


The content identification server 1006 may be configured to process the identifying characteristic 1600 from the capture server 1008A, 1008B. The content identification server 1006 may also be configured to identify the identifying characteristic 1600 by comparing the identifying characteristic 1600 to the characteristics database 1500. Alternatively, when the characteristics database 1500 exists in the capture server 1008A, 1008B, the capture server 1008A, 1008B may be configured to identify the identifying characteristic 1600 by comparing the identifying characteristic 1600 to the characteristics database 1500.


In another embodiment, the capture server 1008A, 1008B may communicate the other media data 1904 to the content identification server 1006. Thus, the content identification server 1006 may be configured to detect the identifying characteristic 1600 of the other media data 1904.


The identifying metadata 1602 exists between the content identification server 1006 and the client device 100 as well as between the content identification server 1006 and the networked device 102 of FIG. 16. According to one embodiment, the identifying metadata 1602 may comprise a machine-readable information describing the identifying characteristic 1600. The content identification server 1006 and/or the capture server 1008A, 1008B may be configured to generate the identifying metadata 1602 associated with the recurring sequence 2102. The identifying characteristic 1600 may be annotated in the identifying metadata 1602. The identifying metadata 1602 may comprise the descriptive metadata 1206 and/or the other descriptive metadata 2308.


The content identification server 1006 and/or the capture server 1008A, 1008B may communicate the identifying metadata 1602 to the networked device 102, the client device 100, and/or any of the number of devices with the access to the identification data 304 of the networked device 102 and/or the sandbox-reachable service 114 of the networked device 102. The networked device 102, the client device 100, and/or the number of devices may long poll and/or maintain the web socket open to the content identification server 1006 and/or the capture server 1008A, 1008B in a manner such that when the content identification server 1006 and/or the capture server 1008A, 1008B identifies the identifying characteristic 1600, the content identification server 1006 and/or the capture server 1008A, 1008B may communicate the identifying metadata 1602 to the networked device 102, the client device 100, and/or the number of devices.


A video sequence, an audio sequence, and/or a subset of frames of the other media data 1904 that is stored by the capture server 1008A, 1008B may also enable a curation of the video sequence, the audio sequence, and/or the subset of frames by the user 902 of the networked device 102 and/or the client device 100 without requiring the networked device 102 and/or the client device 100 to directly capture the video sequence, the audio sequence, and/or the subset of frames of the media data 1004. When the user 902 initiates a request for the video sequence, the audio sequence, and/or the subset of frames, the capture server 1008A, 1008B may go backwards in time from the request to retrieve the other media data 1904 from the buffer.


The user 902 of the networked device 102 may initiate the request using the remote control. The remote control may be the client device 100 acting as the remote control. The request may specify a particular video sequence, a particular audio sequence, and/or a particular subset of frames based on a number of actions of the user 902. When the identification 1304 of the media data 1004 has been determined, the capture server 1008A, 1008B may be queried for the video sequence, the audio sequence, and/or the subset of frames corresponding to the identification 1304 of the media data 1004 and the timestamp of the media data 1004. The capture server 1008A, 1008B and/or the content identification server 1006 may communicate a media data set to the networked device 102.


The media data set may comprise the video sequence and/or the audio sequence. The media data set may comprise the subset of frames and/or a number of images derived from the subset of frames (e.g., a thumbnail). The media data set may comprise a number of actual images and/or a number of URLs referring to the number of images. The media data set may comprise a set of clips associated with a number of points in the media data 1004 that have been provided by a content provider. The media data set may comprise the particular video sequence, the particular audio sequence, and/or the particular subset of frames specified by the user 902. The media data set may be communicated to a predetermined location (e.g., an email address, a POST to a URL) by the capture server 1008A, 1008B and/or the content identification server 1006.


The user 902 of the client device 100 may initiate the request using the sandboxed application 112 and/or an other application of the client device 100. The sandboxed application 112 and/or the other application may be paired with the networked device 102 (e.g., using the pairing server 300, using the extension 404 to the security sandbox 104, using a hidden signal of the networked device 102, using a bar code and/or a matrix code of the networked device 102). The client device 100 may obtain the identification 1304 of the media data 1004 and the timestamp of the media data 1004 from the networked device 102. The capture server 1008A, 1008B may be queried for the video sequence, the audio sequence, and/or the subset of frames corresponding to the identification 1304 of the media data 1004 and the timestamp of the media data 1004. The capture server 1008A, 1008B and/or the content identification server 1006 may communicate the media data set to the client device 100 and/or to the predetermined location.


The networked device 102 and/or the client device 100 may implement any of a number of applications for handling the media data set. The networked device 102 and/or the client device 100 may display the media data set in a tile list, as a slide show, and/or in an other format for navigating the media data set. The user 902 may select a subset of the media data set in the networked device 102 and/or the client device 100. The networked device 102 and/or the client device 100 may communicate the subset of the media data set to a media data storage server that stores a number of pinned media data. The media data storage server may be separate from the capture server 1008A, 1008B, the content identification server 1006, the relevancy-matching server 200, the intermediary server 700, and/or the pairing server 300.


The user 902 may communicate the subset of the media data set to the media data storage server by posting (e.g., using a HTTP POST) the subset of the media data set, posting a list of the number of URLs of the subset of the media data set, using a plurality of HTTP POSTs of a number of individual URLs to the subset of the media data set, etc. The user 902 may post the number of individual URLs by encoding a number of media data URLs as a number of values in a number of query string key-value pairs in the number of individual URLs HTTP POSTed or passed via an HTTP GET. The user 902 may recall the subset of the media data set in the media data storage server by visiting a web site, running a desktop application that communicates with the media data storage server, etc.


The client device 100 may be automatically configured to act as the remote control. When the client device 100 and the networked device 102 reside behind a same public IP address, the client device 100 may discover the networked device 102 using the discovery service. The discovery service may communicate the model identifier and/or a remote control configuration identifier of the networked device 102 to the client device 100. When the client device 100 and the networked device 102 are paired using the hidden signal of the networked device 102, the client device 100 and the networked device 102 may not be required to reside on a same network. The hidden signal may be a covert channel embedded in an audio output, an image output, and/or a video output of the networked device 102. For example, the covert channel may be a video watermark identifier. The hidden signal may communicate the model identifier and/or the remote control configuration identifier to the client device 100. The model identifier and/or the remote control configuration identifier may be used to lookup a configuration information for an infrared component, a Bluetooth component, and/or an other remote control component. If the client device 100 maintains a local database of a number of remote control configurations (e.g., an IrDA profile), the client device 100 may not need to access the Internet.


The covert channel may be a low-bitrate communication in one-direction. The covert channel may use a relatively small amount of power. The covert channel may enable the communication session 116 between the sandboxed application 112 and the sandbox-reachable service 114 without opening the networked device 102 to a security risk. The covert channel may enable the client device 100 on the cellular network 710 to communicate with the networked device 102 over the Internet. The networked device 102 may be aware of (e.g., via an initial configuration, via a HDMI-CEC) the number of devices to which the networked device 102 is communicatively coupled. The covert channel and/or a serving device described by the covert channel may announce the number of devices to which the networked device 102 is communicatively coupled.


The covert channel may continuously announce the device identifier of the networked device 102 and/or the identification data 304. The sandboxed application 112 of the client device 100 and/or the other application of the client device 100 may process the audio output, the image output, and/or the video output, extract the covert channel, and use the device identifier and/or the identification data 304 to pair with the networked device 102 and/or a service of the networked device 102. The networked device 102 and the client device 100 may not reside on the same network. For example, the client device 100 may use a data service (e.g., a 3G service, a 4G service) and/or a text message service (e.g., a SMS service) while the networked device 102 may use a wired connection and/or a wireless connection (e.g., a WiFi connection) to the Internet. The sandboxed application 112 and/or the other application of the client device 100 may use a relay service (e.g., via the pairing server 300, via the extension 404) to communicate with the networked device 102. To determine the number of devices announcing via the covert channel, the sandboxed application 112 may use the loopback interface to contact a service agent running on a well-known port on the client device 100 that is outside the security sandbox 104.


To increase a level of security, the networked device 102 may not use the covert channel to announce the GUID 704. The networked device 102 may generate an ephemeral (e.g., time varying) GUID to announce via the covert channel. The networked device 102 may communicate the ephemeral GUID and the GUID 704 to the relay service via an IP pathway. Alternatively, the relay service and the networked device 102 may establish a shared secret. The networked device 102 may generate the ephemeral GUID from the shared secret and the GUID 704. The relay service may then reconstruct the GUID 704.


The covert channel may be masked by the audio output, the image output, and/or the video output of the networked device 102. For example, if the networked device 102 has a microphone, the networked device 102 may mask the covert channel using an environmental noise. If the networked device 102 does not have a microphone, the networked device 102 may mask the covert channel using a broad spectrum of the audio output, the image output, and/or the video output to appear as a white noise. Thus, the networked device 102 that is otherwise powered off and the networked device 102 that does not naturally generate the audio output, the image output, and/or the video output may mask the covert channel.


When the client device 100 receives a broadcast identifier (e.g., the device identifier, the GUID 704, the ephemeral GUID), the client device 100 may contact the discovery service passing the broadcast identifier. The discovery service may be reachable by the client device 100. The client device 100 may not reside on the same network as the networked device 102 and/or the serving device. The client device 100 may not have a security access to the network of the serving device and/or the networked device 102. Thus, the discovery service may not reside on the same network as the serving device and/or the networked device 102.


The discovery service may be a distributed service running on a peer-to-peer substrate (e.g., a Distributed Hash Table) and/or a centralized discovery service for the Internet (e.g., via the pairing server 300). The discovery service may be used for a security overlay. The discovery service may be used to lookup a number of services made available by a discovered device (e.g., discovered by the covert channel). Thus, a very low bitrate may be used for the covert channel while a higher bitrate channel may be used for communicating a number of service details. However, the number of service details may also be communicated through the covert channel in a form of the model identifier, a description, etc. Communicating the number of service details in the covert channel may require a greater amount of resources from the low bitrate channel. Thus, the broadcast identifier may be communicated less frequently and/or the higher bitrate channel may become more intrusive and/or less covert.


The relay service may be used by the client device 100 to communicate with the number of services. The client device 100 may not have a network connectivity usually associated with the Internet. The client device 100 may use the text message service to send a number of messages to a 1-800 phone number and/or an equivalent number acting as a gateway to relay a number of calls to the number of services.


For example, a company may have a slideshow projector dedicated to running a slideshow application. The company may not wish to grant a network access to a mobile phone of a visitor, but the company may wish to allow the visitor to use the slideshow projector. The slideshow projector may use an audio covert channel to announce the broadcast identifier of the slideshow projector. The visitor may run the slideshow application on the mobile phone which detects the slideshow projector by listening on the microphone of the mobile phone. The mobile phone may not have a direct access to an IP network. The mobile phone may have the SMS service, the 3G service, the 4G service, an other packet service, and/or an other message service. The slideshow application of the mobile phone may send a command to run the slideshow application at a specified URL to the 1-800 phone number of the centralized discovery service. The centralized discovery service may forward the command over the Internet to the slideshow projector. The slideshow projector may download the slideshow from the specified URL. The slideshow application of the mobile phone may send a number of subsequent commands via the gateway to move to an other slide and/or otherwise control the slideshow. Thus, the slideshow may be displayed on a secure network of the company through a limited externally facing API. The slideshow application may be used as a trusted intermediary between the secure network and the mobile phone.


In another embodiment, the device identifier may be embedded in the bar code, the matrix code (e.g., a 2D bar code, an Aztec code, a QR code), and/or a similar pattern that is attached to the networked device 102 (e.g., as a sticker) and/or displayed through the networked device 102 (e.g., displayed on a television screen by going to a preferences channel). The client device 100 may take a picture of the bar code, the matrix code, and/or the similar pattern using a camera. The client device 100 may process the picture to extract the bar code, the matrix code, and/or the similar pattern. The device identifier obtained from extract the bar code, the matrix code, and/or the similar pattern may be used in a similar manner as the device identifier obtained from the covert channel. For example, the device identifier may enable the client device 100 to communicate with the networked device 102 via the SMS service, the 3G service, the 4G service, a WiFi service, etc. The bar code may comprise a Universal Product Code (UPC). The UPC may provide the model identifier with which to select a remote control profile.


For example, the slideshow projector may bear a sticker with the bar code. Alternatively, the slideshow projector may project the bar code onto a surface (e.g., a screen, a wall). The mobile phone may take the picture of the bar code using the camera of the mobile phone. The device identifier of the slideshow projector may be used to automatically configure the mobile phone to act as the remote control for the slideshow projector.


A time estimation algorithm may also estimate a playback time within the content of the media data 1004 and/or the other media data 1108, 1112, 1904. When the audio output, the image output, and/or the video output of the networked device 102 may not be accessed, the covert channel may not be used to embed the broadcast identifier. However, the identification 1304 of the media data 1004 along with an estimated playback time within the content of the media data 1004 may be used to disambiguate between the number of devices and/or the number of services known to the sandboxed application 112 and/or the other application of the client device 100. The number of devices and/or the number of services may be known via the discovery service by an account binding, a number of short codes, and/or an other binding mechanism that pairs and/or binds the sandboxed application 112 and/or the other application of the client device 100 to the number of devices and/or the number of services. The number of devices may have been previously paired (e.g., when the client device 100 of the user 902 was in a different network). The sandboxed application 112 and/or the other application of the client device 100 may access an audio input (e.g., a microphone), an image input, and/or a video input (e.g., a camera) to identify the content of the media data 1004.


If a known device is playing an identified content, a credibility may be added to a hypothesis that the identified content was generated by the known device. If the playback time for the content played by the known device playing the identified content also happens near the estimated time, the credibility of the hypothesis may be increased. If the known device also happens to be in the same network as the sandboxed application 112 and/or the other application of the client device 100, the credibility of the hypothesis may be further increased. A plurality of criteria (e.g., a nearness in a number of estimated playback times; a recency in time since the known device was last discovered; a nearness in a number of GPS coordinates and/or a number of Geo-IP coordinates of the known device, the sandboxed application 112, and/or the other application; a sharing of the same network as determined by a shared public IP; the sharing of the same network via an other discovery service) may be combined to increase the credibility of the hypothesis.


When the known device has been determined to be near the client device 100 with a sufficiently high confidence, the sandboxed application 112 and/or the other application may perform a bidirectional communication with the known device and/or a service of the known device. For example, the client device 100 may query the known device for the identification 1304 of the media data 1004 recently rendered by the known device.



FIG. 17 is a block diagram of a system of determining the identification 1304 of the media data 1004 involving the watermark data 1204, according to one embodiment. FIG. 17 shows the networked device 102, the content identification server 1006, the watermark data 1204, the identification 1304, and the watermark database 1700.


The watermark database 1700 exists within the content identification server 1006 of FIG. 17. According to one embodiment, the watermark database 1700 may be a structured collection of information comprising the known watermark data and the identification of the known watermark data.


For example, FIG. 17 illustrates the networked media device 102 communicating the watermark data 1204 of the media data 1004 to the content identification server 1006. The content identification server 1006 then compares the watermark data 1204 to the known watermark data in the watermark database 1700 and communicates the identification of the known watermark data when the watermark data 1204 is identical to the known watermark data.



FIG. 18 is a block diagram of a system of determining the identification 1304 of the media data 1004 involving the identifying information 1208, according to one embodiment. FIG. 18 shows the networked device 102, the content identification server 1006, the capture server 1008A, the identifying information 1208, the identification 1304, the other electronic program guide 1100, and the other identifying information 1800.


For example, FIG. 18 illustrates the networked device 102 communicating the identifying information 1208 that identifies the channel 2100 of the networked device 102 to the content identification server 1006. The capture server 1008A monitoring the channel 2100 accesses the other electronic program guide 1100 and determines the identification 1304 of the other media data 1904 scheduled for the channel 2100. The capture server 1008A then communicates the other identifying information 1800 that identifies the content of the other media data 1904 to the content identification server 1006. The content identification server 1006 processes the other identifying information 1800 and associates the other identifying information 1800 with the identification 1304 of the other media data 1904. The content identification server 1006 then associates the identification 1304 with the media data 1004 and communicates the identification 1304 to the networked device 102.



FIG. 19 is a block diagram of a system of determining the identification 1304 of the media data 1004 involving the fingerprint data 1202 and the other fingerprint data 1906, according to one embodiment. FIG. 19 shows the networked device 102, the capture server 1008A, the media transmission node 1010A, the content identification server 1006, the fingerprint data 1202, the fingerprint database 1900, the other tuner 1902, the other media data 1904, the other fingerprint data 1906, and the other electronic program guide 1100.


The other tuner 1902 exists between the capture server 1008A and the media transmission node 1010A of FIG. 19. According to one embodiment, the other tuner 1902 and/or the tuner 2300 may be a television tuner, a radio tuner, and/or an other means of selecting a media channel.


For example, FIG. 19 illustrates an embodiment in which the networked device 102 communicates the fingerprint data 1202 to the content identification server 1006, and the capture server 1008A communicates the other fingerprint data 1906 to the content identification server 1006. The capture server 1008A monitors the other media data 1904 of the channel 2100 through the other tuner 1902 at the media transmission node 1010A. Thus, the capture server 1008A also communicates the channel 2100 to the content identification server 1006. The content identification server 1006 processes the channel 2100 from the capture server 1008A and accesses the other electronic program guide 1100 to obtain the identification 1304 of the other media data 1904. The content identification server 1006 then associates the identification 1304 of the other media data 1904 with the other fingerprint data 1906. If the fingerprint data 1202 matches the other fingerprint data 1906, the content identification server 1006 also associates the identification 1304 of the other media data 1904 with the fingerprint data 1202 and communicates the identification 1304 to the networked device 102.


The fingerprint database 1900 exists within the content identification server 1006 of FIG. 19. According to one embodiment, the fingerprint database 1900 may be a structured collection of information comprising the fingerprint data 1202, the other fingerprint data 1906, 2302, 2306, 2602, the timestamp, the other timestamp, the device identifier, the other device identifier, the identification 1304 of the media data 1004, the identification 1304 of the other media data 1108, 1112, 1904, the provisional identification 2400, and/or the other provisional identification 2400.


The content identification server 1006 may store the fingerprint data 1202 and/or the other fingerprint data 1906, 2302, 2306, 2602 in the fingerprint database 1900. The fingerprint database 1900 may be updated at any time with the fingerprint data 1202, the other fingerprint data 1906, 2302, 2306, 2602, the timestamp, the other timestamp, the device identifier, the other device identifier, the identification 1304 of the media data 1004, the identification 1304 of the other media data 1108, 1112, 1904, the provisional identification 2400, and/or the other provisional identification 2400. The fingerprint database 1900 may be updated in a manner such that, in the future, the content identification server 1006 may process the fingerprint data 1202 and check the fingerprint database 1900 for a match 2002 prior to processing the other fingerprint data 1906, 2302, 2306, 2602.


The content identification server 1006 may be configured to process the other fingerprint data 1906, 2302, 2306, 2602 of the other media data 1108, 1112, 1904 from the capture server 1008A, 1008B and/or the plurality of other networked devices 1400A, 1400B. The content identification server 1006 may also be configured to store the other fingerprint data 1906, 2302, 2306, 2602 in the fingerprint database 1900. Further, the content identification server 1006 may be configured to process the fingerprint data 1202 of the media data 1004 from the networked device 102, the client device 100, and/or any of the number of devices that previously and/or currently shared the network with the networked device 102.


The content identification server 1006 may compare the fingerprint data 1202 to the other fingerprint data 1906, 2302, 2306, 2602. The other fingerprint data 1906, 2302, 2306, 2602 may exist in the fingerprint database 1900. Further, the content identification server 1006 may automatically determine the identification 1304 of the media data 1004 by associating the fingerprint data 1202 with the identification 1304 and/or the provisional identification 2400 of the other media data 1108, 1112, 1904 associated with the other fingerprint data 1906, 2302, 2306, 2602 that matches the fingerprint data 1202.



FIG. 20 is a table 2050 depicting a determination of the identification 1304 of the media data 1004 by comparing the fingerprint data sequence 2000 to the fingerprint database 1900, according to one embodiment. FIG. 20 shows the fingerprint data sequence 2000, the fingerprint database 1900, the match 2002, and the table 2050.


The fingerprint data sequence 2000 exists as a column of the table 2050 of FIG. 20. According to one embodiment, the fingerprint data sequence 2000 and/or the other fingerprint data sequence may be a series of consecutive fingerprint data. A probability of a false positive (e.g., when the fingerprint data 1202 and the other fingerprint data 1906, 2302, 2306, 2602 match while the media data 1004 and the other media data 1108, 1112, 1904 do not match) using a single fingerprint data may be (1−p[correct match]). However, the probability of the false positive using the fingerprint data sequence 2000 may be (1−p[correct match])r where r=a length of the fingerprint data sequence 2000. Thus, the confidence score of the match 2002 may be based on the length of a matching fingerprint data sequence.


Thus, the probability of the false positive may be reduced to a negligible level by comparing the fingerprint data sequence 2000 of the media data 1004 to the other fingerprint data sequence. The content identification server 1006 may be configured to compare the fingerprint data sequence 2000 of the media data 1004 to the other fingerprint data sequence. The content identification server 1006 may also be configured to associate the fingerprint data sequence 2000 with the identification 1304 and/or the provisional identification 2400 of the other media data 1108, 1112, 1904 associated with the other fingerprint data sequence when a predetermined number of sequential fingerprint data of the fingerprint data sequence 2000 matches the predetermined number of sequential fingerprint data of the other fingerprint data sequence.


To account for a number of missing fingerprint data in the fingerprint data sequence 2000 and/or the other fingerprint data sequence, the content identification server 1006 may be configured to apply an algorithm comprising a sliding window algorithm. For example, the fingerprint database 1900 may store the other fingerprint data sequence 2000 “A-B-C-D.” The content identification server 1006 may compare the other fingerprint data sequence to the fingerprint data sequence 2000 “A-B-_-D” where “_” denotes a missing fingerprint data (e.g., the fingerprint data 1202 at a time between the timestamp for the fingerprint data 1202 “B” and the timestamp for the fingerprint data 1202 “D”). The sliding window algorithm may require two matching fingerprint data before a particular fingerprint data and one matching fingerprint data after the particular fingerprint data in order to include the fingerprint data 1202 in the fingerprint data sequence 2000. Thus, the sliding window algorithm may compare the fingerprint data sequence 2000 “A-B-_-D” to the other fingerprint data sequence “A-B-C-D” and include “C” in the fingerprint data sequence 2000 “A-B-_-D.” As a result of the sliding window algorithm, there may be four matching sequential fingerprint data.


The match 2002 exists in a column of table 2050 of FIG. 20. According to one embodiment, the match 2002 may be a condition in which the fingerprint data sequence 2000 sufficiently corresponds to the other fingerprint data sequence. For example, the match 2002 in FIG. 20 may be declared when three sequential fingerprint data match.


The content identification server 1006 may be configured to automatically determine the identification 1304 of the media data 1004 in a manner such that the content identification server 1006 is configured to initiate a number of comparisons between the fingerprint data 1202 and the other fingerprint data 1906, 2302, 2306, 2602. The number of comparisons may be separated by a predetermined time interval. The content identification server 1006 may process the fingerprint data 1202 prior to processing the other fingerprint data 1906, 2302, 2306, 2602. Alternatively, the content identification server 1006 may process the other fingerprint data 1906, 2302, 2306, 2602 prior to processing the fingerprint data 1202. Yet another alternative may entail the content identification server 1006 processing the fingerprint data 1202 and the other fingerprint data 1906, 2302, 2306, 2602 simultaneously. Thus, the number of comparisons may be initiated until a matching fingerprint data sequence is found.


For example, in FIG. 20, the other fingerprint data sequence “751-242-369-520-818” already exists in the fingerprint database 1900 when the content identification server 1006 processes the fingerprint data sequence 2000 “751-242-369-520-818.” Thus, the content identification server 1006 immediately compares the fingerprint data sequence 2000 “751-242-369-520-818” to the other fingerprint data sequence “751-242-369-520-818.” However, the content identification server 1006 processes the fingerprint data sequence 2000 “314-275-860-926-437” prior to the processing of the matching fingerprint data sequence. Thus, the content identification server 1006 initiates four comparisons until the match 2002 is declared when the predetermined number of three sequential fingerprint data of “314-275-860” is found.



FIG. 21 is a table 2150 depicting a determination of the recurring sequence 2102, according to one embodiment. FIG. 21 shows the channel 2100, the fingerprint data sequence 2000, the recurring sequence 2102, the table 2150, and the fingerprint database 1900.


The channel 2100 exists in a column of the table 2150 of FIG. 21. According to one embodiment, the channel 2100 may be an information communication pathway. For example, the channel 2100 may correspond to a radio broadcasting frequency, a television broadcasting frequency, and/or an Internet media channel.


The recurring sequence 2102 exists in a column of the table 2150 of FIG. 21. The content identification server 1006 may be configured to determine that a portion of the fingerprint data sequence 2000 and/or of the other fingerprint data sequence is a recurring sequence 2102 when the portion is detected a predetermined number of times across a plurality of channels 2100 and/or at a plurality of different times. Additionally, the content identification server 1006 may be configured to update the fingerprint database 1900 with the recurring sequence 2102. The content identification server 1006 may also be configured to apply the algorithm comprising the sliding window algorithm to account for the number of missing fingerprint data in the recurring sequence 2102.


Further, the content identification server 1006 and/or the capture server 1008A, 1008B may be configured to assign a unique identifier to the recurring sequence 2102. Still further, the content identification server 1006 and/or the capture server 1008A, 1008B may be configured to add the unique identifier of the recurring sequence 2102 to a recurring sequence metadata database along with a recurring sequence metadata. The content identification server 1006 and/or the capture server 1008A, 1008B may be configured to generate the recurring sequence metadata. The recurring sequence metadata may be a machine-readable information describing the recurring sequence 2102. The recurring sequence metadata may comprise the identifying metadata 1602, the descriptive metadata 1206, and/or the other descriptive metadata 2308.



FIG. 22 is a block diagram of a system of determining the identification 1304 of the media data 1004 involving the descriptive metadata 1206 and the other watermark data 2200, according to one embodiment. FIG. 22 shows the networked device 102, the content identification server 1006, the capture server 1008A, the media transmission node 1010A, the descriptive metadata 1206, the identification 1304, the other tuner 1902, the watermark database 1700, and the other watermark data 2200.



FIG. 22 illustrates the networked device 102 communicating the descriptive metadata 1206 identifying the channel 2100 of the networked device 102 to the content identification server 1006. The capture server 1008A at the media transmission node 1010A monitors the channel 2100 through the other tuner 1902 and communicates the other watermark data 2200 to the content identification server 1006. The content identification server 1006 then compares the other watermark data 2200 to the known watermark data in the watermark database 1700 and communicates the identification of the known watermark data to the networked device 102.


However, the CID data 1200, 1300 and/or the other CID data 1302, 1306, 1402, 1404 may be subject to a number of systematic error sources. For example, the fingerprint data 1202 may not sufficiently correspond to the other fingerprint data 1906, 2302, 2306, 2602 to declare the match 2002 due to the number of systematic error sources. The number of systematic error sources may comprise a pseudostatic error and/or a random error. The pseudostatic error may be a number of changes applied to the media data 1004 in a media data pipeline (e.g., an audio pipeline, a video pipeline) and/or arriving to the media data pipeline that is unlikely to change unless the user changes a number of settings and/or a number of media data sources (e.g., an audio source, a video source). The random error may be a random transmission noise (e.g., a compression noise, a blocking artifact, a corrupted frame). The random error may be addressed by a robust mechanism for computing the CID data 1200, 1300 and/or the other CID data 1302, 1306, 1402, 1404 (e.g., the sliding window algorithm, an adaptive sampling algorithm).


The pseudostatic error may comprise a user setting (e.g., a brightness modification, a contrast modification, a hue modification, an other color space modification, a display scaling modification, and/or an aspect ratio modification). The user setting may be addressed by capturing the media data 1004 prior to an application of the user setting (e.g., at the frame buffer). However, capturing the media data 1004 prior to the application of the user setting may not be possible when the user setting is applied before the media data 1004 reaches the CID service 1000, 1002. For example, the display scaling modification may be applied in a set-top box prior to a transmission of the media data 1004 to the CID service 1002 of the networked device 102.


The pseudostatic error may also comprise an aspect ratio transformation (e.g., a black bar, a display stretching, a display scaling, and/or a display cropping). For example, the aspect ratio transformation may result in the fingerprint data 1202 of the networked device 102 that insufficiently corresponds to the other fingerprint data 1906 of the capture server 1008A, 1008B. The aspect ratio transformation may be addressed by a reverse transformation (e.g., an adjustment to the media data 1004 that conforms the media data 1004 to the other media data 1904) in the networked device 102 and/or the client device 100 that restores the media data 1004 to a state in which the media data 1004 existed prior to the aspect ratio transformation. The display cropping may also be addressed by the adaptive sampling algorithm that focuses on a dynamic region of pixel change. Thus, the adaptive sampling algorithm may ignore an edge region of a display.


The adaptive sampling algorithm may sample a number of different regions of the display to increase a probability of selecting a region with a high temporal activity. A number of regions of interest may be sampled in a single frame buffer to increase a generation rate of a unique fingerprint data as compared to the generation rate when a single region is sampled in the single frame buffer. To ensure that the fingerprint data 1202 matches the other fingerprint data 1906, the adaptive sampling algorithm may be synchronized between the capture server 1008A, 1008B and the networked device 102 and/or the client device 100.


The display scaling may also be addressed by sampling at a variable rate across a number of frame data in a number of different resolutions. For example, the fingerprint data 1202 generated by sampling every third pixel in a 300×300 resolution may match the fingerprint data 1202 generated by sampling every second pixel in a 200×200 resolution.


The display scaling may be performed by an external device (e.g., a set-top box, a game console) to a display device (e.g., a television) in which the CID service exists. Thus, the CID service 1000, 1002 may be unaware of the display scaling. The reverse transformation may be algorithmically applied to calibrate the fingerprint data 1202 with the other fingerprint data 1906.


The reverse transformation may comprise a slow perturbation to a subset (e.g., one, some, and/or all) of the number of regions of interest after the identification 1304 is determined. The display scaling may affect a central region of the display less than the edge region of the display. Thus, the fingerprint data 1202 of the central region may match the other fingerprint data 1906, and the identification 1304 of the media data 1004 may be determined. A percentage of display scaling correction may then be applied to the subset of the number of regions of interest. A match rate may be determined by measuring a percentage of the fingerprint data 1202 that matches the other fingerprint data 1906 associated with the identification 1304 of the media data 1004. The display scaling correction may then be adjusted in a manner such that the match rate is maximized. To ensure a sufficient number of samples to adequately measure the match rate, a sufficient number of fingerprint data may be gathered such that a change in the confidence score is less than an estimated change in the match rate. Thus, a large change in the estimated change may require a smaller number of samples to determine whether the display scaling correction maximizes the match rate. The slow perturbation may constantly seek to maximize the match rate.


If the match rate is sufficiently greater than zero before the identification 1304 is determined, the slow perturbation may still be applied. However, if the match rate is zero and/or nearly zero before the identification 1304 is determined, the display scaling correction may be slowly oscillated across a range for a subset of the number of regions of interest until a number of matches 2002 occur. Then, the slow perturbation may be applied.


Further, the display scaling may be addressed by a forward transformation (e.g., an adjustment to the other media data 1904 that conforms the other media data 1904 to the media data 1004) that calibrates the other fingerprint data 1906 with the fingerprint data 1202. The forward transformation may be applied to a subset of a number of regions captured by the capture server 1008A, 1008B. A forward transformed fingerprint data may be added to the fingerprint database 1900 and marked according to an amount of the display scaling correction applied. The forward transformation may be applied in a manner such that a total number of fingerprints in the fingerprint database 1900 is not appreciably increased. The capture server 1008A, 1008B may periodically (e.g., at a time interval that is significantly larger than a sampling time interval for generating a number of individual fingerprint data) generate a number of additional fingerprints for the subset of the number of regions subjected to a number of amounts of the display scaling correction. If the display scaling correction is insufficient to change a particular fingerprint from an uncorrected value, then the particular fingerprint may not be added to the fingerprint database 1900.


When the fingerprint data 1202 matches the forward transformed fingerprint data, the slow perturbation may be used by the CID service 1002 to refine the display scaling correction. If a plurality of the fingerprint data 1202 match a plurality of the forward transformed fingerprint data, the CID service 1002 may employ the slow perturbation based on an average of the number of amounts of the display scaling correction.


Further, the pseudostatic error may comprise a color space change and/or a pixel format change. The CID service 1002 may normalize a video portion of the media data 1004 to a single color space and/or a single pixel format. The color space change and the pixel format change may be addressed by using a hybrid transformation (e.g., a combination of a number of forward transformations and a number of reverse transformations).


The hybrid transformation may be used to address the pseudostatic error. The hybrid transformation may employ the reverse transformation to normalize the number of regions of the media data 1004 captured from the frame buffer to conform with the other media data 1904. The hybrid transformation may employ the forward transformation to reproduce a normalization error. The normalization error may be a loss of a portion of the media data 1004 as a result of the reverse transformation. The hybrid transformation may minimize a number of problems introduced by using the forward transformation and/or the reverse transformation. For example, the forward transformation may require a cooperative device manufacturer and/or a combinatoric explosion in the number of fingerprints to store. The reverse transformation may be lossy, may increase a processor utilization, may decrease the match rate, may result in a slower identification time, etc.


An input source (e.g., a DVD player, a game console, a cable set-top box, a satellite set-top box) may exhibit a number of different types of the pseudostatic error and/or a number of varying degrees of the pseudostatic error. Thus, the networked device 102 and/or the capture server 1008A, 1008B may generate and/or maintain a profile of the pseudostatic error associated with the input source. The profile may be associated with a particular input (e.g., HDMI 1) used by the input source. The networked device 102 and/or the capture server 1008A, 1008B may notify the CID service 1002 and/or the other CID service 1104, 1110 of the particular input being used. The CID service 1002 and/or the other CID service 1104, 1110 may then reference the profile and adjust accordingly.



FIG. 23 is a block diagram of the content identification server 1006 gathering the CID data 1200 and a plurality of other CID data 1402, 1404, according to one embodiment. FIG. 23 shows the networked device 102, the content identification server 1006, the other electronic program guide 1100, the fingerprint data 1202, the identifying information 1208, the plurality of other networked devices 1400A, 1400B, the fingerprint database 1900, the tuner 2300, a plurality of other fingerprint data 2302, 2306, the other watermark data 2304, and an other descriptive metadata 2308.



FIG. 23 illustrates the CID service 1002 of the networked device 102 retrieving the channel number of the networked device 102 from the tuner 2300 to generate the identifying information 1208. The networked device 102 may communicate the CID data 1200 comprising the fingerprint data 1202 of the media data 1004 along with the identifying information 1208 of the media data 1004 to the content identification server 1006. The content identification server 1006 may then process the CID data 1200 and access the other electronic program guide 1100 to retrieve the content identifying information associated with the channel number. The content identification server 1006 may also associate the content identifying information with the provisional identification 2400 of the media data 1004.


The other networked device 1400A may comprise the number of other client devices 1102. The other CID service 1104 may communicate the other CID data 1402 comprising the other fingerprint data 2302 of the number of other media data 1108 along with the number of other watermark data 2304 of the number of other media data 1108 to the content identification server 1006. The content identification server 1006 may process the other CID data 1402 and compare the other watermark data 2304 to the known watermark data in the watermark database 1700. If the other watermark data 2304 is identical to the known watermark data, the content identification server 1006 may associate the identification of the known watermark data with the number of other provisional identifications 2400 of the other media data 1108.


The other networked device 1400B may comprise the number of other networked media devices 1106B. The other CID service 1110 may communicate the other CID data 1404 comprising the other fingerprint data 2306 of the number of other media data 1112 along with the number of other descriptive metadata 2308 of the number of other media data 1112 to the content identification server 1006. The number of other descriptive metadata 2308 may comprise the callsign of the channel number of the networked device. The content identification server 1006 may process the other CID data 1404 and access the other electronic program guide 1100 to retrieve a number of content identifying information associated with the callsign. The content identification server 1006 may also associate the number of content identifying information with the number of other provisional identifications 2400 of the number of other media data 1112.


The content identification server 1006 may process the CID data 1200 and the plurality of other CID data 1402, 1404. The content identification server 1006 may store the fingerprint data 1202 and/or the plurality of other fingerprint data 2302, 2306 in the fingerprint database 1900. The content identification server 1006 may compare the fingerprint data 1202 and/or the plurality of other fingerprint data 2302, 2306 to the fingerprint database 1900. The content identification server 1006 may compare the fingerprint data 1202 to the plurality of other fingerprint data 2302, 2306. If the match 2002 exists among the fingerprint data 1202 and the plurality of other fingerprint data 2302, 2306, the content identification server 1006 may aggregate the provisional identification 2400 and the number of other provisional identifications 2400.


The content identification server 1006 may also be configured to determine the identification 1304 of the media data 1004 through the crowdsourcing. The crowdsourcing may be based on the consensus of the provisional identification 2400 and the number of other provisional identifications 2400. The consensus may be algorithmically determined based on the number of criteria comprising the predetermined percentage of the predetermined number of samples, the reliability of the provisional identification 2400, and/or the other factor affecting the confidence score of the consensus. For example, the number of other watermark data 2200, 2304 may be given more weight than the identifying information 1208 retrieved from the other electronic program guide 1100.


The content identification server 1006 may be configured to update the fingerprint database 1900 with the identification 1304 of the media data 1004 determined using the crowdsourcing. For example, the fingerprint database 1900 may be updated with the identification 1304 of the media data 1004 determined using the crowdsourcing when the crowdsourcing is used as the alternative to the capture server 1008A, 1008B or when the consensus has a higher confidence score than the identification 1304 of the media data 1004 determined using the capture server 1008A, 1008B. The content identification server 1006 may then use the identification 1304 of the media data 1004 determined using the crowdsourcing to automatically determine the identification 1304 of the fingerprint data 1202 and/or the other fingerprint data 1906, 2302, 2306, 2602 that is unaccompanied by the provisional identification 2400 and/or the other provisional identification 2400.



FIG. 24 is a table view of the content identification server 1006 gathering the provisional identification 2400 of the media data 1004 and the number of other provisional identifications 2400 of the number of other media data 1108, 1112, according to one embodiment. FIG. 24 shows the fingerprint data sequence 2000, the fingerprint database 1900, the provisional identification 2400, and the table 2450.


The provisional identification 2400 exists as a column of the table 2450 of FIG. 24. According to one embodiment, the provisional identification 2400 and/or the number of other provisional identifications 2400 may comprise the watermark data 1204, the number of other watermark data 2200, 2304, the descriptive metadata 1206, the number of other descriptive metadata 2308, the identifying information 1208, and/or the number of other identifying information 1800. The provisional identification 2400 may identify the content of the media data 1004 and/or the number of other media data 1108, 1112 in a manner such that the provisional identification 2400 is less authoritative than the identification 1304 of the media data 1004 and/or of the number of other media data 1108, 1112, 1904. The provisional identification 2400 may also identify the channel 2100 of the networked device 102 and/or the number of other networked media devices 1106A, 1106B.



FIG. 25 is a table view of the content identification server 1006 determining the identification 1304 of the media data 1004 based on the consensus, according to one embodiment. FIG. 25 shows the identification 1304, the fingerprint data sequence 2000, the fingerprint database 1900, the provisional identification 2400, and the table 2550.


The content identification server 1006 may aggregate the provisional identification 2400 of the fingerprint data 1202 with the number of other provisional identifications 2400 associated with the plurality of other fingerprint data 1906, 2302, 2306, 2602 that match the fingerprint data 1202. The content identification server 1006 may also be configured to determine the identification 1304 based on a majority of the provisional identification 2400 and/or the number of other provisional identifications 2400. The content identification server 1006 may require at least two other provisional identifications 2400 in addition to the provisional identification 2400 in order to form the consensus. The identification 1304 may be determined in a manner such that the provisional identification 2400 and/or the number of other provisional identifications 2400 are overridden by the consensus.



FIG. 26 is a block diagram of the content identification server 1006 using the identification 1304 of the media data 1004 to identify the other fingerprint data 2602, according to one embodiment. FIG. 26 shows the content identification server 1006, the other electronic program guide 1100, the identification 1304, the other networked device 2600, the fingerprint database 1900, and the other fingerprint data 2602.


The content identification server 1006 may be configured to update the fingerprint database 1900 with the identification 1304 formulated by the consensus. Subsequently, the identification 1304 may be used to identify the other fingerprint data 2602 unaccompanied by the provisional identification 2400 and/or the number of other provisional identifications 2400.


For example, Jane may visit an auction website on her smartphone while she watches her television. When an advertisement airs on the television, the auction website displays matching items that are being auctioned. No installation, configuration, login, and/or user registration was required.


Although the present embodiments have been described with reference to a specific example embodiment, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the various embodiments. For example, the various devices and modules described herein may be enabled and operated using hardware circuitry (e.g., CMOS based logic circuitry), firmware, software or any combination of hardware, firmware, and software (e.g., embodied in a machine readable medium). For example, the various electrical structure and methods may be embodied using transistors, logic gates, and electrical circuits (e.g., application specific integrated (ASIC) circuitry and/or Digital Signal Processor (DSP) circuitry).


In addition, it will be appreciated that the various operations, processes, and methods disclosed herein may be embodied in a machine-readable medium and/or a machine accessible medium compatible with a data processing system (e.g., a computer device). Accordingly, the specification and drawings are to be regarded in an illustrative in rather than a restrictive sense.

Claims
  • 1. A system comprising: a relevancy-matching server;a client device to constrain an executable environment within a security sandbox, and to execute a sandboxed application in the constrained executable environment;a networked device to generate primary data using preliminary data, the networked device executing a content identification service to identify content of media data thereon to automatically generate the preliminary data, the content identification service being at least one of: integrated with a chipset of the networked device and integrated with at least one of: a video pipeline and an audio pipeline of the networked device, the content identification service being configured to access at least one of: a frame buffer, a video buffer and an audio buffer within the networked device, the preliminary data being information associated with a user of both the client device and the networked device, and the primary data being one of: identical to the preliminary data and a converted form of the preliminary data suitable for processing through the relevancy-matching server as one of: content identification data and content identification history; anda pairing server,wherein the relevancy-matching server, the client device and the networked device are communicatively coupled to one another through a network,wherein the client device is configured to automatically establish a communication between the sandboxed application and a sandbox-reachable service of the networked device through accessing a discovery module of the pairing server after the networked device automatically announces the sandbox-reachable service thereof to the discovery module, the discovery module being a self-contained component that performs a discovery service that detects a number of devices in the network that offer the content identification service, andwherein, based on the automatically established communication between the sandboxed application and the sandbox-reachable service of the networked device, the relevancy-matching server is configured to: match the primary data with targeted data based on a relevancy factor comprising at least one of: a category of the primary data, a behavioral history of the user, a category of the sandboxed application, and other information associated with the user,search a storage for the targeted data, andcommunicate the targeted data to at least one of: the client device and the networked device for rendering thereon.
  • 2. The system of claim 1, wherein the relevancy-matching server is configured to: match the targeted data with the primary data in a manner such that the storage is searched based on the relevancy factor for at least one: of a matching item and a related item.
  • 3. The system of claim 1, wherein the pairing server is configured to: associate the networked device with the client device, andprocess identification data of the announcement of the sandbox-reachable service comprising at least one of a global unique identifier (GUID), an alphanumeric name, a hardware address associated with the networked device, a public address associated with the content identification service of the networked device, and a private address associated with the content identification service of the networked device when the network is determined to be commonly associated with the client device and the networked device.
  • 4. The system of claim 1, wherein the client device is configured to process an embedded object comprising at least one of a script, an image, a player, an iframe, and other external media included in the sandboxed application.
  • 5. The system of claim 1, further comprising a content identification server to: process the preliminary data, andcommunicate the primary data from the preliminary data to any of a number of devices with an access to identification data of at least one of: the networked device and the content identification service of the networked device.
  • 6. The system of claim 1, wherein the relevancy-matching server is the same as the pairing server.
  • 7. The system of claim 1, wherein the relevancy-matching server causes a rendering of the targeted data to the user through the sandboxed application of the client device.
  • 8. The system of claim 1, wherein pairing server is an intermediary server communicatively coupled to the client device and the networked device through the network.
  • 9. The system of claim 1, wherein the client device is configured to process an embedded object from the relevancy-matching server in the sandboxed application.
  • 10. The system of claim 9, wherein the embedded object bypasses at least one access control of the security sandbox through any one of: the sandboxed application and the embedded object.
  • 11. The system of claim 1, wherein the client device is determined to be associated with the user based on a unique identifier that is unchanging.
  • 12. The system of claim 1, wherein the primary data comprises at least one of: a number of descriptive metadata associated with the content identification data, a monitored event, a geolocation, a weather information, a private Internet Protocol (IP) address, and another data stored in at least one of a volatile memory and a non-volatile memory.
  • 13. The system of claim 10, wherein the bypass of the at least one access control of the security sandbox comprises of at least one of a cross-site scripting technique, an appended header, a same origin policy exception, and another mode of bypassing a number of access controls of the security.
  • 14. A system comprising: a relevancy-matching server;a client device to constrain an executable environment within a security sandbox, and to execute a sandboxed application in the constrained executable environment;a networked device to generate primary data using preliminary data, the networked device executing a content identification service to identify content of media data thereon to automatically generate the preliminary data, the content identification service being at least one of: integrated with a chipset of the networked device and integrated with at least one of: a video pipeline and an audio pipeline of the networked device, the content identification service being configured to access at least one of: a frame buffer, a video buffer and an audio buffer within the networked device, the preliminary data being any of an audio fingerprint data and a video fingerprint data, and the primary data being one of: identical to the preliminary data and a converted form of the preliminary data suitable for processing through the relevancy-matching server as one of: content identification data and content identification history; anda pairing server,wherein the relevancy-matching server, the client device and the networked device are communicatively coupled to one another through a network,wherein the client device is configured to automatically establish a communication between the sandboxed application and a sandbox-reachable service of the networked device through accessing a discovery module of the pairing server after the networked device automatically announces the sandbox-reachable service thereof to the discovery module, the discovery module being a self-contained component that performs a discovery service that detects a number of devices in the network that offer the content identification service, andwherein, based on the automatically established communication between the sandboxed application and the sandbox-reachable service of the networked device, the relevancy-matching server is configured to: match the primary data with targeted data based on a relevancy factor comprising at least one of: a category of the primary data, a behavioral history of the user, a category of the sandboxed application, and other information associated with the user,search a storage for the targeted data, andcommunicate the targeted data to at least one of: the client device and the networked device for rendering thereon.
  • 15. The system of claim 14, wherein the relevancy-matching server is configured to: match the targeted data with the primary data in a manner such that the storage is searched based on the relevancy factor for at least one: of a matching item and a related item.
  • 16. The system of claim 14, wherein the pairing server is configured to: associate the networked device with the client device, andprocess identification data of the announcement of the sandbox-reachable service comprising at least one of a GUID, an alphanumeric name, a hardware address associated with the networked device, a public address associated with the content identification service of the networked device, and a private address associated with the content identification service of the networked device when the network is determined to be commonly associated with the client device and the networked device.
  • 17. The system of claim 14, wherein the client device is configured to process an embedded object comprising at least one of a script, an image, a player, an iframe, and other external media included in the sandboxed application.
  • 18. The system of claim 14, further comprising a content identification server to: process the preliminary data, andcommunicate the primary data from the preliminary data to any of a number of devices with an access to identification data of at least one of: the networked device and the content identification service of the networked device.
  • 19. The system of claim 14, wherein the relevancy-matching server is the same as the pairing server.
  • 20. The system of claim 14, wherein the relevancy-matching server causes a rendering of the targeted data to the user through the sandboxed application of the client device.
  • 21. The system of claim 14, wherein pairing server is an intermediary server communicatively coupled to the client device and the networked device through the network.
  • 22. The system of claim 14, wherein the client device is configured to process an embedded object from the relevancy-matching server in the sandboxed application, the embedded object bypassing at least one access control of the security sandbox through any one of: the sandboxed application and the embedded object.
  • 23. The system of claim 14, wherein the client device is determined to be associated with the user based on a unique identifier that is unchanging.
  • 24. The system of claim 14, wherein the primary data comprises at least one of: a number of descriptive metadata associated with the content identification data, a monitored event, a geolocation, a weather information, a private IP address, and another data stored in at least one of a volatile memory and a non-volatile memory.
  • 25. The system of claim 22, wherein the bypass of the at least one access control of the security sandbox comprises of at least one of a cross-site scripting technique, an appended header, a same origin policy exception, and another mode of bypassing a number of access controls of the security.
  • 26. A system comprising: a relevancy-matching server;a client device to constrain an executable environment within a security sandbox, and to execute a sandboxed application in the constrained executable environment;a networked device to generate primary data using preliminary data, the networked device executing a content identification service to identify content of media data thereon to automatically generate the preliminary data, the content identification service being at least one of: integrated with a chipset of the networked device and integrated with at least one of: a video pipeline and an audio pipeline of the networked device, the content identification service being configured to access at least one of: a frame buffer, a video buffer and an audio buffer within the networked device, the preliminary data being information associated with a user of both the client device and the networked device, the primary data being one of: identical to the preliminary data and a converted form of the preliminary data suitable for processing through the relevancy-matching server as one of: content identification data and content identification history, and the primary data comprising at least one of: a number of descriptive metadata associated with the content identification data, a monitored event, a geolocation, a weather information, a private IP address, and another data stored in at least one of: a volatile memory and a non-volatile memory; anda pairing server,wherein the relevancy-matching server, the client device and the networked device are communicatively coupled to one another through a network,wherein the client device is configured to automatically establish a communication between the sandboxed application and a sandbox-reachable service of the networked device through accessing a discovery module of the pairing server after the networked device automatically announces the sandbox-reachable service thereof to the discovery module, the discovery module being a self-contained component that performs a discovery service that detects a number of devices in the network that offer the content identification service, andwherein, based on the automatically established communication between the sandboxed application and the sandbox-reachable service of the networked device, the relevancy-matching server is configured to: match the primary data with targeted data based on a relevancy factor comprising at least one of: a category of the primary data, a behavioral history of the user, a category of the sandboxed application, and other information associated with the user,search a storage for the targeted data, andcommunicate the targeted data to at least one of: the client device and the networked device for rendering thereon.
  • 27. The system of claim 26, wherein the pairing server is configured to: associate the networked device with the client device, andprocess identification data of the announcement of the sandbox-reachable service comprising at least one of a GUID, an alphanumeric name, a hardware address associated with the networked device, a public address associated with the content identification service of the networked device, and a private address associated with the content identification service of the networked device when the network is determined to be commonly associated with the client device and the networked device.
  • 28. The system of claim 26, further comprising a content identification server to: process the preliminary data, andcommunicate the primary data from the preliminary data to any of a number of devices with an access to identification data of at least one of: the networked device and the content identification service of the networked device.
  • 29. The system of claim 26, wherein the relevancy-matching server is configured to: match the targeted data with the primary data in a manner such that the storage is searched based on the relevancy factor for at least one: of a matching item and a related item.
  • 30. The system of claim 26, wherein the client device is configured to process an embedded object from the relevancy-matching server in the sandboxed application, the embedded object bypassing at least one access control of the security sandbox through any one of: the sandboxed application and the embedded object.
CLAIM OF PRIORITY

This patent application is a Continuation and/or Divisional application of, and hereby incorporates by reference the entirety of the disclosures of, and claims priority to each of the following cases: (a) U.S. Continuation patent application Ser. No. 14/018,408 titled EXPOSURE OF PUBLIC INTERNET PROTOCOL ADDRESSES IN AN ADVERTISING EXCHANGE SERVER TO IMPROVE RELEVANCY OF ADVERTISEMENTS filed on Sep. 4, 2013 and issued as U.S. Pat. No. 9,589,456 on Mar. 7, 2017, (1) which claims priority to U.S. Provisional Patent Application 61/696,711 titled SYSTEMS AND METHODS OF RECOGNIZING CONTENT filed on Sep. 4, 2012,(2) on which a Petition has been filed, but not yet granted, which requests to further claim priority to U.S. Provisional Patent Application 61/803,754 titled APPLICATIONS OF ZEROCONF BIDIRECTIONAL COMMUNICATIONS BETWEEN A NETWORKED DEVICE AND A SECURITY SANDBOX COMPRISING TARGETED ADVERTISEMENT, ENVIRONMENT AWARENESS, USER MAPPING, GEOLOCATION SERVICES, AND CONTENT IDENTIFICATION filed on Mar. 20, 2013,(b) U.S. Divisional patent application Ser. No. 14/981,938 titled RELEVANCY IMPROVEMENT THROUGH TARGETING OF INFORMATION BASED ON DATA GATHERED FROM A NETWORKED DEVICE ASSOCIATED WITH A SECURITY SANDBOX OF A CLIENT DEVICE filed on Dec. 29, 2015 and issued as U.S. Pat. No. 9,519,772 on Dec. 13, 2016, (1) which claims priority to U.S. Provisional patent application 62/183,756 titled SECOND SCREEN NETWORKING, TARGETING, AND COMMUNICATION METHODOLOGIES AND SYSTEMS filed on Jun. 24, 2015,(2) which is a U.S. Continuation-in-Part patent application of Ser. No. 14/744,045 titled TARGETED ADVERTISING AND ATTRIBUTION ACROSS MULTIPLE SCREENS BASED ON PLAYING GAMES ON A GAME CONSOLE THROUGH A TELEVISION filed on Jun. 19, 2015, a. which further claims priority to U.S. Provisional Patent Application 62/026,017 titled AUTOMATIC GAMING ADVERTISEMENT IDENTIFICATION, TIME STAMPING, AND CATALOGING BASED ON VIEWING HISTORY OF A USER OPERATING A MOBILE DEVICE COMMUNICATIVELY COUPLED WITH A NETWORKED TELEVISION, AND DELIVERY OF A TARGETED ADVERTISEMENT TO THE MOBILE DEVICE BASED ON THE IDENTIFICATION AND CATALOGING WITHIN A THRESHOLD AMOUNT OF TIME FROM A TIME STAMP OF AN IDENTIFIED ADVERTISEMENT DISPLAYED ON THE NETWORKED TELEVISION filed on Jul. 17, 2014,(3) which is a U.S. Continuation-in-Part patent application of Ser. No. 14/274,800 titled MONETIZATION OF TELEVISION AUDIENCE DATA ACROSS MULTIPLE SREENS OF A USER WATCHING TELEVISION filed on May 12, 2014 and issued as U.S. Pat. No. 9,258,383 on Feb. 9, 2016, a. which itself is a U.S. Continuation patent application of Ser. No. 13/943,866 titled RELEVANCY IMPROVEMENT THROUGH TARGETING OF INFORMATION BASED ON DATA GATHERED FROM A NETWORKED DEVICE ASSOCIATED WITH A SECURITY SANDBOX OF A CLIENT DEVICE filed on Jul. 17, 2013 and issued as U.S. Pat. No. 8,819,255 on Aug. 26, 2014, i. which further is a U.S. Continuation patent application of Ser. No. 13/904,015 titled REAL-TIME AND RETARGETED ADVERTISING ON MULTIPLE SCREENS OF A USER WATCHING TELEVISION filed on May 28, 2013 and issued as U.S. Pat. No 9,026,668 on May 5, 2015, 1. which further claims priority to U.S. Provisional Patent Application 61/652,153 titled CONTENT RECOGNITION SYSTEM filed on May 26, 2012,ii. which further is a U.S. Continuation-in-Part patent application of Ser. No. 13/736,031 titled ZERO CONFIGURATION COMMUNICATION BETWEEN A BROWSER AND A NETWORKED MEDIA DEVICE filed on Jan. 7, 2013 and issued as U.S. Pat. No. 9,154,942 on Oct. 6, 2015, 1. which further claims priority to U.S. Provisional Patent Application 61/584,168 titled CAPTURING CONTENT FOR DISPLAY ON A TELEVISION and filed on Jan. 6, 2012,iii. which further is a U.S. Continuation-in-Part patent application of Ser. No. 13/470,814 titled GENERATION OF A TARGETED ADVERTISEMENT IN AN UNTRUSTED SANDBOX BASED ON A PSUEDONYM filed on May 14, 2012 and granted into U.S. Pat. No. 8,539,072 of Sep. 17, 2013, 1. which itself is a U.S. Continuation patent application of Ser. No. 12/592,377 titled DISCOVERY, ACCESS CONTROL, AND COMMUNICATION WITH NETWORKED SERVICES FROM WITHIN A SECURITY SANDBOX, filed on Nov. 23, 2009 and granted into U.S. Pat. No. 8,180,891 on May 15, 2012, a. which claims priority to U.S. Provisional patent application 61/118,286 titled DISCOVERY, ACCESS CONTROL, AND COMMUNICATION WITH NETWORKED SERVICES FROM WITHIN A SECURITY SANDBOX filed on Nov. 26, 2008.

US Referenced Citations (1096)
Number Name Date Kind
3849760 Endou et al. Nov 1974 A
3919479 Moon et al. Nov 1975 A
4025851 Haselwood et al. May 1977 A
4230990 Lert, Jr. et al. Oct 1980 A
4258386 Cheung Mar 1981 A
4420769 Novak Dec 1983 A
4450531 Kenyon et al. May 1984 A
4574304 Watanabe et al. Mar 1986 A
4677466 Lert, Jr. et al. Jun 1987 A
4697209 Kiewit et al. Sep 1987 A
4739398 Thomas et al. Apr 1988 A
4833449 Gaffigan May 1989 A
4843562 Kenyon et al. Jun 1989 A
4888638 Bohn Dec 1989 A
4918730 Schulze Apr 1990 A
4955070 Welsh et al. Sep 1990 A
4967273 Greenberg Oct 1990 A
4993059 Smith et al. Feb 1991 A
5014125 Pocock et al. May 1991 A
5019899 Boles et al. May 1991 A
5105184 Pirani Apr 1992 A
5155591 Wachob Oct 1992 A
5223924 Strubbe Jun 1993 A
5319453 Copriviza et al. Jun 1994 A
5321750 Nadan Jun 1994 A
5436653 Ellis et al. Jul 1995 A
5481294 Thomas et al. Jan 1996 A
5522077 Cuthbert et al. May 1996 A
5539658 McCullough Jul 1996 A
5557334 Legate Sep 1996 A
5572246 Ellis et al. Nov 1996 A
5612729 Ellis et al. Mar 1997 A
5636346 Saxe Jun 1997 A
5724521 Dedrick Mar 1998 A
5732219 Blumer et al. Mar 1998 A
5742768 Gennaro et al. Apr 1998 A
5745884 Carnegie et al. Apr 1998 A
5761601 Nemirofsky et al. Jun 1998 A
5761648 Golden et al. Jun 1998 A
5761655 Hoffman Jun 1998 A
5774170 Hite et al. Jun 1998 A
5774673 Beuk et al. Jun 1998 A
5805974 Hite et al. Sep 1998 A
5815665 Teper et al. Sep 1998 A
5822525 Tafoya et al. Oct 1998 A
5838301 Okamoto et al. Nov 1998 A
5838317 Bolnick et al. Nov 1998 A
5848396 Gerace Dec 1998 A
5850517 Verkler et al. Dec 1998 A
5892900 Ginter et al. Apr 1999 A
5903729 Reber et al. May 1999 A
5905942 Stoel et al. May 1999 A
5907279 Bruins et al. May 1999 A
5940073 Klosterman et al. Aug 1999 A
5948061 Merriman et al. Sep 1999 A
5966705 Koneru et al. Oct 1999 A
5977962 Chapman et al. Nov 1999 A
5978835 Ludwig et al. Nov 1999 A
6002393 Hite et al. Dec 1999 A
6002443 Iggulden Dec 1999 A
6009409 Adler et al. Dec 1999 A
6009410 LeMole et al. Dec 1999 A
6026368 Brown et al. Feb 2000 A
6026369 Capek Feb 2000 A
6032181 Bedgedjian et al. Feb 2000 A
6043817 Bolnick et al. Mar 2000 A
6055510 Henrick et al. Apr 2000 A
6064980 Jacobi et al. May 2000 A
6084628 Sawyer Jul 2000 A
6105122 Muller et al. Aug 2000 A
6112181 Shear et al. Aug 2000 A
6118864 Chang et al. Sep 2000 A
6119098 Guyot et al. Sep 2000 A
6137892 Powell et al. Oct 2000 A
6141010 Hoyle Oct 2000 A
6157941 Verkler et al. Dec 2000 A
6167427 Rabinovich et al. Dec 2000 A
6169542 Hooks et al. Jan 2001 B1
6188398 Collins-Rector et al. Feb 2001 B1
6192476 Gong Feb 2001 B1
6195696 Baber et al. Feb 2001 B1
6216141 Straub et al. Apr 2001 B1
6219696 Wynblatt et al. Apr 2001 B1
6247077 Muller et al. Jun 2001 B1
6286104 Buhle et al. Sep 2001 B1
6304523 Jones et al. Oct 2001 B1
6304852 Loncteaux Oct 2001 B1
6308327 Liu et al. Oct 2001 B1
6310889 Parsons et al. Oct 2001 B1
6332127 Bandera et al. Dec 2001 B1
6349289 Peterson et al. Feb 2002 B1
6351467 Dillon Feb 2002 B1
6360254 Linden et al. Mar 2002 B1
6381362 Deshpande et al. Apr 2002 B1
6400265 Saylor et al. Jun 2002 B1
6400996 Hoffberg et al. Jun 2002 B1
6438594 Bowman-Amuah Aug 2002 B1
6463585 Hendricks et al. Oct 2002 B1
6469749 Dimitrova et al. Oct 2002 B1
6481010 Nishikawa et al. Nov 2002 B2
6484148 Boyd Nov 2002 B1
6505169 Bhagavath et al. Jan 2003 B1
6526491 Suzuoki et al. Feb 2003 B2
6530082 Del Sesto et al. Mar 2003 B1
6532218 Shaffer et al. Mar 2003 B1
6536041 Knudson et al. Mar 2003 B1
6546554 Schmidt et al. Apr 2003 B1
6564260 Baber et al. May 2003 B1
6564263 Bergman et al. May 2003 B1
6574793 Ngo et al. Jun 2003 B1
6577346 Perlman Jun 2003 B1
6597405 Iggulden Jul 2003 B1
6622171 Gupta et al. Sep 2003 B2
6628801 Powell et al. Sep 2003 B2
6631523 Matthews, III et al. Oct 2003 B1
6651251 Shoff et al. Nov 2003 B1
6718551 Swix et al. Apr 2004 B1
6728784 Mattaway Apr 2004 B1
6738978 Hendricks et al. May 2004 B1
6757685 Raffaele et al. Jun 2004 B2
6769009 Reisman Jul 2004 B1
6771316 Iggulden Aug 2004 B1
6799196 Smith Sep 2004 B1
6804659 Graham et al. Oct 2004 B1
6832239 Kraft et al. Dec 2004 B1
6834308 Ikezoye et al. Dec 2004 B1
6836888 Basu et al. Dec 2004 B1
6845452 Roddy et al. Jan 2005 B1
6907458 Tomassetti et al. Jun 2005 B2
6946715 Hong Sep 2005 B2
6959288 Medina et al. Oct 2005 B1
6959320 Shah et al. Oct 2005 B2
6978470 Swix et al. Dec 2005 B2
6981022 Boundy Dec 2005 B2
6983478 Grauch et al. Jan 2006 B1
6983481 Fellenstein et al. Jan 2006 B2
6990453 Wang et al. Jan 2006 B2
6993326 Link, II et al. Jan 2006 B2
7020304 Alattar et al. Mar 2006 B2
7028033 Bright et al. Apr 2006 B2
7028327 Dougherty et al. Apr 2006 B1
7043524 Shah et al. May 2006 B2
7051351 Goldman et al. May 2006 B2
7064796 Roy et al. Jun 2006 B2
7080400 Navar Jul 2006 B1
7088687 Ayyagari et al. Aug 2006 B2
7089575 Agnihotri et al. Aug 2006 B2
7089585 Dharmarajan Aug 2006 B1
7100183 Kunkel et al. Aug 2006 B2
7111230 Euchner et al. Sep 2006 B2
7113090 Saylor et al. Sep 2006 B1
7116661 Patton Oct 2006 B2
7117439 Barrett et al. Oct 2006 B2
7136875 Anderson et al. Nov 2006 B2
7139882 Suzuoki et al. Nov 2006 B2
7146627 Ismail et al. Dec 2006 B1
7158666 Deshpande et al. Jan 2007 B2
7162539 Garcie-Luna-Aceves Jan 2007 B2
7167857 Roberts Jan 2007 B2
7181415 Blaser et al. Feb 2007 B2
7185353 Schlack Feb 2007 B2
7194421 Conkwright et al. Mar 2007 B2
7210157 Devara Apr 2007 B2
7228280 Scherf et al. Jun 2007 B1
7243362 Swix et al. Jul 2007 B2
7243364 Dunn et al. Jul 2007 B2
7296091 Dutta et al. Nov 2007 B1
7299195 Tawakol et al. Nov 2007 B1
7308489 Weast Dec 2007 B2
7328448 Eldering et al. Feb 2008 B2
7330875 Parasnis et al. Feb 2008 B1
7346606 Bharat Mar 2008 B2
7346649 Wong Mar 2008 B1
7349967 Wang Mar 2008 B2
7349980 Darugar et al. Mar 2008 B1
7359889 Wang et al. Apr 2008 B2
7360173 Tuli Apr 2008 B2
7366975 Lipton Apr 2008 B1
7373381 Rust May 2008 B2
7380258 Durden et al. May 2008 B2
7383243 Conkwright et al. Jun 2008 B2
7421723 Harkness et al. Sep 2008 B2
7437301 Kageyama et al. Oct 2008 B2
7444658 Matz et al. Oct 2008 B1
7444660 Dudkiewicz Oct 2008 B2
7444666 Edwards et al. Oct 2008 B2
7454515 Lamkin et al. Nov 2008 B2
7472398 Corell et al. Dec 2008 B2
7486827 Kim Feb 2009 B2
7500007 Ikezoye et al. Mar 2009 B2
7509402 Moorer et al. Mar 2009 B2
7516074 Bilobrov Apr 2009 B2
7516213 Cunningham et al. Apr 2009 B2
7525955 Velez-Rivera et al. Apr 2009 B2
7529659 Wold May 2009 B2
7545940 Alessi et al. Jun 2009 B2
7546619 Anderson et al. Jun 2009 B2
7552228 Parasnis et al. Jun 2009 B2
7555165 Luo et al. Jun 2009 B2
7559017 Datar et al. Jul 2009 B2
7565158 Aholainen Jul 2009 B1
7574723 Putterman et al. Aug 2009 B2
7584491 Bruckner et al. Sep 2009 B2
7590998 Hanley Sep 2009 B2
7593988 Oreizy et al. Sep 2009 B2
7596620 Colton et al. Sep 2009 B1
7602748 Sinnreich et al. Oct 2009 B2
7623823 Zito et al. Nov 2009 B2
7624142 Jungck Nov 2009 B2
7631325 Rys et al. Dec 2009 B2
7634533 Rudolph et al. Dec 2009 B2
7639387 Hull et al. Dec 2009 B2
7650616 Lee Jan 2010 B2
7653008 Patrick et al. Jan 2010 B2
7664081 Luoma et al. Feb 2010 B2
7665082 Wyatt et al. Feb 2010 B2
7672003 Dowling et al. Mar 2010 B2
7689920 Robbin et al. Mar 2010 B2
7690006 Birnbaum et al. Mar 2010 B2
7694319 Hassell et al. Apr 2010 B1
7698165 Tawakol et al. Apr 2010 B1
7701882 Jones et al. Apr 2010 B2
7711748 Bright et al. May 2010 B2
7711838 Boulter et al. May 2010 B1
7716161 Dean et al. May 2010 B2
7720914 Goodman et al. May 2010 B2
7729366 Mok et al. Jun 2010 B2
7734624 Anderson et al. Jun 2010 B2
7739140 Vinson et al. Jun 2010 B2
7769756 Krikorian et al. Aug 2010 B2
7774348 Delli Santi et al. Aug 2010 B2
7774715 Evans Aug 2010 B1
7789757 Gemelos et al. Sep 2010 B2
7793318 Deng Sep 2010 B2
7797433 Kennedy et al. Sep 2010 B2
7805740 Gilboa et al. Sep 2010 B2
7822809 Dhupelia et al. Oct 2010 B2
7831426 Bennett Nov 2010 B2
7856644 Nicholson et al. Dec 2010 B2
7861260 Shkedi Dec 2010 B2
7870592 Hudson et al. Jan 2011 B2
7870596 Schackow et al. Jan 2011 B2
7873716 Maes Jan 2011 B2
7877461 Rimmer Jan 2011 B1
7877774 Basso et al. Jan 2011 B1
7890957 Campbell Feb 2011 B2
7904503 Van De Sluis Mar 2011 B2
7904925 Jiang Mar 2011 B2
7907211 Oostveen et al. Mar 2011 B2
7908273 DiMaria et al. Mar 2011 B2
7908618 Bruckner et al. Mar 2011 B2
7912822 Bethlehem et al. Mar 2011 B2
7921037 Hertling et al. Apr 2011 B2
7929551 Dietrich et al. Apr 2011 B2
7930207 Merriman et al. Apr 2011 B2
7930546 Rhoads et al. Apr 2011 B2
7933451 Kloer Apr 2011 B2
7937405 Anderson et al. May 2011 B2
7941197 Jain et al. May 2011 B2
7941816 Harkness et al. May 2011 B2
7950055 Blinn et al. May 2011 B2
7962007 Abe et al. Jun 2011 B2
7966309 Shacham et al. Jun 2011 B2
7978876 Powell et al. Jul 2011 B2
7979570 Chapweske et al. Jul 2011 B2
7995503 Yu Aug 2011 B2
8001124 Hugh Svendsen Aug 2011 B2
8020000 Oostveen et al. Sep 2011 B2
8035656 Blanchard et al. Oct 2011 B2
8041643 Mukerji et al. Oct 2011 B2
8046839 Lo Oct 2011 B2
8055784 Kalama et al. Nov 2011 B2
8060399 Ullah Nov 2011 B2
8060912 Sato Nov 2011 B2
8065700 Lee Nov 2011 B2
8069247 Ruiz-Velasco et al. Nov 2011 B2
8069348 Bacon Nov 2011 B2
8071869 Chen et al. Dec 2011 B2
8079045 Krapf et al. Dec 2011 B2
8087047 Olague et al. Dec 2011 B2
8090706 Bharat Jan 2012 B2
8091031 Evans Jan 2012 B2
8122484 Karjoth et al. Feb 2012 B2
8126963 Rimmer Feb 2012 B1
8131585 Nicholas et al. Mar 2012 B2
8131705 Chevalier et al. Mar 2012 B2
8131734 Austin et al. Mar 2012 B2
8140965 Dean et al. Mar 2012 B2
8141111 Gilley et al. Mar 2012 B2
8145645 Delli Santi et al. Mar 2012 B2
8145705 Rust Mar 2012 B1
8150729 Wilhelm Apr 2012 B2
8150985 Nakamura Apr 2012 B2
8155696 Swanburg et al. Apr 2012 B2
8161511 Kwak et al. Apr 2012 B2
8171030 Pereira et al. May 2012 B2
8171510 Kamen et al. May 2012 B2
8175413 Ioffe et al. May 2012 B1
8180708 Hurtado et al. May 2012 B2
8180891 Harrison May 2012 B1
8189945 Stojancic et al. May 2012 B2
8191091 Harvey et al. May 2012 B1
8195689 Ramanathan et al. Jun 2012 B2
8195692 Baek et al. Jun 2012 B2
8201080 Basson et al. Jun 2012 B2
8209397 Ahn et al. Jun 2012 B2
8209404 Wu Jun 2012 B2
8214256 Riedl et al. Jul 2012 B2
8219411 Matz et al. Jul 2012 B2
8225347 Flickinger et al. Jul 2012 B1
8229227 Stojancic et al. Jul 2012 B2
8229751 Cheung Jul 2012 B2
8239340 Hanson Aug 2012 B2
8244707 Lin et al. Aug 2012 B2
8245270 Cooperstein et al. Aug 2012 B2
8255949 Bayer et al. Aug 2012 B1
8260665 Foladare et al. Sep 2012 B2
8261341 Stirbu Sep 2012 B2
8271649 Kalofonos et al. Sep 2012 B2
8275791 Raffaele et al. Sep 2012 B2
8281288 Spencer Oct 2012 B1
8285880 Ye et al. Oct 2012 B2
8290351 Plotnick et al. Oct 2012 B2
8296763 Peercy et al. Oct 2012 B1
8301596 Lin et al. Oct 2012 B2
8301732 Chapweske et al. Oct 2012 B2
8302170 Kramer et al. Oct 2012 B2
8307093 Klemets et al. Nov 2012 B2
8316450 Robinson et al. Nov 2012 B2
8326872 Zwilling et al. Dec 2012 B2
8332885 Williamson et al. Dec 2012 B2
8335786 Pereira et al. Dec 2012 B2
8339991 Biswas et al. Dec 2012 B2
8341242 Dillon et al. Dec 2012 B2
8352980 Howcroft Jan 2013 B2
8355711 Heins et al. Jan 2013 B2
8358966 Zito et al. Jan 2013 B2
8364541 Roth Jan 2013 B2
8364703 Ramanathan et al. Jan 2013 B2
8364959 Bhanoo et al. Jan 2013 B2
8365217 Legrand Jan 2013 B2
8375131 Rogers et al. Feb 2013 B2
8381026 Talla et al. Feb 2013 B2
8385644 Stojancic Feb 2013 B2
8406607 Nesvadba et al. Mar 2013 B2
8407240 Denton Mar 2013 B2
8418191 Honishi et al. Apr 2013 B2
8433306 Rodriguez Apr 2013 B2
8433574 Jablokov et al. Apr 2013 B2
8443420 Brown et al. May 2013 B2
8451762 Liu et al. May 2013 B2
8452864 Vendrow May 2013 B1
8463100 Tse et al. Jun 2013 B2
8468357 Roberts et al. Jun 2013 B2
8472289 Scherf et al. Jun 2013 B2
8473575 Marchwicki et al. Jun 2013 B2
8479246 Hudson et al. Jul 2013 B2
8488838 Sharma Jul 2013 B2
8489701 Manion et al. Jul 2013 B2
8494907 Lerman et al. Jul 2013 B2
8495611 McCarthy et al. Jul 2013 B2
8495675 Philpott et al. Jul 2013 B1
8495746 Fissel et al. Jul 2013 B2
8504551 Anderson et al. Aug 2013 B2
8510317 Boetje et al. Aug 2013 B2
8510661 Dharmaji et al. Aug 2013 B2
8510779 Slothouber et al. Aug 2013 B2
8516533 Davis et al. Aug 2013 B2
8520909 Leung et al. Aug 2013 B2
8527594 Lahaix Sep 2013 B2
8533192 Moganti et al. Sep 2013 B2
8537157 Adimatyam et al. Sep 2013 B2
8539025 Husain et al. Sep 2013 B2
8539072 Harrison Sep 2013 B1
8539523 Philpott et al. Sep 2013 B2
8548820 Matz et al. Oct 2013 B2
8549052 Miles Oct 2013 B2
8549066 Donahue et al. Oct 2013 B1
8549110 Jerbi et al. Oct 2013 B2
8549550 Lopatecki et al. Oct 2013 B2
8566154 Merriman et al. Oct 2013 B2
8566158 Cansler et al. Oct 2013 B2
8566867 Yang et al. Oct 2013 B1
8577996 Hughes et al. Nov 2013 B2
8595781 Neumeier et al. Nov 2013 B2
8607267 Shkedi Dec 2013 B2
8611701 Zhang Dec 2013 B2
8613045 Shigapov Dec 2013 B1
8621585 Danieli et al. Dec 2013 B2
8635106 Sarukkai et al. Jan 2014 B2
8635316 Barnhill, Jr. Jan 2014 B2
8639826 Slothouber et al. Jan 2014 B2
8645209 Mandyam et al. Feb 2014 B2
8645992 Russell et al. Feb 2014 B2
8645994 Vemparala et al. Feb 2014 B2
8646063 Dowlatkhah Feb 2014 B2
8655716 Barnes et al. Feb 2014 B1
8656422 Kumar et al. Feb 2014 B2
8661010 Lin et al. Feb 2014 B2
8666168 Stojancic et al. Mar 2014 B2
8667142 Takei et al. Mar 2014 B2
8677253 Duquene et al. Mar 2014 B2
8694656 Douillet et al. Apr 2014 B2
8695032 Shkedi Apr 2014 B2
8700699 Shen et al. Apr 2014 B2
8700795 Boulter et al. Apr 2014 B2
8701134 Whinmill et al. Apr 2014 B2
8707351 Dharmaji Apr 2014 B2
8712833 Quach et al. Apr 2014 B2
8719396 Brindley et al. May 2014 B2
8719870 Davies et al. May 2014 B1
8732182 Bethlehem et al. May 2014 B2
8736764 Amundsen May 2014 B2
8738779 Binding et al. May 2014 B2
8739208 Davis et al. May 2014 B2
8745272 Casalaina et al. Jun 2014 B2
8751942 Lopez et al. Jun 2014 B2
8756686 Plattner et al. Jun 2014 B2
8763033 Dittus Jun 2014 B2
8763097 Bhatnagar et al. Jun 2014 B2
8769584 Neumeier et al. Jul 2014 B2
8775391 Kalavade Jul 2014 B2
8776112 Roberts et al. Jul 2014 B2
8776154 Kim et al. Jul 2014 B2
8776244 Kroeger et al. Jul 2014 B2
8793730 Mowrey et al. Jul 2014 B2
8799357 Clift et al. Aug 2014 B2
8804039 Kim et al. Aug 2014 B2
8804721 He et al. Aug 2014 B2
8805657 Wells et al. Aug 2014 B2
8805854 Chen et al. Aug 2014 B2
8812451 Shukla et al. Aug 2014 B2
8813232 Sreedharan et al. Aug 2014 B2
8817757 Luo Aug 2014 B2
8819249 Harrison Aug 2014 B2
8819255 Harrison Aug 2014 B1
8825526 Peters et al. Sep 2014 B2
8826327 Adimatyam et al. Sep 2014 B2
8832729 Nussel et al. Sep 2014 B2
8838149 Hasek Sep 2014 B2
8838556 Reiner et al. Sep 2014 B1
8838808 Addala et al. Sep 2014 B2
8843584 Arini et al. Sep 2014 B2
8847994 Choi Sep 2014 B2
8849821 Schloter Sep 2014 B2
8855796 Otsuka et al. Oct 2014 B2
8855798 DiMaria et al. Oct 2014 B2
8856028 Yang et al. Oct 2014 B2
8856087 Greene et al. Oct 2014 B2
8856874 Pieczul et al. Oct 2014 B2
8863165 Gordon Oct 2014 B2
8863168 Craner Oct 2014 B2
8863174 Neil et al. Oct 2014 B2
8875178 Cansler et al. Oct 2014 B2
8898714 Neumeier et al. Nov 2014 B2
8904021 Harrison Dec 2014 B2
8910199 Slaney et al. Dec 2014 B2
8930980 Neumeier et al. Jan 2015 B2
8949872 Slaney et al. Feb 2015 B2
8966525 Mehta et al. Feb 2015 B2
8972485 French et al. Mar 2015 B1
8996538 Cremer et al. Mar 2015 B1
8997164 Gordon et al. Mar 2015 B2
9009066 Long et al. Apr 2015 B2
9015741 Gordon Apr 2015 B2
9026668 Harrison May 2015 B2
9032451 Cansino et al. May 2015 B2
9036083 Zhu et al. May 2015 B1
9043712 Santoro et al. May 2015 B2
9049496 Raesig et al. Jun 2015 B2
9055309 Neumeier et al. Jun 2015 B2
9106804 Roberts et al. Aug 2015 B2
9113107 Jolna et al. Aug 2015 B2
9118945 Rudman et al. Aug 2015 B2
9131279 Raveendran et al. Sep 2015 B2
9143718 Nagorski et al. Sep 2015 B2
9146990 Scherf et al. Sep 2015 B2
9152727 Balducci et al. Oct 2015 B1
9154942 Harrison et al. Oct 2015 B2
9160837 Jeffrey et al. Oct 2015 B2
9167419 Harrison Oct 2015 B2
9183560 Abelow Nov 2015 B2
9185462 Das et al. Nov 2015 B2
9204275 Johnson et al. Dec 2015 B2
9213747 Cremer et al. Dec 2015 B2
9215217 Abu-Hakima et al. Dec 2015 B2
9232279 Beeson et al. Jan 2016 B2
9258383 Harrison Feb 2016 B2
9271052 Holden Feb 2016 B2
9286902 Han et al. Mar 2016 B2
9300996 Jeong et al. Mar 2016 B2
9323840 Harron et al. Apr 2016 B2
9356914 Jeffrey et al. May 2016 B2
9361606 Hertel et al. Jun 2016 B2
9372531 Benson et al. Jun 2016 B2
9378512 Singh et al. Jun 2016 B2
9380383 Brenner et al. Jun 2016 B2
9386356 Harrison Jul 2016 B2
9398262 Li et al. Jul 2016 B2
9465995 Harron et al. Oct 2016 B2
9495451 Harron Nov 2016 B2
9501568 Rafii Nov 2016 B2
9510044 Pereira et al. Nov 2016 B1
9510057 Harron et al. Nov 2016 B2
20010001160 Shoff et al. May 2001 A1
20010011226 Greer et al. Aug 2001 A1
20010016501 King Aug 2001 A1
20010016947 Nishikawa et al. Aug 2001 A1
20010029583 Palatov et al. Oct 2001 A1
20010036224 Demello et al. Nov 2001 A1
20010039658 Walton Nov 2001 A1
20010049620 Blasko Dec 2001 A1
20010054155 Hagan et al. Dec 2001 A1
20020012347 Fitzpatrick Jan 2002 A1
20020015105 Abe et al. Feb 2002 A1
20020019769 Barritz et al. Feb 2002 A1
20020026635 Wheeler et al. Feb 2002 A1
20020032906 Grossman Mar 2002 A1
20020042914 Walker et al. Apr 2002 A1
20020044659 Ohta Apr 2002 A1
20020044683 Deshpande et al. Apr 2002 A1
20020052965 Dowling May 2002 A1
20020059633 Harkness et al. May 2002 A1
20020066100 Hoang May 2002 A1
20020069100 Arberman Jun 2002 A1
20020072966 Eldering et al. Jun 2002 A1
20020072982 Barton et al. Jun 2002 A1
20020078456 Hudson et al. Jun 2002 A1
20020083435 Blasko et al. Jun 2002 A1
20020083441 Flickinger et al. Jun 2002 A1
20020083443 Eldering et al. Jun 2002 A1
20020087401 Leapman et al. Jul 2002 A1
20020087545 Bright et al. Jul 2002 A1
20020087975 Schlack Jul 2002 A1
20020087976 Kaplan et al. Jul 2002 A1
20020087978 Nicholson et al. Jul 2002 A1
20020091763 Shah et al. Jul 2002 A1
20020104083 Hendricks et al. Aug 2002 A1
20020116195 Pitman et al. Aug 2002 A1
20020116549 Raffaele et al. Aug 2002 A1
20020120498 Gordon et al. Aug 2002 A1
20020120925 Logan Aug 2002 A1
20020123928 Eldering et al. Sep 2002 A1
20020133490 Conkwright et al. Sep 2002 A1
20020133534 Forslow Sep 2002 A1
20020138842 Chong et al. Sep 2002 A1
20020143782 Headings et al. Oct 2002 A1
20020144262 Plotnick et al. Oct 2002 A1
20020147611 Greene et al. Oct 2002 A1
20020151992 Hoffberg et al. Oct 2002 A1
20020152474 Dudkiewicz Oct 2002 A1
20020161741 Wang et al. Oct 2002 A1
20020162117 Pearson et al. Oct 2002 A1
20020162118 Levy et al. Oct 2002 A1
20020174197 Schimke et al. Nov 2002 A1
20020178447 Plotnick et al. Nov 2002 A1
20020196789 Patton Dec 2002 A1
20030001883 Wang Jan 2003 A1
20030009538 Shah et al. Jan 2003 A1
20030023489 McGuire et al. Jan 2003 A1
20030028433 Merriman et al. Feb 2003 A1
20030030752 Begeja et al. Feb 2003 A1
20030031176 Sim Feb 2003 A1
20030036949 Kaddeche et al. Feb 2003 A1
20030070167 Holtz et al. Apr 2003 A1
20030079226 Barrett Apr 2003 A1
20030097426 Parry May 2003 A1
20030097657 Zhou et al. May 2003 A1
20030101451 Bentolila et al. May 2003 A1
20030101454 Ozer et al. May 2003 A1
20030121037 Swix et al. Jun 2003 A1
20030121046 Roy et al. Jun 2003 A1
20030135513 Quinn et al. Jul 2003 A1
20030135853 Goldman et al. Jul 2003 A1
20030145323 Hendricks et al. Jul 2003 A1
20030149975 Eldering et al. Aug 2003 A1
20030154475 Rodriguez et al. Aug 2003 A1
20030163583 Tarr Aug 2003 A1
20030163828 Agnihotri et al. Aug 2003 A1
20030172374 Vinson et al. Sep 2003 A1
20030188318 Liew et al. Oct 2003 A1
20030188321 Shoff et al. Oct 2003 A1
20030226141 Krasnow et al. Dec 2003 A1
20030229765 Suzuoki et al. Dec 2003 A1
20040006693 Vasnani et al. Jan 2004 A1
20040006706 Erlingsson Jan 2004 A1
20040025034 Alessi et al. Feb 2004 A1
20040025174 Cerrato Feb 2004 A1
20040031052 Wannamaker et al. Feb 2004 A1
20040045020 Witt et al. Mar 2004 A1
20040059708 Dean et al. Mar 2004 A1
20040078809 Drazin Apr 2004 A1
20040088348 Yeager et al. May 2004 A1
20040143349 Roberts et al. Jul 2004 A1
20040148625 Eldering et al. Jul 2004 A1
20040158858 Paxton et al. Aug 2004 A1
20040163101 Swix et al. Aug 2004 A1
20040207719 Tervo et al. Oct 2004 A1
20040210630 Simonnet et al. Oct 2004 A1
20040215509 Perry Oct 2004 A1
20040215515 Perry Oct 2004 A1
20040216171 Barone, Jr. et al. Oct 2004 A1
20040225686 Li et al. Nov 2004 A1
20040226035 Hauser Nov 2004 A1
20040237102 Konig et al. Nov 2004 A1
20040240562 Bargeron et al. Dec 2004 A1
20040260791 Jerbi et al. Dec 2004 A1
20040267723 Bharat Dec 2004 A1
20050002640 Putterman et al. Jan 2005 A1
20050015795 Iggulden Jan 2005 A1
20050015796 Bruckner et al. Jan 2005 A1
20050021670 Maes Jan 2005 A1
20050028200 Sardera Feb 2005 A1
20050028201 Klosterman et al. Feb 2005 A1
20050028206 Cameron et al. Feb 2005 A1
20050071224 Fikes et al. Mar 2005 A1
20050080876 Peiffer et al. Apr 2005 A1
20050080878 Cunningham et al. Apr 2005 A1
20050091301 Oreizy et al. Apr 2005 A1
20050108213 Riise et al. May 2005 A1
20050108745 Linzer May 2005 A1
20050120391 Haynie et al. Jun 2005 A1
20050165696 Jakobsson et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050204381 Ludvig et al. Sep 2005 A1
20050210502 Flickinger et al. Sep 2005 A1
20050232411 Srinivasan et al. Oct 2005 A1
20050235318 Grauch et al. Oct 2005 A1
20050251491 Medina et al. Nov 2005 A1
20050251577 Guo et al. Nov 2005 A1
20050251820 Stefanik et al. Nov 2005 A1
20050259819 Oomen et al. Nov 2005 A1
20050267896 Goodman et al. Dec 2005 A1
20050283796 Flickinger Dec 2005 A1
20060029368 Harville Feb 2006 A1
20060031381 Van Luijt et al. Feb 2006 A1
20060064299 Uhle et al. Mar 2006 A1
20060064583 Birnbaum et al. Mar 2006 A1
20060072144 Dowling et al. Apr 2006 A1
20060072542 Sinnreich et al. Apr 2006 A1
20060085383 Mantle et al. Apr 2006 A1
20060085642 Multerer et al. Apr 2006 A1
20060092834 Honishi et al. May 2006 A1
20060133414 Luoma et al. Jun 2006 A1
20060136964 Diez et al. Jun 2006 A1
20060143188 Bright et al. Jun 2006 A1
20060149624 Baluja et al. Jul 2006 A1
20060153296 Deng Jul 2006 A1
20060156362 Perrot Jul 2006 A1
20060168291 van Zoest et al. Jul 2006 A1
20060168616 Candelore Jul 2006 A1
20060195860 Eldering et al. Aug 2006 A1
20060212908 Hunter et al. Sep 2006 A1
20060218617 Bradstreet et al. Sep 2006 A1
20060230130 Cho et al. Oct 2006 A1
20060245724 Hwang et al. Nov 2006 A1
20060247011 Gagner Nov 2006 A1
20060247937 Binding et al. Nov 2006 A1
20060248558 Barton et al. Nov 2006 A1
20060253330 Maggio et al. Nov 2006 A1
20060265493 Brindley et al. Nov 2006 A1
20060287912 Raghuvamshi Dec 2006 A1
20070047781 Hull et al. Mar 2007 A1
20070050832 Wright et al. Mar 2007 A1
20070050854 Cooperstein et al. Mar 2007 A1
20070056008 Nagamoto et al. Mar 2007 A1
20070061724 Slothouber et al. Mar 2007 A1
20070061831 Savoor et al. Mar 2007 A1
20070072676 Baluja Mar 2007 A1
20070073581 Kempe et al. Mar 2007 A1
20070078706 Datta et al. Apr 2007 A1
20070083908 McCarthy et al. Apr 2007 A1
20070088801 Levkovitz et al. Apr 2007 A1
20070088852 Levkovitz Apr 2007 A1
20070089158 Clark et al. Apr 2007 A1
20070100690 Hopkins May 2007 A1
20070106405 Cook et al. May 2007 A1
20070106721 Schloter May 2007 A1
20070108721 Bayne et al. May 2007 A1
20070109449 Cheung May 2007 A1
20070113243 Brey May 2007 A1
20070113263 Chatani May 2007 A1
20070116365 Kloer May 2007 A1
20070124756 Covell et al. May 2007 A1
20070129108 Swanburg et al. Jun 2007 A1
20070143796 Malik Jun 2007 A1
20070156726 Levy Jul 2007 A1
20070157231 Eldering et al. Jul 2007 A1
20070168389 Lipscomb Jul 2007 A1
20070174059 Rhoads et al. Jul 2007 A1
20070180459 Smithpeters et al. Aug 2007 A1
20070186240 Ward et al. Aug 2007 A1
20070192450 Lewis Aug 2007 A1
20070198339 Shen et al. Aug 2007 A1
20070208619 Branam et al. Sep 2007 A1
20070208711 Rhoads et al. Sep 2007 A1
20070220024 Putterman et al. Sep 2007 A1
20070220575 Cooper et al. Sep 2007 A1
20070234382 Swix et al. Oct 2007 A1
20070244750 Grannan et al. Oct 2007 A1
20070250590 Flannery et al. Oct 2007 A1
20070250716 Brunk et al. Oct 2007 A1
20070253594 Lu et al. Nov 2007 A1
20070260520 Jha et al. Nov 2007 A1
20070266403 Ou et al. Nov 2007 A1
20070271300 Ramaswamy Nov 2007 A1
20070274537 Srinivasan Nov 2007 A1
20070283384 Haeuser et al. Dec 2007 A1
20070283402 Yu Dec 2007 A1
20070288985 Candelore et al. Dec 2007 A1
20070291747 Stern et al. Dec 2007 A1
20070291761 Kauniskangas et al. Dec 2007 A1
20070300264 Turner Dec 2007 A1
20070300273 Turner Dec 2007 A1
20070300280 Turner et al. Dec 2007 A1
20080004957 Hildreth et al. Jan 2008 A1
20080010133 Pyhalammi et al. Jan 2008 A1
20080040666 Wang et al. Feb 2008 A1
20080040767 McCarthy et al. Feb 2008 A1
20080046945 Hanley Feb 2008 A1
20080052195 Roth et al. Feb 2008 A1
20080059285 Hamoui Mar 2008 A1
20080060002 Noll et al. Mar 2008 A1
20080066080 Campbell Mar 2008 A1
20080066098 Witteman et al. Mar 2008 A1
20080089551 Heather et al. Apr 2008 A1
20080109376 Walsh et al. May 2008 A1
20080109844 Baldeschwieler et al. May 2008 A1
20080109888 Ullah May 2008 A1
20080127263 Klosterman et al. May 2008 A1
20080140476 Anand et al. Jun 2008 A1
20080154678 Botelho Jun 2008 A1
20080155588 Roberts et al. Jun 2008 A1
20080155591 Mahajan et al. Jun 2008 A1
20080155627 O'Connor et al. Jun 2008 A1
20080172243 Kelly Jul 2008 A1
20080172747 Hurtado et al. Jul 2008 A1
20080174570 Jobs et al. Jul 2008 A1
20080181225 Zampiello Jul 2008 A1
20080186933 Willman et al. Aug 2008 A1
20080189757 Schackow et al. Aug 2008 A1
20080195457 Sherman et al. Aug 2008 A1
20080195749 Krig Aug 2008 A1
20080201222 Lahaix Aug 2008 A1
20080201734 Lyon et al. Aug 2008 A1
20080221987 Sundaresan et al. Sep 2008 A1
20080222045 Mukerji et al. Sep 2008 A1
20080222711 Michaelis Sep 2008 A1
20080228581 Yonezaki et al. Sep 2008 A1
20080229335 Robbin et al. Sep 2008 A1
20080243535 Binding et al. Oct 2008 A1
20080244418 Manolescu et al. Oct 2008 A1
20080263600 Olague et al. Oct 2008 A1
20080268828 Nagaraja Oct 2008 A1
20080276265 Topchy et al. Nov 2008 A1
20080276266 Huchital et al. Nov 2008 A1
20080276270 Kotaru et al. Nov 2008 A1
20080288631 Faisal et al. Nov 2008 A1
20080300011 Rhoads et al. Dec 2008 A1
20080306820 Passmore Dec 2008 A1
20080307460 Knudson et al. Dec 2008 A1
20080310731 Stojancic et al. Dec 2008 A1
20080313140 Pereira et al. Dec 2008 A1
20080313648 Wang et al. Dec 2008 A1
20080317278 Lefebvre et al. Dec 2008 A1
20090006207 Datar et al. Jan 2009 A1
20090011744 Daley et al. Jan 2009 A1
20090044223 Jiang et al. Feb 2009 A1
20090049384 Yau Feb 2009 A1
20090052784 Covell et al. Feb 2009 A1
20090055537 Takei et al. Feb 2009 A1
20090061841 Chaudhri et al. Mar 2009 A1
20090063691 Kalofonos et al. Mar 2009 A1
20090070473 Baum et al. Mar 2009 A1
20090076821 Brenner et al. Mar 2009 A1
20090077580 Konig et al. Mar 2009 A1
20090083417 Hughes et al. Mar 2009 A1
20090088878 Otsuka et al. Apr 2009 A1
20090089251 Johnston et al. Apr 2009 A1
20090094093 Phan Apr 2009 A1
20090100361 Abello et al. Apr 2009 A1
20090119576 Pepper et al. May 2009 A1
20090147718 Liu et al. Jun 2009 A1
20090153289 Hope et al. Jun 2009 A1
20090163227 Collins Jun 2009 A1
20090164483 Miles Jun 2009 A1
20090164641 Rogers et al. Jun 2009 A1
20090164904 Horowitz et al. Jun 2009 A1
20090165140 Robinson et al. Jun 2009 A1
20090172728 Shkedi et al. Jul 2009 A1
20090172746 Aldrey et al. Jul 2009 A1
20090185723 Kurtz et al. Jul 2009 A1
20090197524 Haff et al. Aug 2009 A1
20090199236 Barrett et al. Aug 2009 A1
20090199283 Jain Aug 2009 A1
20090210899 Lawrence-Apfelbaum et al. Aug 2009 A1
20090210902 Slaney et al. Aug 2009 A1
20090216768 Zwilling et al. Aug 2009 A1
20090231485 Steinke Sep 2009 A1
20090232305 Alessi et al. Sep 2009 A1
20090234738 Britton et al. Sep 2009 A1
20090235312 Morad et al. Sep 2009 A1
20090240821 Juncker et al. Sep 2009 A1
20090248736 Adelman et al. Oct 2009 A1
20090254554 Hicken Oct 2009 A1
20090254572 Redlich et al. Oct 2009 A1
20090259612 Hanson Oct 2009 A1
20090271398 Scherf et al. Oct 2009 A1
20090276313 Wilhelm Nov 2009 A1
20090292610 Quach et al. Nov 2009 A1
20090298480 Khambete et al. Dec 2009 A1
20090299817 Fok et al. Dec 2009 A1
20090299843 Shkedi Dec 2009 A1
20090300109 Porter Dec 2009 A1
20090307048 Grossman Dec 2009 A1
20090327076 Sinyagin et al. Dec 2009 A1
20090327496 Klemets et al. Dec 2009 A1
20100007797 Stojancic Jan 2010 A1
20100022231 Heins et al. Jan 2010 A1
20100023392 Merriman et al. Jan 2010 A1
20100023499 Johnson et al. Jan 2010 A1
20100023582 Pedersen et al. Jan 2010 A1
20100049711 Singh et al. Feb 2010 A1
20100050220 Rys et al. Feb 2010 A1
20100058380 Yu et al. Mar 2010 A1
20100063970 Kim Mar 2010 A1
20100071070 Jawa et al. Mar 2010 A1
20100083303 Redei et al. Apr 2010 A1
20100094897 Sumrall et al. Apr 2010 A1
20100099359 Lee et al. Apr 2010 A1
20100107189 Steelberg et al. Apr 2010 A1
20100119208 Davis et al. May 2010 A1
20100121891 Zampiello May 2010 A1
20100131973 Dillon et al. May 2010 A1
20100145938 Boetje et al. Jun 2010 A1
20100146552 Hassell et al. Jun 2010 A1
20100158391 Cunningham et al. Jun 2010 A1
20100161424 Sylvain Jun 2010 A1
20100174605 Dean et al. Jul 2010 A1
20100175078 Knudson et al. Jul 2010 A1
20100180216 Bates et al. Jul 2010 A1
20100185513 Anderson et al. Jul 2010 A1
20100199188 Abu-Hakima et al. Aug 2010 A1
20100205166 Boulter et al. Aug 2010 A1
20100205562 de Heer Aug 2010 A1
20100205628 Davis et al. Aug 2010 A1
20100226582 Luo et al. Sep 2010 A1
20100228611 Shenfield Sep 2010 A1
20100228625 Priyadarshan et al. Sep 2010 A1
20100251278 Agarwal et al. Sep 2010 A1
20100251289 Agarwal et al. Sep 2010 A1
20100257052 Zito et al. Oct 2010 A1
20100269138 Krikorian et al. Oct 2010 A1
20100287026 Smith Nov 2010 A1
20100287049 Rousso et al. Nov 2010 A1
20100306193 Pereira et al. Dec 2010 A1
20100306773 Lee et al. Dec 2010 A1
20100306805 Neumeier et al. Dec 2010 A1
20100306808 Neumeier et al. Dec 2010 A1
20100311345 Santori et al. Dec 2010 A1
20100318628 Pacella et al. Dec 2010 A1
20100318917 Holladay et al. Dec 2010 A1
20100319062 Danieli et al. Dec 2010 A1
20100324992 Birch Dec 2010 A1
20100325495 Talla et al. Dec 2010 A1
20100325552 Sloo et al. Dec 2010 A1
20110010737 Bouazizi et al. Jan 2011 A1
20110029555 Gao et al. Feb 2011 A1
20110029666 Lopatecki et al. Feb 2011 A1
20110032334 Raveendran et al. Feb 2011 A1
20110043652 King et al. Feb 2011 A1
20110061073 Nicholson et al. Mar 2011 A1
20110078753 Christianson et al. Mar 2011 A1
20110082939 Montemurro et al. Apr 2011 A1
20110082940 Montemurro et al. Apr 2011 A1
20110088075 Eyer Apr 2011 A1
20110099065 Georgis et al. Apr 2011 A1
20110099609 Malhotra et al. Apr 2011 A1
20110107385 Hudson et al. May 2011 A1
20110119139 Dean et al. May 2011 A1
20110122836 Kim May 2011 A1
20110125586 Evans May 2011 A1
20110131597 Cera et al. Jun 2011 A1
20110136539 Jain et al. Jun 2011 A1
20110138059 Schleifer et al. Jun 2011 A1
20110145926 Dalcher et al. Jun 2011 A1
20110154498 Fissel et al. Jun 2011 A1
20110179010 Lin et al. Jul 2011 A1
20110179447 Harkness et al. Jul 2011 A1
20110191178 Newberg et al. Aug 2011 A1
20110191352 Jones et al. Aug 2011 A1
20110213881 Stavenow et al. Sep 2011 A1
20110219322 Ramamurthy et al. Sep 2011 A1
20110238379 Misra et al. Sep 2011 A1
20110247044 Jacoby Oct 2011 A1
20110251987 Buchheit Oct 2011 A1
20110251992 Bethlehem et al. Oct 2011 A1
20110265114 Legrand Oct 2011 A1
20110265116 Stern et al. Oct 2011 A1
20110270672 Hillard et al. Nov 2011 A1
20110273625 McMahon et al. Nov 2011 A1
20110274179 Holden Nov 2011 A1
20110279445 Murphy et al. Nov 2011 A1
20110283322 Hamano Nov 2011 A1
20110289114 Yu et al. Nov 2011 A1
20110289524 Toner et al. Nov 2011 A1
20110289532 Yu et al. Nov 2011 A1
20110289544 Goosen et al. Nov 2011 A1
20110296303 Duquene et al. Dec 2011 A1
20110304771 Blanchard et al. Dec 2011 A1
20110310100 Adimatyam et al. Dec 2011 A1
20110314051 Cavet et al. Dec 2011 A1
20110317885 Leung et al. Dec 2011 A1
20110321003 Doig et al. Dec 2011 A1
20110321109 Hudson et al. Dec 2011 A1
20120011541 McCarthy Jan 2012 A1
20120017240 Shkedi Jan 2012 A1
20120023522 Anderson et al. Jan 2012 A1
20120047277 Keidar et al. Feb 2012 A1
20120054300 Marchwicki et al. Mar 2012 A1
20120054440 Doig et al. Mar 2012 A1
20120069131 Abelow Mar 2012 A1
20120072291 Bharat Mar 2012 A1
20120072420 Moganti et al. Mar 2012 A1
20120076049 Rudolf et al. Mar 2012 A1
20120084814 Olague et al. Apr 2012 A1
20120086857 Kim et al. Apr 2012 A1
20120089700 Safruti et al. Apr 2012 A1
20120101907 Dodda Apr 2012 A1
20120102515 Ramaswamy Apr 2012 A1
20120109755 Birch et al. May 2012 A1
20120124498 Santoro et al. May 2012 A1
20120130822 Patwa et al. May 2012 A1
20120130825 Evans May 2012 A1
20120131095 Luna et al. May 2012 A1
20120144416 Wetzer et al. Jun 2012 A1
20120150944 Steelberg et al. Jun 2012 A1
20120151015 Plastina et al. Jun 2012 A1
20120151521 Gilley et al. Jun 2012 A1
20120159542 Minwalla Jun 2012 A1
20120163770 Kaiser et al. Jun 2012 A1
20120163776 Hassell et al. Jun 2012 A1
20120167001 Ortiz et al. Jun 2012 A1
20120167132 Mathews et al. Jun 2012 A1
20120174155 Mowrey et al. Jul 2012 A1
20120191716 Omoigui Jul 2012 A1
20120207402 Stojancic et al. Aug 2012 A1
20120209706 Ramer et al. Aug 2012 A1
20120209726 Dean et al. Aug 2012 A1
20120210224 Wong et al. Aug 2012 A1
20120215622 Ramer et al. Aug 2012 A1
20120233163 Kirkpatrick Sep 2012 A1
20120240151 Tapper Sep 2012 A1
20120245722 Yamamura Sep 2012 A1
20120257110 Amundsen Oct 2012 A1
20120260184 Dawes et al. Oct 2012 A1
20120265616 Cao et al. Oct 2012 A1
20120272134 Steelberg et al. Oct 2012 A1
20120278825 Tran et al. Nov 2012 A1
20120280908 Rhoads et al. Nov 2012 A1
20120284746 Evans et al. Nov 2012 A1
20120284757 Rajapakse Nov 2012 A1
20120297406 Bartholomay et al. Nov 2012 A1
20120303710 Roberts et al. Nov 2012 A1
20120311074 Arini et al. Dec 2012 A1
20120311629 Zaslavsky et al. Dec 2012 A1
20120311702 Krstic et al. Dec 2012 A1
20120315014 Shuster Dec 2012 A1
20120317175 Husain et al. Dec 2012 A1
20120317178 Husain et al. Dec 2012 A1
20120317181 Husain et al. Dec 2012 A1
20120324495 Matthews et al. Dec 2012 A1
20120324566 Baum et al. Dec 2012 A1
20130013665 Sng et al. Jan 2013 A1
20130019262 Bhatia et al. Jan 2013 A1
20130019268 Fitzsimmons et al. Jan 2013 A1
20130036434 Shkedi et al. Feb 2013 A1
20130041664 McKoen et al. Feb 2013 A1
20130042262 Riethmueller Feb 2013 A1
20130045681 Dua Feb 2013 A1
20130051300 He et al. Feb 2013 A1
20130055309 Dittus Feb 2013 A1
20130060905 Mickens et al. Mar 2013 A1
20130061259 Raman et al. Mar 2013 A1
20130061267 Cansino et al. Mar 2013 A1
20130078946 Pecen et al. Mar 2013 A1
20130080242 Alhadeff et al. Mar 2013 A1
20130085865 Zhou et al. Apr 2013 A1
20130094423 Wengrovitz et al. Apr 2013 A1
20130104160 Beeson et al. Apr 2013 A1
20130104232 Johnson et al. Apr 2013 A1
20130117782 Mehta et al. May 2013 A1
20130139209 Urrabazo et al. May 2013 A1
20130139210 Huang et al. May 2013 A1
20130151728 Currier Jun 2013 A1
20130185153 Howcroft Jul 2013 A1
20130185422 Rogers et al. Jul 2013 A1
20130202150 Sinha et al. Aug 2013 A1
20130205317 Sinha et al. Aug 2013 A1
20130205319 Sinha et al. Aug 2013 A1
20130205348 Hudson et al. Aug 2013 A1
20130238702 Sheth et al. Sep 2013 A1
20130254884 Dalcher et al. Sep 2013 A1
20130263166 Fleischman Oct 2013 A1
20130290502 Bilobrov et al. Oct 2013 A1
20130297727 Levy Nov 2013 A1
20130311168 Li Nov 2013 A1
20130318157 Harrison Nov 2013 A1
20130326554 Shkedi Dec 2013 A1
20130340011 Rodriguez Dec 2013 A1
20130340050 Harrison Dec 2013 A1
20140002247 Harrison et al. Jan 2014 A1
20140007155 Vemparala et al. Jan 2014 A1
20140007156 Harrison et al. Jan 2014 A1
20140007157 Harrison et al. Jan 2014 A1
20140007162 Harrison Jan 2014 A1
20140007187 Harrison Jan 2014 A1
20140007262 Metsäpelto et al. Jan 2014 A1
20140029847 Frye et al. Jan 2014 A1
20140032286 Lansford et al. Jan 2014 A1
20140040027 Anderson et al. Feb 2014 A1
20140040443 Syu et al. Feb 2014 A1
20140047480 Knudson et al. Feb 2014 A1
20140074621 Chai et al. Mar 2014 A1
20140074839 Popp et al. Mar 2014 A1
20140082663 Neumeier et al. Mar 2014 A1
20140090008 Li et al. Mar 2014 A1
20140130076 Moore et al. May 2014 A1
20140141714 Ghosh et al. May 2014 A1
20140143043 Wickramasuriya et al. May 2014 A1
20140150006 Vemparala et al. May 2014 A1
20140181856 Lewis Jun 2014 A1
20140184827 Chartrand Jul 2014 A1
20140195584 Harrison Jul 2014 A1
20140195620 Srinivasan et al. Jul 2014 A1
20140195649 Harrison Jul 2014 A1
20140195690 Harrison et al. Jul 2014 A1
20140195934 Harrison Jul 2014 A1
20140196085 Dunker et al. Jul 2014 A1
20140201645 Mo et al. Jul 2014 A1
20140201769 Neumeier et al. Jul 2014 A1
20140201772 Neumeier et al. Jul 2014 A1
20140201773 Neumeier et al. Jul 2014 A1
20140201774 Neumeier et al. Jul 2014 A1
20140201787 Neumeier et al. Jul 2014 A1
20140218620 Griffin et al. Aug 2014 A1
20140229271 Clapp et al. Aug 2014 A1
20140237496 Julian Aug 2014 A1
20140244351 Symons Aug 2014 A1
20140244863 Bradley et al. Aug 2014 A1
20140280304 Scherf et al. Sep 2014 A1
20140282673 Neumeier et al. Sep 2014 A1
20140282735 Davis et al. Sep 2014 A1
20140289315 Harrison Sep 2014 A1
20150003799 Oostveen et al. Jan 2015 A1
20150074526 Brenner et al. Mar 2015 A1
20150074703 Cremer et al. Mar 2015 A1
20150082331 Neumeier et al. Mar 2015 A1
20150089526 Gordon Mar 2015 A1
20150095972 Sharma et al. Apr 2015 A1
20150178280 DiMaria et al. Jun 2015 A1
20150181263 Gordon Jun 2015 A1
20150181268 Harrison et al. Jun 2015 A1
20150181311 Harrison et al. Jun 2015 A1
20150194151 Jeyachandran et al. Jul 2015 A1
20150195597 Gordon Jul 2015 A1
20150228306 Roberts et al. Aug 2015 A1
20150229690 Raesig et al. Aug 2015 A1
20150245090 Davis et al. Aug 2015 A1
20150262229 Brenner et al. Sep 2015 A1
20150302086 Roberts et al. Oct 2015 A1
20150331660 Kalampoukas et al. Nov 2015 A1
20150331661 Kalampoukas et al. Nov 2015 A1
20150331938 Kalampoukas et al. Nov 2015 A1
20150332669 Kalampoukas et al. Nov 2015 A1
20150332687 Kalampoukas et al. Nov 2015 A1
20150350725 Zhu et al. Dec 2015 A1
20150356178 Scherf et al. Dec 2015 A1
20150365456 Harrison Dec 2015 A1
20160007083 Gurha Jan 2016 A1
20160019598 Harrison Jan 2016 A1
20160019876 Jeffrey et al. Jan 2016 A1
20160110537 Harrison Apr 2016 A1
20160112770 Harrison Apr 2016 A1
20160124953 Cremer et al. May 2016 A1
20160139756 Benson et al. May 2016 A1
20160140122 Harrison May 2016 A1
20160182971 Ortiz et al. Jun 2016 A1
20160196105 Vartakavi et al. Jul 2016 A1
20160196270 DiMaria et al. Jul 2016 A1
20160196344 Cremer et al. Jul 2016 A1
20160217799 Han et al. Jul 2016 A1
20160241540 Jeffrey et al. Aug 2016 A1
20160267180 Harron et al. Sep 2016 A1
20160323533 Nagorski et al. Nov 2016 A1
20160373197 Brenner et al. Dec 2016 A1
Foreign Referenced Citations (166)
Number Date Country
2553159 Oct 1998 CA
2413944 Jun 2003 CA
2884534 Mar 2014 CA
1726489 Jan 2006 CN
101147378 Mar 2008 CN
101622599 Jan 2010 CN
101909201 Jun 2013 CN
69815695 Jun 2004 DE
602004008936 Jun 2008 DE
1010098 Jun 2000 EP
1010098 Mar 2003 EP
1324567 Jul 2003 EP
1324567 Aug 2003 EP
1347661 Sep 2003 EP
1410380 Apr 2004 EP
1421521 May 2004 EP
1573462 Oct 2005 EP
1592198 Nov 2005 EP
1605416 Dec 2005 EP
1779659 May 2007 EP
1803270 Jul 2007 EP
1934828 Jun 2008 EP
1362485 Aug 2008 EP
1934828 Oct 2008 EP
2001583 Dec 2008 EP
1550297 Mar 2009 EP
2100216 Sep 2009 EP
1314110 Oct 2009 EP
2100216 Dec 2009 EP
2136306 Dec 2009 EP
1324567 Jan 2010 EP
2145411 Jan 2010 EP
2169854 Mar 2010 EP
1410380 Apr 2010 EP
1797552 Apr 2010 EP
2206114 Jul 2010 EP
2001583 Sep 2010 EP
2226757 Sep 2010 EP
2206114 Jul 2012 EP
1887754 Dec 2012 EP
2541961 Jan 2013 EP
2136306 Mar 2013 EP
2541961 Apr 2013 EP
1969810 Aug 2013 EP
2520084 Nov 2013 EP
2285066 May 2014 EP
2747370 Jun 2014 EP
2200258 Nov 2014 EP
2895971 Jul 2015 EP
2944051 Nov 2015 EP
2895971 May 2016 EP
3084646 Oct 2016 EP
2944051 Nov 2016 EP
3090330 Nov 2016 EP
3090429 Nov 2016 EP
3117390 Jan 2017 EP
2457694 Aug 2009 GB
2007220137 Aug 2007 JP
2007257820 Oct 2007 JP
2007280382 Oct 2007 JP
2009075603 Apr 2009 JP
2013013092 Jan 2013 JP
20030005279 Jan 2003 KR
20040021684 Mar 2004 KR
20040024870 Mar 2004 KR
20040029452 Apr 2004 KR
20040036350 Oct 2004 KR
20050046815 May 2005 KR
20050061566 Jun 2005 KR
20050061594 Jun 2005 KR
20050086470 Aug 2005 KR
20050113614 Dec 2005 KR
20050117558 Dec 2005 KR
20070095282 Sep 2007 KR
20080043358 May 2008 KR
100961461 Jun 2010 KR
20150054861 May 2015 KR
20150106904 Sep 2015 KR
1020160101979 Aug 2016 KR
20160135751 Nov 2016 KR
9512278 May 1995 WO
0052929 Sep 2000 WO
0054504 Sep 2000 WO
0144992 Jun 2001 WO
0144992 Jun 2001 WO
0182625 Nov 2001 WO
0189213 Nov 2001 WO
0189217 Nov 2001 WO
0231742 Apr 2002 WO
03009277 Jan 2003 WO
03012695 Feb 2003 WO
03019560 Mar 2003 WO
03025762 Mar 2003 WO
03009277 Sep 2003 WO
2003019560 Jan 2004 WO
2003012695 Mar 2004 WO
2004040416 May 2004 WO
2004044820 May 2004 WO
2005041455 May 2005 WO
2005050620 Jun 2005 WO
2004040416 Aug 2005 WO
2005125198 Dec 2005 WO
2006018790 Feb 2006 WO
2006041928 Apr 2006 WO
2007022533 Feb 2007 WO
2007022533 Jun 2007 WO
2007103583 Sep 2007 WO
2007114796 Oct 2007 WO
2007103583 Mar 2008 WO
2008029188 Mar 2008 WO
2008052205 May 2008 WO
2008086104 Jul 2008 WO
2008086104 Aug 2008 WO
2008112858 Sep 2008 WO
2008131247 Oct 2008 WO
2008137756 Nov 2008 WO
2009023647 Feb 2009 WO
2009042858 Apr 2009 WO
2009091338 Jul 2009 WO
2009114622 Sep 2009 WO
2009131861 Oct 2009 WO
2009132084 Oct 2009 WO
2008137756 Dec 2009 WO
2009150425 Dec 2009 WO
2010046123 Apr 2010 WO
2010072986 Jul 2010 WO
2010129693 Nov 2010 WO
2010151421 Dec 2010 WO
2011011002 Jan 2011 WO
2011030231 Mar 2011 WO
2011090540 Jul 2011 WO
2011090541 Jul 2011 WO
2012005994 Jan 2012 WO
2012013893 Feb 2012 WO
2012021538 Feb 2012 WO
2012028976 Mar 2012 WO
2012051115 Apr 2012 WO
2012109666 Aug 2012 WO
2012120253 Sep 2012 WO
2012154541 Nov 2012 WO
2013032787 Mar 2013 WO
2013068619 May 2013 WO
2013089674 Jun 2013 WO
2013147587 Oct 2013 WO
2014042826 Mar 2014 WO
2014052015 Apr 2014 WO
2014042826 May 2014 WO
2014107311 Jul 2014 WO
2014142758 Sep 2014 WO
2014145929 Sep 2014 WO
2014145938 Sep 2014 WO
2014145947 Sep 2014 WO
2015094558 Jun 2015 WO
2015102921 Jul 2015 WO
2015103384 Jul 2015 WO
2015138601 Sep 2015 WO
2015167901 Nov 2015 WO
2015183914 Dec 2015 WO
2016018472 Feb 2016 WO
2016018472 Mar 2016 WO
2016109500 Jul 2016 WO
2016109553 Jul 2016 WO
2016109682 Jul 2016 WO
2013028899 Aug 2016 WO
2016109553 Aug 2016 WO
2016109682 Sep 2016 WO
Non-Patent Literature Citations (94)
Entry
“Secure Browsing with Ceedo”, Ceedo Flexible computing (pp. 2).
“Sandboxes and Silver Bullets: Vendors Promote New/Old Detection Techniques to Stop Zero-Day Threats”, IT Current Analysis Connection Blogs, Mar. 29, 2013 by Paula Musich (p. 1) http://itcblogs.currentanalysis.com/2013/03/29/sandboxes-and-silver-bullets-vendors-promote-newold-detection-techniques-to-stop-zero-day-threats/.
“Introduction to security” (pp. 8) http://help.adobe.com/en—US/flex/using/WS2db454920e96a9e51e63e3d11c0bf6167e-7fff.html#WS2db454920e96a9e51e63e3d11c0bf6167e-7ff9.
“Screenshot of Wikipedia page of Samba TV”, Jan. 5, 2015 (pp. 2) http://en.wikipedia.org/wiki/Sarnba—TV.
“Screenshot of Wikipedia page of Smart TV”, Jan. 5, 2015 (pp. 4) http://en.wikipedia.org/wiki/Smart—TV.
“Screenshot of Wikipedia page of interactive television”, From Wikipedia, Jan. 5, 2015 (pp. 8) http://en.wikipedia.org/wiki/Interactive—television
“Screenshot of Wikipedia page of Social television”, From Wikipedia, Jan. 5, 2015 (pp. 3) http://en.wikipedia.org/wiki/Social—television.
“Screenshot of Wikipedia page of Enhanced TV”, From Wikipedia, Jan. 5, 2015 (p. 1) http://en.wikipedia.org/wiki/Enhanced—TV.
“Screenshot of Wikipedia page of Digital video fingerprinting”, From Wikipedia, Jan. 5, 2015 (pp. 4) http://en.wikipedia.org/wiki/Digital—video—fingerprinting.
“Screenshot of Wikipedia page of Second screen”, From Wikipedia, Jan. 5, 2015 (pp. 3) http://en.wikipedia.org/wiki/Second—screen.
Reverse Sandboxing with SafeCentral, SafeCentral (pp. 3) http://www.safecentral.com/pdfs/ReverseSandboxing.pdf.
“Collect, Manage, and Analyze everything occurring on your network”, RSA Security Analytics, Detect & Investigate Threats. (pp. 5) http://www.emc.com/collateral/data-sheet/security-analytics-infrastructure-ds.pdf.
“Metazen—metadata capture for metagenomes”, Standards in Genomic Sciences, by Jared Bischof et al. (pp. 6) http://www.standardsingenomics.com/content/pdf/1944-3277-9-18.pdf.
“Semantic Annotation of Images and Videos for Multimedia Analysis”, by Stephan Bloehdorri et al. (pp. 15) http://image.ntua.gr/papers/345.pdf.
“Architecture for Interoperability of Services between an ACAP Receiver and Home Networked Devices”, Jan. 15, 2006, by Yu-Seok Bac et al. (pp. 6).
“Smart SoftPhone Device for Networked AudioVisual QoS/QoE Discovery & Measurement”, Digital Media Laboratory, Information and Communications University,Republic of Korea, by Jinsul Kim, (pp. 23) http://cdn.intechopen.com/pdfs-wm/5446.pdf.
“Market Potential for Interactive Audio-visual Media”, IEEE Xplore, by Andra Leurdijk et al., (p. 1) http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1592082&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs—all.jsp%3Farnumber%3D1592082.
“Design of a multi-sender 3D videoconferencing application over an end system multicast protocol”, '03 Proceedings of the eleventh ACM international conference on Multimedia, New York, NY, USA, 2003 by Mojtaba Hosseini et al., (p. 1) http://dl.acm.org/citation.cfm?id=957119.
“Cisco Medianet Data Sheet”, Cisco 3900 Series Integrated Services Routers, (pp. 8) http://www.cisco.com/c/en/us/products/collateral/routers/3900-series-integrated-services-routers-isr/data—sheet—c78-612429.html.
“Delivery of Personalized and Adaptive Content to Mobile Devices: A Framework and Enabling Technology”, Communications of the Association or Information Sytems vol. 12, 2003)183-202 by Zhang (pp. 22) http://aisel.aisnet.org/cgi/viewcontent.cgi?article=3178&context=cais.
“Single Sign-On for Java Web Start Applications Using MyProxy”, by Terry Fleury et al, (pp. 7) http://grid.ncsa.illinois.edu/papers/sws-myproxy-jws.pdf.
“MonALISA : A Distributed Monitoring Service Architecture”, CHEP03, La Jolla, California, Mar. 24-28, 2003 by H.B. Newman et al. (pp. 8) http://monalisa.caltech.edu/documentation/MOET001.pdf.
“Exploratory geospatial analysis using GeoVISTA Studio: from a desktop to the Web”, IEEE Xplore, Dec. 3-6, 2001, by M. Takatsuka et al. (p. 1) http://ieeexplore.ieee.org/xpl/login.jsp?tp=8,arnumber=996715&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs—all.jsp%3Farnumber%3D996715.
“Comprehensive Multi-platform Collaboration”, Department of Computer Science, Columbia University, by kundan Singh et al. (pp. 36) http://www.cs.columbia.edu/˜library/TR-repository/reports/reports-2003/cucs-027-03.pdf.
“Privacy-Preserving Remote Diagnostics”, The University of Texas at Austin, by Justin Brickell et al. (pp. 10) https://www.cs.utexas.edu/˜shmat/shmat—ccs07.pdf.
“Supporting Dynamic Ad hoc Collaboration Capabilities”, LBNL, Berkeley, CA 94720, USA, by D. Agarwal et al. (pp. 6) http://arxiv.org/ftp/cs/papers/0307/0307037.pdf.
“A Framework for Classifying Peer-to-Peer Technologies”, IEEE Xplore, May 21-24, 2002, by K. Kant et al. (p. 1) http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1540491&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F10335%2F32898%2F01540491.pdf%3Farnumber%3D1540491.
“OperiX Ad Server: Beginner's Guide”; Packt Publishing by Murat Yilmaz (pp. 26) https://www.packtpub.com/sites/default/files/0202—OpenX%20Ad%20Server%20Beginner's%20Guide—SampleChapter.pdf.
“HTML & CSS: The Complete Reference”, The McGraw-Hill Companies, 2010 by Thomas A. Powell (pp. 857) http://www.pdfiles.com/pdf/files/English/Web—Apps—Programming—&—Internet/HTML—&—CSS—The—Complete—Reference.pdf.
“Web Services Essentials”, O'Reilly, Feb. 2002 by Ethan Cerami (pp. 286) http://spurrier.gatorglory.com/PDFs/O'Reilly%20-%20Web%20Services%20Essentials.pdf.
“UPnP Device Architecture 1.0”, UPnP Forum, Oct. 15, 2008 (pp. 81) http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-vi .0.pdf.
“Mac OS X Snow Leopard: The Missing Manual”, O'Reilly Media, Inc., 2009 by David Pogue (pp. 903) http://crypto.cs.mcgill.ca/˜simonpie/webdav/ipad/EBook/MacOSX/Mac%20OS%20X%20Snow%20Leopard%20The%20Missing%20Manual.pdf.
-1- “The Common Object Request Broker: Architecture and Specification Revision 2.0”, Feb. 1997 (pp. 634) http://www.omg.org/spec/CORBA/2.0/PDF.
“Internet: The Complete Reference”, Tata McGraw-Hill Education Pvt. Ltd., 2002 by Margaret Levine Young http://www.abebooks.com/internet-Complete-Reference-Second-Edition-Margaret/5122896620lbd.
“HTML 4.0 Sourcebook”, John Wiley & Sons, Apr. 1998 by Ian S. Graham (pp. 656) http://www.wiley,com/WileyCDA/WileyTitle/productCd-0471257249.html.
“Zero Configuration Networking: The Definitive Guide”, O'Reilly Media, Dec. 2005 by Daniel H Steinberg et al. (pp. 254) http://shop.oreilly.com/product/9780596101008.do#tab—04—2.
https://web.archive.org/web/20110722022038/http://www.flingo.tv/.
https://web.archive.org/web/20120616002448/http://www.flingo.tv/.
https://web.archive.org/web/20130423033122/http://flingo.tv/.
https://web.archive.org/web/20101015033305/http://flingo.org/.
https://web.archive.org/web/20110609062427/http://flingo.org/.
“Cognitive Radio Technology”, from The Guest Editor in IEEE Signal Processing Magazine on Nov. 208 by Maria Gabriella di Benedetto et al. (p. 1) http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4644050.
“Automated Content Recognition creating content aware ecosystems”, in CSI Magazine in Sep. 2012 (pp. 16) http://www.csimagazine.com/csi/whitepapers/ACR%20Creating%20%20content-aware%20ecosystems%20-civolution%20White%20Paper%20-%20Sept%202012.pdf.
“A Confidence Based Recognition System for TV Commercial Extraction”, in 2008 by Yijun Li et al. (pp. 8) http://crpit.com/confpapers/CRPITV75Li.pdf.
“TV Retargeting”, Market View, wywy—Maximizing TV Advertising ROI, Dec. 31, 2015 (pp. 2) http://wywy.com/market-view/tv-retargeting/.
“The New Age of Second Screen: Enabling Interaction”, admonsters webpage, Jun. 5, 2013, Joshua R. Weaver (pp. 3) https://www.admonsters.com/blog/second-screen-enabling-interaction.
“Complaint for Patent Infringement”, Case 2:15-cv-01725-RWS Document 1, Nov. 6, 2015 (pp. 7).
“Security in the Large: Is Java's Sandbox Scalable?”, HP Hewlett Packard Apr. 1998, by Qun Zhong et al.(pp. 9) http://www.hpl.hp.com/techreports/98/HPL-98-79.pdf.
“For Developers”, Flingo Article, Oct. 2010, by FLINGO https://web.archive.org/web/20101028221214/flingo.org/developers.html.
“Anomaly Detection in Dynamic Execution Environments”, NSPW 2002, by Hajime Inoue et al. (pp. 9) http://www.wnspw.org/papers/2002/nspw2002-inoue.pdf.
“iPhone Security Analysis”, Department of Computer Science San Jose State University, May 2008, by Vaibhav Pandya. (pp. 44) http://www.cs.sjsu.edu/faculty/stamp/stucients/pandya—vaibhav.pdf.
“I, Me and My Phone: Identity and Personalization using Mobile Devices”, HP Invest, Nov. 2007 by Riddhiman Ghosh et al. (pp. 14) http://www.hpl.hp.com/techreports/2007/HPL-2007-184.pdf.
“Extending the web to support personal network services”, SAC '13, Mar. 2013, by John Lyle et al. (pp. 6) https://www.cs.ox.ac.uk/files/5273/sac2013.pdf.
“Java and Java Virtual Machine Security Vulnerabilities and their Exploitation Techniques”, Black Hat Briefings, Singapore, Oct. 2002, by DELIRIUM. (pp. 91) http://www.blackhat.com/presentations/bh-asia-02/LSD/bh-asia-02-isd.pdf.
“Shazam Announces Application for iPhone”, by SHAZAM, Jul. 2008. http://news.shazam.com/pressreleases/shazam-announces-application-for-iphone-890432.
“Shazam Launches Android Application Integrated with MySpace and Amazon MP3”, by SHAZAM, Oct. 2008. http://news.shazam.com/pressreleases/shazam-launches-android-application-integrated-with-rnyspace-and-amazon-mp3-890456.
“The Shazam music recognition service” ,Communications of the ACM—Music information retrieval, Aug. 2006, by SHAZAM. https://www.researchgate.net/publication/220423945—The—Shazam—music—recognition—service.
“An Industrial-Strength Audio Search Algorithm”, International Conference on Music Information Retrieval, 2003, by Avery Wang. https://www.ee.columbia.edu/˜dpwe/papers/Wang03-shazam.pdf.
“It Just Works: UPnP in the Digital Home”, The Journal of Spontaneous Networking, Oct. 2004, by Michael Jeronimo. http://www.artima.com/spontaneous/upnp—digihome.html.
“Data-Confined HTML5 Applications”, European Symposium on Research in Computer Security, London Mar. 2013, by Devdatta Akhawe (pp. 18) http://devd.me/papers/dcs-esorics.pdf.
“A Component-based Software Infrastructure for Ubiquitous Computing”, Parallel and Distributed Computing, 2005, by Areski Fussi et al. (pp. 22) http://www.lifi.fr/ispdc2005/presentations/flissi—ispdc—slides.pdf.
“A robust image fingerprinting system using the Radon transform”, Signal Processing: Image Communication 19 (2004) 325-339, May 2004, by Jin Seo et al. http://www.123seminarsonly.com/Seminar-Reports/027/60224236-Finger-Printing.pdf.
“An Authentication and Authorization Architecture for Jini Services”, CiteSeer, by Oct. 2000, by Thomas Schoch et al. http://www.vs.in.ethz.ch/publ/papers/da-schoch.pdf.
“Analysis and Prediction of Set-Top-Box Reliability in Multi-Application Environments using Artificial Intelligence Techniques”, Spring Technical Forum, 2004,Louis Slothouber et al. (pp. 9) file:/// C:/Users/User/Downloads/2004-analysis-and-prediction-of-set-top-box-reliability-in-multi-application-environments-using-artificial-intelligence-techniques%20(1).pdf.
“Artificial Intelligence in Cable TV Applications”, Advancing Technology's Agends, Louis Slothouber et al., 2003, (pp. 8) file:///C:/Users/User/Downloads/2003-artifcial-intelligence-in-cable-tv-applications%20(2).pdf.
“Exploiting Cross Context Scripting Vulnerabilities in Firefox”, Security-Assessment.com Addendum, Apr. 2010, by Nick Freeman et al. (pp. 8) http://www.security-assessment.com/files/whitepapers/Exploiting—Cross—Context—Scripting—vulnerabilities—in—Firefox.pdf.
“Design and Implementation of Finderprinting-based Broadcasting Content Identification System”, Creative Content Research Laboratory, ETRI(Electronics and Telecommunications Research Institute), Feb. 2014, by Jihyun Park et al. http://www.icact.org/upload/2014/0249/20140249—biography.pdf.
“Efficient Software-Based Fault Isolation”, SOSP '93 Proceedings of the fourteenth ACM symposium on Operating systems principles, Dec. 1993, by Robert Wahbe et al. (pp. 14) https://crypto.stanford.edu/cs155/papers/sfi.pdf.
“Java and .NET Security”,Secure Computer Systems, Oct. 2005 by Martin Russold et al. (pp. 6) https://www.it.uu.se/edu/course/homepage/sakdat/ht05/assignments/pm/programme/Java—and—NET.pdf.
“Java™ Web Start Overview”, White Paper, May 2005, by Sun Microsystems, Inc. (pp. 14) http://www.oracle.com/technetwork/java/javase/jws-white-paper-150004.pdf.
“Programmina the Grid with gLite”, Enabling Grids for E-Science, Mar. 2006, by Laure et al. (pp. 18) http://cds.cern.ch/record/936685/files/egee-tr-2006-001.pdf.
“Shazam Turns Up the Volume on Mobile Music”, Nov. 2007, by SHAZAM. http://news.shazam.com/pressreleases/shazam-turns-up-the-volume-on-mobile-music-890300.
“The Evolution of the JAVA Security Model”, International Conference on Computer Systems and Technologies—CompSysTech, 2005, by Nikolaj Cholakov et al. (pp. 6) http://ecet.uni-ruse.bg/cst05/Docs/cp/SIII/IIIB.12.pdf.
“The iPhone Developer's Cookbook—Building Applications with the iPhone SDK”, Developer's Library, 2008, by Erica Sadun. (pp. 380) http://www.ebooksbucket.com/uploads/itprogramming/iosappdevelopment/The—iPhone—Developers—Cookbook.pdf.
“Towards Distributed Service Discovery in Pervasive Computing Environments”, IEEE Transactions on Mobile Computing, vol. 5, No. , pp. 97-112, Feb. 2006, by Dipanjan Chakraborty. https://www.computer.org/csdl/trans/tm/2006/02/h0097-abs.html.
“Twisted Python and Bonjour”, Indelible.org, Jan. 2009, by Parise. http://www.indelible.org/ink/twisted-bonjour/.
“UPnP in Digital Home Networking”, QuEST, by Quest Global Services, 2015. (pp. 7) https://www.quest-global.com/wp-content/uploads/2015/08/UPnP-in—Digital—Home—Networking.pdf.
“Cross Context Scripting with Firefox”, Security-Assessment.com White Paper, Apr. 2010; by Roberto Liverani. (pp. 24) http://www.security-assessment.com/files/documents/whitepapers/Cross—Context—Scripting—with—Firefox.pdf.
“Vulnerabilities and Threats to Mobile Device Security From a Practitioner's Point of View”, Issues in Information Systems, vol. XII, No. 2, pp. 181-193, 2011, by Joseph Laverty et al.. (pp. 13) http://iacis.org/iis/2011/181-193—AL2011—1693.pdf.
“Android (operating system)”, Sep. 2008, by SPICE. (pp. 9) “http://www.si2imobilty.com/spicemobiles/pdf/Support-%20FAQs/Android.pdf”.
“Flingo is about to make your smart TV even smarter”, Jul. 7, 2011, by Ryan Lawler (pp. 6) https://gigaom.com/2011/07/07/flingo-launch/.
“The TV That Watches You”, Aug. 19, 2011, by Tom Simonite (pp. 5) https://www.technologyreview.com/s/425081/the-tv-that-watches-you/.
“WAP Architecture” by Wireless Application Protocol Forum; Published on Jul. 12, 2001 (pp. 24) http://www.openmobilealliance.org/tech/affiliates/wap/wap-210-waparch-20010712-a.pdf.
“EFI Framework” by Wireless Application Protocol Forum, Published on Dec. 17, 2001 (pp. 50) http://www.openmobilealliance.org/tech/affiliates/wap/wap-231-efi-20011217-a.pdf.
“Push OTA Protocol” by Wireless Application Protocol Forum, Published on Apr. 25, 2001 (pp. 44) http://www.openmobilealliance.org/tech/affiliates/wap/wap-235-pushota-20010425-a.pdf.
“Pandora on the iPhone” uploaded on YouTube on Jul. 14, 2008 by Radiopandora, found online on May 24, 2017 (pp. 28) https://www.youtube.com/watch?v=tNMSntXtPc0.
“Pioneer Brings Pandora into Your Car” uploaded on YouTube on Aug. 4, 2010 by Pioneerelectronics, found online on May 24, 2017 (pp. 16) https://www.youtube.com/watch?v=HdyOKPhBoi4.
“iDA-X305S: Control Pandora from your dash” uploaded on YouTube on Mar. 26, 2010 by AlpineTV, found online on May 24, 2017 (pp. 14) https://www.youtube.com/watch?v=8TkWl—iLVzU.
“Sync + Retarget, Extend your TV campaign to all screen in real-time” by Samba TV, found online on May 24, 2017 (pp. 4) https://samba.tv/advertising/sync-retarget/.
“Pandora system everywhere”, by Pandora, found online on May 24, 2017 (pp. 9) https://www.pandora.com/everywhere.
Title: Content Interaction Methods and Systems Employing Portable Devices, U.S. Appl. No. 61/112,573, Name of inventor: Bruce L. Davis, Filing Date: Nov. 7, 2008.
Title: Second Screen Methods and Arrangements, U.S. Appl. No. 61/152,226, Name of inventor: Bruce L. Davis, Filing Date: Feb. 12, 2009.
Title: Second Screen Methods and Arrangements, U.S. Appl. No. 61/160,660, Name of inventor: Bruce L. Davis, Filing Date: Mar. 16, 2009.
Title: Second Screen Methods and Arrangements, U.S. Appl. No. 61/167,828, Name of inventor: Bruce L. Davis, Filing Date: Apr. 8, 2009.
Related Publications (1)
Number Date Country
20160344848 A1 Nov 2016 US
Provisional Applications (7)
Number Date Country
62183756 Jun 2015 US
61696711 Sep 2012 US
61803754 Mar 2013 US
62026017 Jul 2014 US
61652153 May 2012 US
61584168 Jan 2012 US
61118286 Nov 2008 US
Divisions (2)
Number Date Country
Parent 14108408 Dec 2013 US
Child 15224685 US
Parent 14981938 Dec 2015 US
Child 14108408 US
Continuations (3)
Number Date Country
Parent 13943866 Jul 2013 US
Child 14274800 US
Parent 13904015 May 2013 US
Child 13943866 US
Parent 12592377 Nov 2009 US
Child 13470814 US
Continuation in Parts (4)
Number Date Country
Parent 14744045 Jun 2015 US
Child 14981938 US
Parent 14274800 May 2014 US
Child 14981938 Dec 2015 US
Parent 13736031 Jan 2013 US
Child 13943866 Jul 2013 US
Parent 13470814 May 2012 US
Child 13943866 Jul 2013 US