The present invention generally concerns belt seal structures for engaging a glass window of an automobile, and more particularly relates to a relief lip for flock tape belt seals.
Door belt seals are commonly employed to provide a sealing function for automotive glass windows. A low friction material is often applied to sealing members of automotive door belt seals during the extrusion process. The sealing members typically include curved surfaces that require adhesion of the low friction material. However, a common failure occurs when the edges of the low friction material lose adhesion to the curved surface of the sealing member to which the low friction material is applied. Upon the loss of adhesion, the low friction material typically lifts away from the belt seal, causing noise, vibration, and other issues as the glass window moves up and down during consumer usage.
One aspect of the present invention is to provide an automotive door. The automotive door has a door frame and a glass window. The door also has a belt seal structure for engaging the glass window. Included is an inner belt seal and an outer belt seal, where both the inner and the outer belt seals engageably attach to at least one flange of the automobile door frame. Also included is a pair of upper sealing lips, where both the inner and outer belt seals have one of the upper sealing lips connected to and extending away from the inner and outer belt seals. The upper sealing lip is a flexible material capable of bending to accommodate passage of the glass window. A surface portion of the upper sealing lips is covered with a low friction material. The surface portion consists of regions where the glass window contacts the upper sealing lips. At least one lower sealing lip is connected to and extends away from the inner or outer belt seal, where the lower sealing lip is a flexible material capable of bending to accommodate passage of the glass window. A surface portion of the lower sealing lip is covered with a low friction material. The surface portion consists of regions where the glass window contacts the lower sealing lip, where the covered surface portion has a body section with a substantially planar geometry and a lower and upper section with a substantially curved geometric configuration. Further included is a relief lip extending from the lower sealing lip. The relief lip is located proximate the lower or upper section of the covered surface portion. The relief lip extends along a direction of a substantially similar plane as the body section of the covered surface portion, where the low friction material extends to cover a surface of the relief lip.
Another aspect of the present invention is to provide a belt seal structure for engaging a glass window of an automobile. Included is an inner belt seal and an outer belt seal, both the inner and outer belt seals engageably attached to at least one flange of an automobile door frame. Also included is a plurality of sealing lips connected to and extending away from the inner and outer belt seals, where a surface portion of the sealing lips contact the glass window. The contacting surface portion is covered with the low friction material. Further included is a relief lip extending from at least one of the sealing lips. The relief lip is located proximate a substantially curved contacting surface portion of the sealing lip, where the low friction material extends to cover a surface of the relief lip.
According to a further aspect of the present invention, there is provided a method for sealably engaging a glass window of an automobile. The method involves providing a belt seal structure that has an inner belt seal and an outer belt seal, both the inner and outer belt seals engageably attached to at least one flange of an automobile door frame. A plurality of sealing lips connect to and extend away from the inner and outer belt seals, where a surface portion of the sealing lips contact the glass window. The contacting surface portion is covered with the low friction material. Also provided is a relief lip extending from at least one of the sealing lips. The relief lip has a substantially planar geometry and is located proximate a substantially curved contacting portion of the sealing lip. The low friction material extends to cover a surface of the relief lip. The method involves raising and lowering of the glass window in a plane between the inner belt seal and the outer belt seal. An inner face and an outer face of the window contacts the low friction material covering the sealing lips and the relief lip upon passage through the belt seal structure.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
The reference numeral 10 generally designates an automobile or automotive vehicle equipped with passenger doors including a door 12 having a belt seal structure for engaging a glass window of the automobile (
The automobile door 12 is hingably attached to the automobile frame and pivots about a vertical axis. The door has a door frame 14 with a channel that houses and retains the glass window 16. The glass window has two faces, one facing the interior of the automobile and the other facing the exterior of the vehicle, and is situated along a plane substantially similar as that of the door frame 14 such that vertical raising and lowering of the window relative to the door frame is possible. The door frame has an opening that allows air to pass through upon lowering of the glass window.
Referring to
The inner and outer sealing lips 28 extend away from the inner and outer belt seals 22 and 24, inwardly toward the center of the door frame channel. The sealing lips 28 are made of a flexible and resilient material that is biased against the glass window 16 and capable of bending upon passage of the glass window 16 during a raising or lowering motion. A surface contact portion 30 of the sealing lips 28 contact the glass window 16, with the window 16 sliding against the sealing lips 28 during the raising or lowering motion. In order to prevent noise and vibration, the surface portion of each sealing lip 28 that contacts the glass window 16 is covered with a material 32 having a low coefficient of friction. The low friction material 32 is flock tape, according to one embodiment. According to other embodiments, the low friction material 32 may employ other materials such as thermoplastic materials, theremosetting materials, felt, pile, and slip coatings to cover the surface contact portion 30.
In order to obtain better guidance, sealing, and control during the raising and lowering motion of window 16, as well as to accommodate angled glass window configurations, at least one lower sealing lip 36 may be added at a location away from the window opening perimeter.
The relief lip 40 is located proximate the extreme contacting portion(s) of the sealing lips 36 and has a degree of curvature less than that of the substantially curved surface of the sealing lip 36 (
A method for sealably engaging the automobile glass window 16 is accomplished by providing the belt seal structure 20. As previously described, the belt seal structure 20 has an inner belt seal 22 and an outer belt seal 24, both of which are engageably attached to at least one flange of an automobile door frame 14, a plurality of sealing lips 28, at least a portion of which are covered with a low friction material 32, and a relief lip 40 for at least one of the sealing lips 28. The low friction material 32 also covers a surface portion of the relief lip 40. The method also includes raising or lowering the glass window 16 in a plane between the inner belt seal 22 and the outer belt seal 24. An inner face and an outer face of the window contacts the low friction material 32 covering the sealing lips 28 and the relief lip 40 upon passage through the belt seal structure 20.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
4604830 | Maeda et al. | Aug 1986 | A |
5010689 | Vaughan | Apr 1991 | A |
5414961 | Tessier | May 1995 | A |
5544448 | Mass | Aug 1996 | A |
5775030 | Hamabata | Jul 1998 | A |
5846463 | Keeney et al. | Dec 1998 | A |
6119406 | Gulisano et al. | Sep 2000 | A |
6141854 | Mueller et al. | Nov 2000 | A |
6279987 | Keeney et al. | Aug 2001 | B1 |
6409251 | Kaye et al. | Jun 2002 | B1 |
6652952 | Drozd et al. | Nov 2003 | B2 |
6681526 | Mueller et al. | Jan 2004 | B2 |
7237359 | Aritake et al. | Jul 2007 | B2 |
20010001916 | Nozaki | May 2001 | A1 |
20010025454 | Cretin | Oct 2001 | A1 |
20020184826 | Nozaki | Dec 2002 | A1 |
20070101657 | Okajima et al. | May 2007 | A1 |
20070251152 | Takase et al. | Nov 2007 | A1 |
20080302022 | Knight et al. | Dec 2008 | A1 |
20100011671 | Gentemann | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
2244360 | Dec 2005 | ES |
2388866 | Nov 2003 | GB |
WO0117809 | Mar 2001 | WO |
WO2007057766 | May 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100242373 A1 | Sep 2010 | US |