The present invention relates to the direct recycling of lithium-ion battery cathodes.
Developing new technologies for recycling lithium-ion batteries is an urgent task because of their widespread use in electronics and electric vehicles. Direct recycling offers greater advantages as a recycling strategy when compared with pyrometallurgy and hydrometallurgy routes and minimizes energy use and waste by eliminating mining and processing steps. One of the biggest challenges for direct recycling is how to regenerate the spent cathode in a more energy-efficient and economic manner with less impact on the environment, as the majority of the battery value is embedded in the cathode materials. The loss of lithium in the cathode materials is commonly believed to be responsible for the capacity degradation. Relithiation processes are thus required to recover the electrochemical properties of the degraded cathodes. However, the state-of-art regeneration processes are either energetically expensive and time-consuming or require expensive reaction set-up with safety issues. Therefore, it is desirable to develop an energy-efficient, scalable, cost-effective, and sustainable relithiation process to regenerate a range of cathode materials from spent lithium-ion batteries.
An improved method for the regeneration of cathode material from spent lithium-ion batteries is provided. In one embodiment, the method includes dissolving a lithium precursor in a polyhydric alcohol to form a solution. Degraded cathode material containing lithium metal oxides are dispersed into the solution under mechanical stirring, forming a mixture. The mixture is heat treated within a reactor vessel or microwave oven. During this heat treatment, lithium is intercalated into the degraded cathode material. The relithiated electrode material is collected by filtration, washed with solvents, and dried. The relithiated electrode material is then ground with a lithium precursor and thermally treated for a predetermined time period to obtain regenerated cathode material.
In this and other embodiments, polyhydric alcohol acts as both the fluxing medium and a reducing agent. The method more specifically includes, as a first step, the polyol treatment of degraded cathode materials, and as a second step, thermal treatment of relithiated cathode materials. Specifically, lithium precursors such as LiOH, LiCl, and LiBr are first dissolved into one or more polyhydric alcohols, such as ethylene glycol and tetraethylene glycol, to form solution A. Spent cathode of lithium metal oxides (e.g., LiCoO2, NCA, NMC111, NCM622, LiMn2O4) or lithium metal phosphates (e.g., LiFePO4) are dispersed in solution A under mechanical stirring, which is denoted as mixture B. Mixture B is heated to a relatively low temperature (e.g., 150° C.) while at atmospheric pressure and kept at that temperature within a reactor vessel. This heat treatment step can alternatively be realized by a microwave oven. During this heat treatment, the lithium will be intercalated into the degraded cathode materials to compensate the lithium loss. After the polyol process, the recovered electrode materials are collected by filtration, washing with solvents, and drying, which is denoted as solid C. The second step includes the thermal treatment of the solid C. In this step, the recovered materials are ground with lithium precursors (e.g., LiOH, Li2Co3) and thermally treated at another temperature (e.g., 500° C.) to obtain regenerated cathode materials.
The present invention therefore provides direct regeneration of positive electrode materials, which can be reused for battery manufacturing, thereby reducing costs and environmental burdens. The present invention also provides significant advantages over existing technologies. First, the polyol relithiation process is performed at atmospheric pressure and at low temperatures. The polyol family provides a wide operating temperature range of room temperature to about 350° C. for different cathode chemistries. This low temperature treatment is a benign process with negligible morphology perturbation. Second, the polyol solvents serve as both the fluxing medium and reducing agent. No other reducing agent is required for this process. Third, polyhydric alcohols are inexpensive and can be collected and reused. Both the scaling up of the polyol process and the separation of products from the polyol solvents are readily realized.
These and other features of the invention will be more fully understood and appreciated by reference to the description of the embodiments and the drawings.
As discussed herein, the current embodiment generally relates to a method for the regeneration of cathode material from spent lithium-ion batteries. The method generally includes the polyol treatment of degraded cathode material followed by the thermal treatment of relithiated cathode material. Each operation is discussed below.
The polyol treatment of degraded cathode materials generally includes suspending a lithium precursor in a polyol solvent and subsequently heating the solution to a certain temperature. More specifically, one or more lithium precursors are dissolved in a polyhydric alcohol to form a solution, denoted as Solution A in
The dried, relithiated cathode materials (Solid C) are then mechanically ground to a fine powder, intermixed with one or more lithium precursors, and thermally treated at a second temperature, greater than the first temperature, for a predetermined time period to obtain regenerated cathode material. As shown in
The method of the current embodiment includes several advantages over existing technologies. First, the polyol relithiation process is performed at atmospheric pressure and at low temperatures. The polyol family provides a wide operating temperature range of room temperature to about 350° C. for different cathode chemistries. This low temperature treatment is a benign process with negligible morphology perturbation. Second, the polyhydric alcohol serves as a solvent, reducing agent, and ligand, to prevent particle agglomeration. No other reducing agent is required for this process. Third, polyhydric alcohols are inexpensive, possess low-toxicity, and can be collected and reused.
As shown in
The above description is that of current embodiments of the invention. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention as defined in the appended claims, which are to be interpreted in accordance with the principles of patent law including the doctrine of equivalents. This disclosure is presented for illustrative purposes and should not be interpreted as an exhaustive description of all embodiments of the invention or to limit the scope of the claims to the specific elements illustrated or described in connection with these embodiments. For example, and without limitation, any individual element(s) of the described invention may be replaced by alternative elements that provide substantially similar functionality or otherwise provide adequate operation. This includes, for example, presently known alternative elements, such as those that might be currently known to one skilled in the art, and alternative elements that may be developed in the future, such as those that one skilled in the art might, upon development, recognize as an alternative. Further, the disclosed embodiments include a plurality of features that are described in concert and that might cooperatively provide a collection of benefits. The present invention is not limited to only those embodiments that include all of these features or that provide all of the stated benefits, except to the extent otherwise expressly set forth in the issued claims. Any reference to claim elements in the singular, for example, using the articles “a,” “an,” “the” or “said,” is not to be construed as limiting the element to the singular.
This application claims the benefit of U.S. Provisional Application 63/174,082, filed Apr. 13, 2021, the disclosure of which is incorporated by reference in its entirety.
This invention was made with government support under Contract No. DE-AC05-00OR22725 awarded by the U.S. Department of Energy. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5882811 | Kawakami | Mar 1999 | A |
9825341 | Sloop | Nov 2017 | B2 |
20040265216 | Nazri et al. | Dec 2004 | A1 |
20140306162 | Poe et al. | Oct 2014 | A1 |
20160043450 | Sloop | Feb 2016 | A1 |
20160045841 | Kaplan | Feb 2016 | A1 |
20170200989 | Sloop | Jul 2017 | A1 |
20170324123 | Deb | Nov 2017 | A1 |
20190273290 | Sloop | Sep 2019 | A1 |
20210226273 | Park | Jul 2021 | A1 |
20210317001 | Hekselman | Oct 2021 | A1 |
20220149450 | Smith | May 2022 | A1 |
20220199966 | Chen | Jun 2022 | A1 |
20230014961 | Chen | Jan 2023 | A1 |
Number | Date | Country |
---|---|---|
2020025970 | Feb 2020 | WO |
2020185958 | Sep 2020 | WO |
WO-2020185958 | Sep 2020 | WO |
Entry |
---|
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued in PCT/US2022/020675, mailed Aug. 1, 2022 (12 pages). |
Shi, Y. et al., “Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards high-performance active particles”, Green Chemistry, 2018, 20, 851-862. |
Shi, Y. et al., “Ambient-Pressure Relithiation of Degraded Lix Nio.5 CO02Mn0.302 (o<x<1) via Eutectic Solutions for Direct Regeneration of Lithium-Ion Battery Cathodes”, Adv. Energy Materials, 2019, 1900454, pp. 1-9. |
Number | Date | Country | |
---|---|---|---|
20220328800 A1 | Oct 2022 | US |
Number | Date | Country | |
---|---|---|---|
63174082 | Apr 2021 | US |