Reload assembly for circular stapling devices

Information

  • Patent Grant
  • 11518014
  • Patent Number
    11,518,014
  • Date Filed
    Monday, December 6, 2021
    2 years ago
  • Date Issued
    Tuesday, December 6, 2022
    a year ago
Abstract
A reload assembly includes a shell housing, a knife carrier, a lockout component, and a hook component. The lockout component is supported on an inner wall of the knife carrier and has a body formed of a resilient material that defines a window. The hook component is supported on the inner housing portion of the shell housing and includes a body having a hook that is received within the window of the lockout component when the knife carrier is in its retracted position after the reload assembly has been fired to obstruct readvancement of the knife carrier.
Description
BACKGROUND
1. Technical Field

The present disclosure is directed to circular stapling devices and, more particularly, to reload assemblies for circular stapling devices with structure to retain a knife carrier in a retracted position after the stapling device is fired.


2. Background of Related Art

Conventional circular stapling devices include an elongate body and a shell or reload assembly that is supported on a distal portion of the elongate body. The reload assembly includes a shell housing, a staple cartridge supported on the shell housing having a plurality of staples, a pusher assembly, a knife defining a cylindrical cavity, and a knife carrier that supports the knife. The pusher assembly includes an annular pusher and a staple pushing member that is engaged with the annular pusher and is movable to move the staple pushing member to eject staples from the staple cartridge. The knife carrier is movable to advance the knife through the staple cartridge to core or cut tissue.


After a stapling device has been operated to staple and cut tissue, the knife carrier and the knife are retracted to withdraw the knife into the shell housing. This serves two purposes. The first purpose is to move the knife to a position to allow removal of a tissue donut from within the cavity defined by the knife. The second purpose is to position the knife in a location recessed within the shell housing to avoid injury to a clinician during manipulation and disposal of the reload assembly.


In some instances, the tissue donut is compressed within the cavity defined by the knife to such a degree that removal of the tissue donut from within the cavity defined by the knife is difficult. A continuing need exists in the art for a reload assembly that includes improved structure for retaining the knife/knife carrier in a retracted position.


SUMMARY

One aspect of the disclosure is directed to a reload assembly including a shell housing, a staple cartridge, a pusher, a knife carrier, a lockout component, and a hook component. The shell housing includes an inner housing portion and an outer housing portion that is spaced from the inner housing portion to define an annular cavity between the inner and outer housing portions. The staple cartridge is supported on a distal portion of the shell housing and defines a plurality of staple pockets that receive staples. The pusher is supported within the annular cavity of the shell housing and is movable between a retracted position and an advanced position to eject the staples from the staple cartridge. The knife carrier includes a body that defines a longitudinal axis and supports a knife. The body of the knife carrier includes an inner wall defining a central bore. The inner housing portion of the shell housing is positioned within the central bore of the knife carrier such that the knife carrier is movable about the inner housing portion of the shell housing between advanced and retracted positions. The lockout component is supported on the inner wall of the knife carrier, has a body formed of a resilient material, and defines a window. The hook component is supported on the inner housing portion of the shell housing and includes a body having a hook that is received within the window of the lockout component when the knife carrier is in its retracted position after the reload assembly has been fired to obstruct readvancement of the knife carrier.


Another aspect of the disclosure is directed to a circular stapling device including an elongate body having a proximal portion and a distal portion and a reload assembly. The reload assembly includes a shell housing, a staple cartridge, a pusher, a knife carrier, a lockout component, and a hook component. The shell housing includes an inner housing portion and an outer housing portion that is spaced from the inner housing portion to define an annular cavity between the inner and outer housing portions. The staple cartridge is supported on a distal portion of the shell housing and defines a plurality of staple pockets that receive staples. The pusher is supported within the annular cavity of the shell housing and is movable between a retracted position and an advanced position to eject the staples from the staple cartridge. The knife carrier includes a body that defines a longitudinal axis and supports a knife. The body of the knife carrier includes an inner wall defining a central bore. The inner housing portion of the shell housing is positioned within the central bore of the knife carrier such that the knife carrier is movable about the inner housing portion of the shell housing between advanced and retracted positions. The lockout component is supported on the inner wall of the knife carrier, has a body formed of a resilient material, and defines a window. The hook component is supported on the inner housing portion of the shell housing and includes a body having a hook that is received within the window of the lockout component when the knife carrier is in its retracted position after the reload assembly has been fired to obstruct readvancement of the knife carrier.


In embodiments, the lockout component includes a resilient body that has a lockout member positioned proximally of the window, wherein the resilient body is positioned between the hook component and the knife carrier when the knife carrier is in a retracted position prior to firing of the reload assembly.


In some embodiments, the hook is angled downwardly towards the inner housing portion of the shell housing.


In certain embodiments, the hook component includes a proximal mounting portion that is secured to the inner housing portion such that the hook component is supported in cantilevered fashion to the inner housing portion of the shell housing.


In embodiments, the lockout component is positioned to pass between the hook component and the inner housing portion of the shell housing when the knife carrier is returned from its advanced position to its retracted position after the reload assembly has been fired to position the hook of the hook component within the window of the lockout component.


In some embodiments, the lockout component includes a distal mounting portion that is secured to the inner wall of the knife carrier to secure the lockout component to the knife carrier in cantilevered fashion.


In certain embodiments, the hook of the hook component has a proximal portion connected to the body and a tip that engages the inner housing portion of the shell assembly, wherein the tip is positioned proximally of the proximal portion of the hook.


Another aspect of the disclosure is directed to a reload assembly including a shell housing, a staple cartridge, a knife carrier, a first locking component, and a second locking component. The shell housing includes an inner housing portion, an outer housing portion, and at least one guide portion positioned between the inner and outer housing portions. The inner housing portion is spaced from the outer housing portion to define an annular cavity between the inner and outer housing portions. The staple cartridge is supported on a distal portion of the shell housing and defines a plurality of staple pockets that receive staples. The knife carrier includes a body defining a longitudinal axis and supporting a knife. The body of the knife carrier includes a plurality of longitudinally extending body portions that are spaced from each other to define longitudinal slots that receive the at least one guide portion of the shell housing. The longitudinally extending portions include inner walls that define a central bore. The inner housing portion of the shell housing is positioned within the central bore of the knife carrier such that the knife carrier is movable about the inner housing portion of the shell housing between advanced and retracted positions. The first locking component is supported on the at least one guide portion of the shell housing and includes a resilient body having a first hook that extends radially outward of the at least one guide portion. The second locking component is supported on the inner wall of the knife carrier and includes a body formed from a resilient material having a second hook that extends radially inward into the central bore of the knife carrier. When the knife carrier is in a pre-fired retracted position, the second locking component is positioned between the first locking component and the at least one guide portion of the shell housing such that the first and second hooks are misaligned, and when the knife carrier is in a post-fired retracted position, the second hook component is positioned radially outward of the first hook component such that the first and second hooks are aligned to obstruct readvancement of the knife carrier.


In embodiments, the first and second locking components are formed of leaf springs.


In some embodiments, the first hook of the first locking component includes a distal portion having a distally facing tapered surface and the second hook of the second locking component includes a proximal portion having a proximally facing tapered surface, wherein the distally facing tapered surface engages the proximally facing tapered surface as the knife carrier is moved from its advanced position to its retracted position to allow the second locking component to pass over the first locking component.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the disclosed reload assembly are described herein below with reference to the drawings, wherein:



FIG. 1 is a side perspective view of a circular stapling device including an exemplary embodiment of the disclosed reload assembly in accordance with the present disclosure;



FIG. 2 is a side perspective view of the reload assembly of FIG. 1;



FIG. 3 is an exploded side perspective view of the reload assembly of FIG. 2;



FIG. 4 is an enlarged view of the indicated area of detail shown in FIG. 3;



FIG. 5 is a cross-sectional view of a knife carrier of the reload assembly shown in FIG. 3;



FIG. 6 is an enlarged view of the indicated area of detail shown in FIG. 3;



FIG. 7 is a perspective, cross-sectional view of the reload assembly shown in FIG. 3 taken through the longitudinal axis of the reload assembly with the reload assembly in a pre-fired condition;



FIG. 8 is a cross-sectional view of the reload assembly shown in FIG. 3 taken through the longitudinal axis of the reload assembly with the reload assembly in a pre-fired condition;



FIG. 9 is an enlarged view of the indicated area of detail shown in FIG. 8;



FIG. 10 is a cross-sectional view taken along section line 10-10 of FIG. 9;



FIG. 11 is a side perspective view of a lockout component of the reload assembly shown in FIG. 3;



FIG. 12 is a cross-sectional view of the reload assembly shown in FIG. 3 taken through the longitudinal axis of the reload assembly with the reload assembly in a fired condition and the knife carrier in an advanced position;



FIG. 13 is an enlarged view of the indicated area of detail shown in FIG. 12;



FIG. 14 is a cross-sectional view of the reload assembly shown in FIG. 3 taken through the longitudinal axis of the reload assembly with the reload assembly in a fired condition and the knife carrier in the retracted position;



FIG. 15 is an enlarged view of the indicated area of detail shown in FIG. 14;



FIG. 16 is a side perspective view of the interaction between the locking component and the hook component of the reload assembly shown in FIG. 14 with the locking component and the hook component in a locked position;



FIG. 17 is a side perspective view of another exemplary embodiment of the disclosed locking component and hook component of the reload assembly shown in FIG. 3;



FIG. 18 is a perspective, cross-sectional view of a shell housing of another exemplary embodiment of the disclosed reload assembly of the stapling device shown in FIG. 1 with a locking component secured to an inner housing portion of the shell housing;



FIG. 19 is a perspective, cross-sectional view of the knife carrier of another exemplary embodiment of the disclosed reload assembly with a lock component secured to a body of the knife carrier;



FIG. 20 is a cross-sectional view of a reload assembly including the locking component and hook component shown in FIGS. 18 and 19, respectively, with the reload assembly in a pre-fired condition;



FIG. 21 is a cross-sectional view of the reload assembly shown in FIG. 20 with the reload assembly in a fired condition and the knife carrier in an advanced position; and



FIG. 22 is a cross-sectional view of the reload assembly shown in FIG. 20 with the reload assembly in a fired condition and the knife carrier in a retracted position.





DETAILED DESCRIPTION OF EMBODIMENTS

The disclosed reload assembly will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. However, it is to be understood that the disclosed embodiments are merely exemplary of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure. In addition, directional terms such as front, rear, upper, lower, top, bottom, distal, proximal, and similar terms are used to assist in understanding the description and are not intended to limit the present disclosure.


In this description, the term “proximal” is used generally to refer to that portion of the device that is closer to a clinician, while the term “distal” is used generally to refer to that portion of the device that is farther from the clinician. In addition, the term “endoscopic” is generally used to refer to endoscopic, laparoscopic, arthroscopic, and/or any other procedure conducted through small diameter incision or cannula. Further, the term “clinician” is used generally to refer to medical personnel including doctors, nurses, and support personnel.



FIGS. 1 and 2 illustrate a circular stapling device 10 including an exemplary embodiment of the disclosed reload assembly shown generally as reload assembly 100. The stapling device 10 includes a handle assembly 12, an elongate body or adaptor assembly 14, the reload assembly 100, and an anvil assembly 18 that is supported for movement in relation to the reload assembly 100 between spaced and approximated positions as is known in the art. The reload assembly 100 includes a proximal portion 102 that is releasably coupled to a distal portion 14a of the elongate body 14. The handle assembly 12 includes a stationary grip 22 that supports actuation buttons 24 for controlling operation of various functions of the stapling device 10 including approximation of the reload and anvil assemblies 100 and 18, respectively, firing of staples from the reload assembly 100, and cutting or coring of tissue.


The stapling device 10 is illustrated as an electrically powered stapling device including an electrically powered handle assembly 12 that may support one or more batteries (not shown). The elongate body 14 is in the form of an adaptor assembly that translates power from the handle assembly 12 to the reload and anvil assemblies 100, 18, respectively. Examples of electrically powered stapling devices can be found in U.S. Pat. No. 9,055,943 (the '943 patent), U.S. Pat. No. 9,023,014 (the '014 patent), and U.S. Publication Nos. 2018/0125495, and 2017/0340351 which are incorporated herein by reference in their entirety. Alternately, it is envisioned that the present disclosure could also be incorporated into a manually powered stapling device such as disclosed in U.S. Pat. No. 7,303,106 (the '106 patent) or a stapling device that is configured for use with a robotic system such as disclosed in U.S. Pat. No. 9,962,159 (the '159 patent) that does not include a handle assembly. The '106 and '159 patents are also incorporated herein by reference in their entirety.


Referring to FIGS. 2 and 3, the reload assembly 100 includes a shell housing 110, a staple actuator 112, a staple pushing member 112a, a knife carrier 114, an annular knife 116 supported on the knife carrier 114, a staple cartridge 118, and a plurality of staples 120 supported within the staple cartridge 118. The staple cartridge 118 is annular and defines annular rows of staple pockets 124. Each of the staple pockets 124 supports one of the plurality of staples 120. The staple actuator 112 and the staple pushing member 112a together define a longitudinal through-bore 132. The staple actuator 112 has a distal portion that abuts a proximal portion of the staple pushing member 112a such that distal movement of the staple actuator 112 within the shell housing 110 causes distal movement of the staple pushing member 112a. The staple pushing member 112a of the reload 100 has a plurality of fingers 134. Each of the plurality of fingers 134 is received within a respective one of the staple pockets 124 of the staple cartridge 118 and is movable through the respective staple pocket 124 to eject the staples 120 from the staple pockets 124 when the staple pushing member 130 is moved from a retracted position to an advanced position within the shell housing 110.


The shell housing 110 includes an outer housing portion 140 and an inner housing portion 142 that are spaced from each other to define an annular cavity 144 between the inner and outer housing portions 140 and 142. The staple actuator 112, the staple pushing member 112a, the knife carrier 114, and the annular knife 116 are movable within the annular cavity 144 of the shell housing 110 between retracted and advanced positions. The staple actuator 112 and the staple pushing member 112a are movable from their retracted positions to their advanced positions independently of the knife carrier 114 and annular knife 116 to eject the staples 120 from the staple cartridge 118. The annular knife 116 defines a cylindrical cavity 117, is supported about an outer surface of the knife carrier 114 and includes a distal cutting edge 117a. The knife carrier 114 and annular knife 116 are movable within the through-bore 132 of the staple actuator 112. After the staple actuator 112 and staple pushing member 112a are moved from their retracted positions to their advanced positions, the knife carrier 114 can be moved from its retracted position to its advanced position to cut tissue positioned radially inward of the staple cartridge 118.


The inner housing portion 142 of the shell housing 110 defines a through-bore 150 (FIG. 3) that receives an anvil shaft (not shown) of the anvil assembly 18. For a more detailed description of an exemplary anvil assembly 18, see, e.g., the '106 patent. The through-bore 150 has a proximal portion that receives a bushing 152 that defines a through-bore 150a that is coaxial and forms an extension of the through-bore 150 of the inner housing portion 142. In embodiments, the bushing 152 is formed of a high strength material, e.g., metal, to provide added strength to the inner housing portion 142 of the shell housing 110 and includes an annular flange 151.


The shell housing 110 includes a proximal portion 158 (FIG. 3) that supports a coupling mechanism 160 (FIG. 2) that is operable to releasably couple the reload assembly 100 to the adaptor assembly 14 of the stapling device 10 (FIG. 1) to facilitate replacement of the reload assembly 100 and reuse of the stapling device 10. The coupling mechanism 160 includes a retaining member 162 and a coupling member 164. The coupling member 164 is received about the proximal portion 158 (FIG. 3) of the shell housing 110 and is configured to engage the distal portion 14a (FIG. 1) of the adaptor assembly 14 to couple the reload assembly 100 to the adaptor assembly 14. It is envisioned that other coupling mechanisms can be used to secure the reload assembly 100 to the adaptor assembly 14.


The reload assembly 100 may include an e-prom holder 170 (FIG. 3) that is supported on the shell housing 110 and is configured to support an e-prom (not shown). As is known in the art, an e-prom can communicate with the adaptor assembly 14 to provide information to the adaptor assembly 14 and the handle assembly 12 related to characteristics of the reload assembly 10.


Referring to FIGS. 3-5, the knife carrier 114 is movably positioned within the through-bore 132 (FIG. 6) of the staple actuator 112 and staple pushing member 112a between its retracted and advanced positions and defines a stepped central bore 172. The stepped central bore 172 includes a small diameter proximal portion 172a (FIG. 5) and a larger diameter distal portion 172b. The proximal portion 172a of the central bore 172 of the knife carrier 114 receives the inner housing portion 142 (FIG. 8) of the shell housing 110 such that the knife carrier 114 slides about the inner housing portion 142.


The knife carrier 114 defines an annular shoulder 176 (FIG. 5) that is positioned between the proximal portion 172a and the distal portion 172b of the central bore 172. The proximal portion 172a of the central bore 172 is defined by longitudinally extending body portions 173 (FIG. 5) that are separated from each other by longitudinal slots 178. The longitudinal slots 178 receive guide portions 179 (FIG. 7) of the shell housing 110 to limit the knife carrier 114 to longitudinal movement within the annular cavity 144 of the shell housing 110 as the knife carrier 114 moves between its advanced and retracted positions. The proximal portion 172a of knife carrier 114 includes an inner wall surface 115 (FIG. 5) that supports a lockout component 180 (FIG. 4).


In embodiments, the lockout component 180 includes a resilient body 182 (FIG. 4) that has a distal mounting portion 182a and a proximal locking portion 182b. The distal mounting portion 182a of the resilient body 182 is secured to the inner wall 115 of the knife carrier 114 in cantilevered fashion. In embodiments, the distal mounting portion 182a defines two openings 184 that receive screws or rivets 186 (FIG. 5) to secure the distal mounting portion 182a of the lockout component 180 to the inner wall surface 115 of the knife carrier 114. Alternately, the lockout component 180 can be secured to the knife carrier 114 using a variety of known attachment techniques. The proximal locking portion 182b of the lockout component 180 includes a proximally positioned lockout member 188 and defines a window or opening 190 that is positioned between the lockout member 188 and the distal mounting portion 182a. In embodiments, the lockout member 188 is angled inwardly into the central bore 172 of the knife carrier 114 and defines an apex or tip 191.


Referring to FIGS. 6-8, the inner housing portion 142 of the shell housing 110 supports a hook component 200 that includes a proximal mounting portion 202 and a body 204 including a hook 206 having a tip or apex 208. In embodiments, the mounting portion 202 is an annular member and is received about the bushing 152 between the flange 151 of the bushing 152 and the proximal end 210 of the inner housing portion 142 such that the body 204 including the hook 206 is positioned distally of the mounting portion 202 with the tip 208 of the hook 206 extending in a direction proximally from the body 204. In embodiments, the hook component 200 is supported by the mounting portion 202 in cantilevered fashion with the hook 206 biased into engagement with the inner housing portion 142 of the shell housing 110.


Referring to FIGS. 8-11, when the reload assembly 100 is assembled and the knife carrier 114 is in a retracted position within the shell housing 110, the lockout component 180, which is secured to the inner wall surface 115 of the knife carrier 114, is in a retracted position radially outward of and engaged with the hook component 200 such that the lockout component 180 is biased outwardly of the inner housing portion 142 of the shell housing 110. In this position, the hook 206 of the hook component 200 is positioned beneath the window 190 of the lockout component 180 and is engaged with the inner housing portion 142 of the shell housing 110.


Referring to FIGS. 12 and 13, after the staple actuator 112 and the staple pushing member 112a are advanced in the direction indicated by arrows “A” to drive the staples 120 from the staple cartridge 118 into the anvil assembly 18, the knife carrier 114 is advanced in the direction indicated by arrow “B” to advance the knife 116 in the direction indicted by arrows “C” to cut tissue. When the knife carrier 114 advances in direction “B”, the lockout component 180 which is secured to the knife carrier 114 moves longitudinally in relation to the hook component 200 in the direction indicated by arrow “D” (FIG. 13). When the lockout member 188 of the lockout component 180 moves to a position distally of the hook component 200, the hook 206 of the hook component 200 returns to an unbiased state as the body 204 of the hook component 200 moves radially outwardly from the inner housing portion 142 of the shell housing 110 in the direction indicated by arrow “E” in FIG. 13. In addition, when the lockout member 188 of the lockout component 180 moves distally of the hook component 200, the resilient body 182 moves out of engagement with the hook component 200 and inwardly towards its unbiased state in the direction indicated by arrow “F” in FIG. 13 such that the lockout member 188 of the lockout component 180 is engaged with the inner housing portion 142 of the shell housing 110 and is positioned radially inward of the distal end of the body 204 of the hook component 200.


Referring to FIGS. 14-17, when the knife carrier 114 is moved back to its retracted position after the reload assembly 100 is fired in the direction indicated by arrow “G” in FIGS. 14 and 15, the lockout member 188 of the lockout component moves under the body 204 of the hook component 200 and engages the hook 206 of the hook component 200. When the lockout member 188 engages the hook 206, the body 204 of the hook component 200 is biased radially outward of the inner housing portion 142 in the direction indicated by arrow “H” such that the lockout member 188 passes under the hook 206 and the hook 206 moves through the window 190 of the lockout component 180 such that the tip 191 of the lockout member 188 moves into engagement with the inner housing portion 142 of the shell housing 110. In this position, engagement between the hook 206 and the proximal portion of the body 182 of the lockout component 180 that defines the window 190 obstructs readvancement of the hook component 200 to obstruct readvancement of the knife carrier 114 and knife 116.


The above-described structure obstructs readvancement of the knife carrier 114 and the knife 116 to safely retain the knife 116 within the shell housing 110 of the reload assembly 100. This minimizes a risk of injury to a clinician during manipulation and disposal of the reload assembly 200.


Although the disclosed reload is described in the context of a powered hand instrument, it is to be understood that the disclosed reload can be adapted for use with robotically controlled systems as well as hand powered instruments. For example, the reload can be used with an adaptor 14 that is configured to be coupled to a robotically controlled surgical system.


Referring to FIG. 17, in an alternate embodiment, the lockout component 200′ may be formed with a hook 206′ and the hook component 200′ may be formed with a body 204′ defining a window 190′. The distal end of the lockout component 180′ is positioned to pass over the lockout member 188′ of the component 200′ and onto the body 204 of the component 200′ after the stapling device 10 (FIG. 1) is fired and the knife carrier 114 (FIG. 12) is retracted such that the hook 206′ is received within the window 190′. As discussed above with regard to the reload 100 (FIG. 3), receipt of the hook 206′ within the window 190′ obstructs readvancement of the knife carrier 114 (FIG. 12) to minimize risk of injury to a clinician during manipulation and disposal of the reload assembly 200.



FIGS. 18-22 illustrate an alternate embodiment of the disclosed reload assembly shown generally as 300. Reload assembly 300 is substantially similar to reload assembly 100 except that the lockout component and the hook component are modified. Only these components are described in further detail herein.



FIG. 18 illustrates a shell housing 310 of the reload assembly 300 (FIG. 20) which includes an outer housing portion 340, an inner housing portion 342, and guide portions 379. The guide portions 379 are positioned between the outer housing portion 340 and the inner housing portion 342. At least one of the guide portions 379 supports a first locking component 402. The first locking component 402 includes resilient body 404 having a hook 406 that extends radially outward from the respective guide portion 379.



FIGS. 18 and 19 illustrate the shell housing 310 and the knife carrier 314 of the reload assembly 300. The knife carrier 314 includes longitudinally extending body portions 373 that define a central bore 372. The longitudinally extending body portions 373 are separated from each other by longitudinal slots 378 that receive the guide portions 379 (FIG. 18) of the shell housing 310 to limit the knife carrier 314 to longitudinal movement within the shell housing 310 as the knife carrier 314 moves between advanced and retracted positions.


The proximal portion of knife carrier 314 includes an inner wall surface 315 that supports a second locking component 380 (FIG. 19). The second locking component 380 is formed from a resilient material and includes a proximal end having a second hook 382 that extends radially inward into the central bore 372 of the knife carrier 314. In embodiments, the first and second locking components 402 and 380, respectively, are formed from leaf springs.


When the reload assembly 300 is in a pre-fired position and the knife carrier 314 is in its retracted position as shown in FIG. 20, a side of the first locking component 402 opposite to the hook 406 is engaged with a side of the second locking component 380 opposite the hook 382. In this position, the first locking component 402 is aligned and engaged with the second locking component 380 with the hooks 406 and 382 of the first and second locking components 402 and 380 facing away from each other to allow advancement of the knife carrier 314 and knife 316 in relation to the inner housing portion 342 of the shell housing 310.


When the knife carrier 314 is advanced in the direction indicated by arrows “J” in FIG. 21 about the inner housing portion 342 of the shell housing 310 to advance the second locking component 380 to a position distally of the first locking component 402, the first and second locking components 402 and 380 move out of engagement with each other. When this occurs, the first locking component 402 returns in the direction indicated by arrow “L” to its unbiased state in which the side of the first locking component 402 opposite to the first hook 406 is positioned against the guide 379. Similarly, the second locking component 380 returns in the direction indicated by arrow “M” to its unbiased state in which the side of the second locking component 380 opposite to the hook 382 is positioned against the inner wall surface 315 of the knife carrier 314. When the first and second locking components 402 and 380 return to their unbiased states, tapered surfaces 406a and 382a of the hooks 406 and 382 are spaced and aligned with each other.


When the knife carrier 314 is moved from its advanced position back to its retracted position in the direction indicated by arrows “N” (FIG. 22) after the stapling device 10 (FIG. 1) has been fired and the knife has been advanced to cut tissue disposed between the anvil assembly 18 and the staple cartridge 118, the second locking component 380 moves in relation to the first locking component 402 such that the tapered surfaces 406a and 382a of the hooks 406 and 382 engage each other, deform, and pass by each other. When the knife carrier 114 is in its retracted position, the hooks 406 and 380 are aligned with each other to obstruct movement of the knife carrier 314 and knife 316 back to their advanced positions.


The above-described structure obstructs readvancement of the knife carrier 314 and the knife 316 to safely retain the knife 316 within the shell housing 310 of the reload assembly 300. This minimizes a risk of injury to a clinician during manipulation and disposal of the reload assembly 300.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A reload assembly comprising: a shell housing including an inner housing portion, an outer housing portion, and at least one guide portion positioned between the inner and outer housing portions, the inner housing portion spaced from the outer housing portion to define an annular cavity between the inner and outer housing portions;a staple cartridge supported on a distal portion of the shell housing, the staple cartridge defining a plurality of staple pockets, each of the staple pockets receiving a staple;a knife carrier including a body defining a longitudinal axis and supporting a knife, the body of the knife carrier including a plurality of longitudinally extending body portions that are spaced from each other to define longitudinal slots, the longitudinal slots receiving the at least one guide portion of the shell housing, an inner wall of the longitudinally extending portions defining a central bore, the inner housing portion of the shell housing being positioned within the central bore of the knife carrier such that the knife carrier is movable about the inner housing portion of the shell housing from a pre-fired retracted position and a post fired retracted position;a first locking component supported on the shell housing, the first locking component including a resilient body having a first hook that extends outwardly of the shell housing; anda second locking component supported on the knife carrier, the second locking component including a body formed from a resilient material having a second hook that extends from the knife carrier;wherein in the pre-fired retracted position of the knife carrier, the second locking component is positioned between the first locking component and a portion of the shell housing such that the first and second hooks are misaligned with each other, and in the post-fired retracted position of the knife carrier, the second hook is positioned radially outward of the first hook such that the first and second hooks are aligned to obstruct readvancement of the knife carrier.
  • 2. The reload assembly of claim 1, wherein the first locking component is supported on the at least one guide portion of the shell housing and is positioned within one of the longitudinal slots.
  • 3. The reload assembly of claim 2, wherein the second locking component is supported on the knife carrier within the one of the longitudinal slots.
  • 4. The reload assembly of claim 3, wherein the first and second locking components are formed of leaf springs.
  • 5. The reload assembly of claim 3, wherein in a pre-fired retracted position, the second locking component is positioned between the first locking component and the at least one guide portion of the shell housing such that the first and second hooks are misaligned.
  • 6. The reload assembly of claim 5, wherein the first hook of the first locking component includes a distal portion having a distally facing tapered surface and the second hook of the second locking component includes a proximal portion having a proximally facing tapered surface, the distally facing tapered surface of the first locking component positioned to engage the proximally facing tapered surface of the second locking component as the knife carrier is moved from the advanced position to the retracted to allow the second locking component to pass over the first locking component.
  • 7. A circular stapling device comprising; an elongate body having a proximal portion and a distal portion; anda reload assembly supported on the distal portion of the elongate body, the reload assembly including: a shell housing including an inner housing portion, an outer housing portion, and at least one guide portion positioned between the inner and outer housing portions, the inner housing portion spaced from the outer housing portion to define an annular cavity between the inner and outer housing portions;a staple cartridge supported on a distal portion of the shell housing, the staple cartridge defining a plurality of staple pockets, each of the staple pockets receiving a staple;a knife carrier including a body defining a longitudinal axis and supporting a knife, the body of the knife carrier including a plurality of longitudinally extending body portions that are spaced from each other to define longitudinal slots, the longitudinal slots receiving the at least one guide portion of the shell housing, an inner wall of the longitudinally extending portions defining a central bore, the inner housing portion of the shell housing being positioned within the central bore of the knife carrier such that the knife carrier is movable about the inner housing portion of the shell housing from a pre-fired retracted position and a post-fired retracted position;a first locking component supported on the shell housing, the first locking component including a resilient body having a first hook that extends outwardly of the shell housing; anda second locking component supported on the knife carrier, the second locking component including a body formed from a resilient material having a second hook that extends from the knife carrier;wherein in the pre-fired retracted position, the second locking component is positioned between the first locking component and a portion of the shell housing such that the first and second hooks are misaligned with each other, and in the post-fired retracted position, the second hook is positioned radially outward of the first hook such that the first and second hooks are aligned with each other to obstruct readvancement of the knife carrier.
  • 8. The circular stapling device of claim 7, wherein the first locking component is supported on the at least one guide portion of the shell housing and is positioned within one of the longitudinal slots.
  • 9. The circular stapling device of claim 8, wherein the second locking component is supported on the knife carrier within the one of the longitudinal slots.
  • 10. The circular stapling device of claim 9, wherein the first and second locking components are formed of leaf springs.
  • 11. The circular stapling device of claim 9, wherein in a pre-fired retracted position, the second locking component is positioned between the first locking component and the at least one guide portion of the shell housing such that the first and second hooks are misaligned.
  • 12. The circular stapling device of claim 11, wherein the first hook of the first locking component includes a distal portion having a distally facing tapered surface and the second hook of the second locking component includes a proximal portion having a proximally facing tapered surface, the distally facing tapered surface of the first locking component positioned to engage the proximally facing tapered surface of the second locking component as the knife carrier is moved from the advanced position to the retracted to allow the second locking component to pass over the first locking component.
  • 13. The circular stapling device of claim 7, further including a handle assembly coupled to the proximal portion of the elongate body.
  • 14. A reload assembly comprising: a shell housing including an inner housing portion, an outer housing portion, and guide portions positioned between the inner and outer housing portions;a knife carrier including a body defining a longitudinal axis and supporting a knife, the body of the knife carrier including a plurality of longitudinally extending body portions that are spaced from each other to define longitudinal slots, the longitudinal slots receiving the guide portions of the shell housing, inner walls of the longitudinally extending portions defining a central bore that receives the inner housing portion of the shell housing such that the knife carrier is movable about the inner housing portion of the shell housing between advanced and retracted positions;a first locking component supported on one of the guide portions of the shell housing, the first locking component including a resilient body having a first hook that extends outwardly from the one of the guide portions of the shell housing; anda second locking component supported on the knife carrier, the second locking component including a body formed from a resilient material having a second hook that extends from the knife carrier;wherein in the pre-fired position of the knife carrier, the second locking component is positioned between the first locking component and the one of the guide portions of the shell housing such that the first and second hooks are misaligned with each other and in a post-fired retracted position of the knife carrier, the second hook is positioned radially outward of the first hook such that the first and second hooks are aligned with each other to obstruct readvancement of the knife carrier.
  • 15. The reload assembly of claim 14, wherein the first locking component is supported on the at least one guide portion of the shell housing and is positioned within one of the longitudinal slots.
  • 16. The reload assembly of claim 15, wherein the second locking component is supported on the knife carrier within the one of the longitudinal slots.
  • 17. The reload assembly of claim 16, wherein the first and second locking components are formed of leaf springs.
  • 18. The reload assembly of claim 16, wherein in a pre-fired retracted position, the second locking component is positioned between the first locking component and the at least one guide portion of the shell housing such that the first and second hooks are misaligned.
  • 19. The reload assembly of claim 18, wherein the first hook of the first locking component includes a distal portion having a distally facing tapered surface and the second hook of the second locking component includes a proximal portion having a proximally facing tapered surface, the distally facing tapered surface of the first locking component positioned to engage the proximally facing tapered surface of the second locking component as the knife carrier is moved from the advanced position to the retracted to allow the second locking component to pass over the first locking component.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 16/878,094, filed May 19, 2021, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/874,534 filed Jul. 16, 2019, the entire disclosures of each of which are incorporated by reference herein.

US Referenced Citations (504)
Number Name Date Kind
3388847 Kasulin et al. Jun 1968 A
3552626 Astafiev et al. Jan 1971 A
3638652 Kelley Feb 1972 A
3771526 Rudie Nov 1973 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4289133 Rothfuss Sep 1981 A
4304236 Conta et al. Dec 1981 A
4319576 Rothfuss Mar 1982 A
4350160 Kolesov et al. Sep 1982 A
4351466 Noiles Sep 1982 A
4379457 Gravener et al. Apr 1983 A
4473077 Noiles et al. Sep 1984 A
4476863 Kanshin et al. Oct 1984 A
4485817 Swiggett Dec 1984 A
4488523 Shichman Dec 1984 A
4505272 Utyamyshev et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4550870 Krumme et al. Nov 1985 A
4573468 Conta et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4592354 Rothfuss Jun 1986 A
4603693 Conta et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4632290 Green et al. Dec 1986 A
4646745 Noiles Mar 1987 A
4665917 Clanton et al. May 1987 A
4667673 Li May 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4717063 Ebihara Jan 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4776506 Green Oct 1988 A
4817847 Redtenbacher et al. Apr 1989 A
4873977 Avant et al. Oct 1989 A
4893662 Gervasi Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4907591 Vasconcellos et al. Mar 1990 A
4917114 Green et al. Apr 1990 A
4957499 Lipatov et al. Sep 1990 A
4962877 Hervas Oct 1990 A
5005749 Aranyi Apr 1991 A
5042707 Taheri Aug 1991 A
5047039 Avant et al. Sep 1991 A
5104025 Main et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5139513 Segato Aug 1992 A
5158222 Green et al. Oct 1992 A
5188638 Tzakis Feb 1993 A
5193731 Aranyi Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5221036 Takase Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5253793 Green et al. Oct 1993 A
5261920 Main et al. Nov 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
5275322 Brinkerhoff et al. Jan 1994 A
5282810 Allen et al. Feb 1994 A
5285944 Green et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5292053 Bilotti et al. Mar 1994 A
5309927 Welch May 1994 A
5312024 Grant et al. May 1994 A
5314435 Green et al. May 1994 A
5314436 Wilk May 1994 A
5330486 Wilk Jul 1994 A
5333773 Main et al. Aug 1994 A
5344059 Green et al. Sep 1994 A
5346115 Perouse et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350104 Main et al. Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5360154 Green Nov 1994 A
5368215 Green et al. Nov 1994 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5403333 Kaster et al. Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5425738 Gustafson et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5437684 Calabrese et al. Aug 1995 A
5439156 Grant et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5447514 Gerry et al. Sep 1995 A
5454825 Van Leeuwen et al. Oct 1995 A
5464415 Chen Nov 1995 A
5470006 Rodak Nov 1995 A
5474223 Viola et al. Dec 1995 A
5497934 Brady et al. Mar 1996 A
5503635 Sauer et al. Apr 1996 A
5522534 Viola et al. Jun 1996 A
5533661 Main et al. Jul 1996 A
5588579 Schnut et al. Dec 1996 A
5609285 Grant et al. Mar 1997 A
5626591 Kockerling et al. May 1997 A
5632433 Grant et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5641111 Ahrens et al. Jun 1997 A
5658300 Bito et al. Aug 1997 A
5669918 Balazs et al. Sep 1997 A
5685474 Seeber Nov 1997 A
5709335 Heck Jan 1998 A
5715987 Kelley et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5720755 Dakov Feb 1998 A
5732872 Bolduc et al. Mar 1998 A
5749896 Cook May 1998 A
5758814 Gallagher et al. Jun 1998 A
5799857 Robertson et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5855312 Toledano Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5881943 Heck et al. Mar 1999 A
5915616 Viola et al. Jun 1999 A
5947363 Bolduc et al. Sep 1999 A
5951576 Wakabayashi Sep 1999 A
5957363 Heck Sep 1999 A
5993468 Rygaard Nov 1999 A
6024748 Manzo et al. Feb 2000 A
6050472 Shibata Apr 2000 A
6053390 Green et al. Apr 2000 A
6068636 Chen May 2000 A
6083241 Longo et al. Jul 2000 A
6102271 Longo et al. Aug 2000 A
6117148 Ravo et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6176413 Heck et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6193129 Billner et al. Feb 2001 B1
6203553 Robertson et al. Mar 2001 B1
6209773 Bolduc et al. Apr 2001 B1
6241140 Adams et al. Jun 2001 B1
6253984 Heck et al. Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6269997 Balazs et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6387105 Gifford, III et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6402008 Lucas Jun 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6450390 Heck et al. Sep 2002 B2
6478210 Adams et al. Nov 2002 B2
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6494877 Dell et al. Dec 2002 B2
6503259 Huxel et al. Jan 2003 B2
6517566 Hovland et al. Feb 2003 B1
6520398 Nicolo Feb 2003 B2
6533157 Whitman Mar 2003 B1
6551334 Blatter et al. Apr 2003 B2
6578751 Hartwick Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6592596 Geitz Jul 2003 B1
6601749 Sullivan et al. Aug 2003 B2
6605078 Adams Aug 2003 B2
6605098 Nobis et al. Aug 2003 B2
6626921 Blatter et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6631837 Heck Oct 2003 B1
6632227 Adams Oct 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6652542 Blatter et al. Nov 2003 B2
6659327 Heck et al. Dec 2003 B2
6676671 Robertson et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6685079 Sharma et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6716222 McAlister et al. Apr 2004 B2
6716233 Whitman Apr 2004 B1
6726697 Nicholas et al. Apr 2004 B2
6742692 Hartwick Jun 2004 B2
6743244 Blatter et al. Jun 2004 B2
6763993 Bolduc et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6820791 Adams Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6852122 Rush Feb 2005 B2
6866178 Adams et al. Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6905504 Vargas Jun 2005 B1
6938814 Sharma et al. Sep 2005 B2
6942675 Vargas Sep 2005 B1
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6957758 Aranyi Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981941 Whitman et al. Jan 2006 B2
6981979 Nicolo Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
7059331 Adams et al. Jun 2006 B2
7059510 Orban, III Jun 2006 B2
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7086267 Dworak et al. Aug 2006 B2
7114642 Whitman Oct 2006 B2
7118528 Piskun Oct 2006 B1
7122044 Bolduc et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7141055 Abrams et al. Nov 2006 B2
7168604 Milliman et al. Jan 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7195142 Orban, III Mar 2007 B2
7207168 Doepker et al. Apr 2007 B2
7220237 Gannoe et al. May 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
RE39841 Bilotti et al. Sep 2007 E
7285125 Viola Oct 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7322994 Nicholas et al. Jan 2008 B2
7325713 Aranyi Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335212 Edoga et al. Feb 2008 B2
7364060 Milliman Apr 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399305 Csiky et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7401722 Hur Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7422137 Manzo Sep 2008 B2
7422138 Bilotti et al. Sep 2008 B2
7431191 Milliman Oct 2008 B2
7438718 Milliman et al. Oct 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7481347 Roy Jan 2009 B2
7494038 Milliman Feb 2009 B2
7506791 Omaits et al. Mar 2009 B2
7516877 Aranyi Apr 2009 B2
7527185 Harari et al. May 2009 B2
7537602 Whitman May 2009 B2
7540839 Butler et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7559451 Sharma et al. Jul 2009 B2
7585306 Abbott et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7600663 Green Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7635385 Milliman et al. Dec 2009 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7694864 Okada et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7699204 Viola Apr 2010 B2
7708181 Cole et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7721932 Cole et al. May 2010 B2
7726539 Holsten et al. Jun 2010 B2
7743958 Orban, III Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7770776 Chen et al. Aug 2010 B2
7771440 Ortiz et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845536 Viola et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7857187 Milliman Dec 2010 B2
7886951 Hessler Feb 2011 B2
7896215 Adams et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909219 Cole et al. Mar 2011 B2
7909222 Cole et al. Mar 2011 B2
7909223 Cole et al. Mar 2011 B2
7913892 Cole et al. Mar 2011 B2
7918377 Measamer et al. Apr 2011 B2
7922062 Cole et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7931183 Orban, III Apr 2011 B2
7938307 Bettuchi May 2011 B2
7942302 Roby et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7959050 Smith et al. Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7975895 Milliman Jul 2011 B2
8002795 Beetel Aug 2011 B2
8006701 Bilotti et al. Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011554 Milliman Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8020741 Cole et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066169 Viola Nov 2011 B2
8070035 Holsten et al. Dec 2011 B2
8070037 Csiky Dec 2011 B2
8096458 Hessler Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8109427 Orban, III Feb 2012 B2
8113405 Milliman Feb 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8123103 Milliman Feb 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8146790 Milliman Apr 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8181838 Milliman et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8203782 Brueck et al. Jun 2012 B2
8211130 Viola Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8267301 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8276802 Kostrzewski Oct 2012 B2
8281975 Criscuolo et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317073 Milliman et al. Nov 2012 B2
8317074 Ortiz et al. Nov 2012 B2
8322589 Boudreaux Dec 2012 B2
8322590 Patel et al. Dec 2012 B2
8328060 Jankowski et al. Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8343185 Milliman et al. Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8353930 Heinrich et al. Jan 2013 B2
8360295 Milliman et al. Jan 2013 B2
8365974 Milliman Feb 2013 B2
8403942 Milliman et al. Mar 2013 B2
8408441 Wenchell et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424535 Hessler et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8430291 Heinrich et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453911 Milliman et al. Jun 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8567655 Nalagatla Oct 2013 B2
8579178 Holsten et al. Nov 2013 B2
8590763 Milliman Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608047 Holsten et al. Dec 2013 B2
8616428 Milliman et al. Dec 2013 B2
8616429 Viola Dec 2013 B2
8622275 Baxter, III et al. Jan 2014 B2
8631993 Kostrzewski Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8662370 Takei Mar 2014 B2
8663258 Bettuchi et al. Mar 2014 B2
8672931 Goldboss et al. Mar 2014 B2
8678264 Racenet et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684251 Rebuffat et al. Apr 2014 B2
8684252 Patel et al. Apr 2014 B2
8733611 Milliman May 2014 B2
11192227 Sgroi, Jr. Dec 2021 B2
20030111507 Nunez Jun 2003 A1
20040073090 Butler et al. Apr 2004 A1
20050051597 Toledano Mar 2005 A1
20050107813 Gilete Garcia May 2005 A1
20060000869 Fontayne Jan 2006 A1
20060011698 Okada et al. Jan 2006 A1
20060201989 Ojeda Sep 2006 A1
20070027473 Vresh et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070060952 Roby et al. Mar 2007 A1
20090236392 Cole et al. Sep 2009 A1
20090236398 Cole et al. Sep 2009 A1
20090236401 Cole et al. Sep 2009 A1
20100019016 Edoga et al. Jan 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100084453 Hu Apr 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100327041 Milliman et al. Dec 2010 A1
20110011916 Levine Jan 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110147432 Heinrich et al. Jun 2011 A1
20110192882 Hess et al. Aug 2011 A1
20120145755 Kahn Jun 2012 A1
20120193395 Pastorelli et al. Aug 2012 A1
20120193398 Williams et al. Aug 2012 A1
20120232339 Csiky Sep 2012 A1
20120273548 Ma et al. Nov 2012 A1
20120325888 Qiao et al. Dec 2012 A1
20130015232 Smith et al. Jan 2013 A1
20130020372 Jankowski et al. Jan 2013 A1
20130020373 Smith et al. Jan 2013 A1
20130032628 Li et al. Feb 2013 A1
20130056516 Viola Mar 2013 A1
20130060258 Giacomantonio Mar 2013 A1
20130105544 Mozdzierz et al. May 2013 A1
20130105546 Milliman et al. May 2013 A1
20130105551 Zingman May 2013 A1
20130126580 Smith et al. May 2013 A1
20130153630 Miller et al. Jun 2013 A1
20130153631 Vasudevan et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130175315 Milliman Jul 2013 A1
20130175318 Felder et al. Jul 2013 A1
20130175319 Felder et al. Jul 2013 A1
20130175320 Mandakolathur Vasudevan et al. Jul 2013 A1
20130181035 Milliman Jul 2013 A1
20130181036 Olson et al. Jul 2013 A1
20130186930 Wenchell et al. Jul 2013 A1
20130193185 Patel Aug 2013 A1
20130193187 Milliman Aug 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130193191 Stevenson et al. Aug 2013 A1
20130193192 Casasanta, Jr. et al. Aug 2013 A1
20130200131 Racenet et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130214027 Hessler et al. Aug 2013 A1
20130214028 Patel et al. Aug 2013 A1
20130228609 Kostrzewski Sep 2013 A1
20130240597 Milliman et al. Sep 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130248581 Smith et al. Sep 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130277412 Gresham et al. Oct 2013 A1
20130284792 Ma Oct 2013 A1
20130292449 Bettuchi et al. Nov 2013 A1
20130299553 Mozdzierz Nov 2013 A1
20130299554 Mozdzierz Nov 2013 A1
20130306701 Olson Nov 2013 A1
20130306707 Viola et al. Nov 2013 A1
20140008413 Williams Jan 2014 A1
20140012317 Orban et al. Jan 2014 A1
20160143641 Sapienza et al. May 2016 A1
20160157856 Williams et al. Jun 2016 A1
20160174988 D'Agostino et al. Jun 2016 A1
20160302792 Motai Oct 2016 A1
20170128068 Zhang et al. May 2017 A1
20180085120 Viola Mar 2018 A1
Foreign Referenced Citations (33)
Number Date Country
908529 Aug 1972 CA
2805365 Aug 2013 CA
1057729 May 1959 DE
3301713 Jul 1984 DE
0152382 Aug 1985 EP
0173451 Mar 1986 EP
0190022 Aug 1986 EP
0282157 Sep 1988 EP
0503689 Sep 1992 EP
1354560 Oct 2003 EP
2138118 Dec 2009 EP
2168510 Mar 2010 EP
2238926 Oct 2010 EP
2524656 Nov 2012 EP
2730238 May 2014 EP
3701886 Sep 2020 EP
1136020 May 1957 FR
1461464 Feb 1966 FR
1588250 Apr 1970 FR
2443239 Jul 1980 FR
1185292 Mar 1970 GB
2016991 Sep 1979 GB
2070499 Sep 1981 GB
2004147969 May 2004 JP
2013138860 Jul 2013 JP
7711347 Apr 1979 NL
1509052 Sep 1989 SU
8706448 Nov 1987 WO
8900406 Jan 1989 WO
9006085 Jun 1990 WO
9835614 Aug 1998 WO
0154594 Aug 2001 WO
2008107918 Sep 2008 WO
Non-Patent Literature Citations (1)
Entry
European Search Report dated Dec. 15, 2020, issued in corresponding EP Appln. No. 20185269, 7 pages.
Related Publications (1)
Number Date Country
20220088759 A1 Mar 2022 US
Provisional Applications (1)
Number Date Country
62874534 Jul 2019 US
Divisions (1)
Number Date Country
Parent 16878094 May 2020 US
Child 17542891 US