Reload assembly injection molded strain gauge

Information

  • Patent Grant
  • 11690624
  • Patent Number
    11,690,624
  • Date Filed
    Friday, June 21, 2019
    6 years ago
  • Date Issued
    Tuesday, July 4, 2023
    2 years ago
Abstract
A surgical stapling device includes a reload assembly that includes a shell housing, a staple cartridge, a plurality of staples received within the staple cartridge, a staple pushing member for ejecting the plurality of staples from the staple cartridge, and a knife for cutting tissue. The shell housing supports a strain gauge which can be molded into the shell housing.
Description
FIELD

This disclosure is generally related to surgical stapling devices and, more particularly, to surgical stapling devices that include a reload assembly having a strain gauge for measuring different parameters related to stapling and/or cutting of tissue.


BACKGROUND

Powered surgical stapling devices include a handle assembly, an adaptor assembly including a distal portion supported on the handle assembly, and a tool assembly supported on the distal portion of the adaptor assembly. The stapling device may also include a strain gauge for measuring characteristics of tissue being stapled, e.g., tissue thickness, tissue compression, etc., and/or parameters related to staple formation or tissue cutting, e.g., cutting force, firing force, etc. Typically, a strain gauge is supported within the adaptor assembly and is formed from electronics that can be sterilized or reprocessed to facilitate reuse of the adaptor assembly. Such electronics are costly.


SUMMARY

The techniques of this disclosure generally relate to surgical stapling devices and in particular to circular stapling devices for performing end to end anastomoses and similar suturing procedures.


One aspect of the disclosure is directed to a reload assembly including a shell housing, a staple cartridge, a plurality of staples, a staple pushing member, a knife carrier, and a knife. The shell housing supports a strain gauge and includes a distal portion, a proximal portion, and an outer housing portion defining a cavity. The staple cartridge is supported on the distal portion of the shell housing and the plurality of staples is received within the staple cartridge. The staple pushing member is supported within the cavity defined by the shell housing and defines a through bore. The knife carrier is supported within the through bore of the staple pushing member and is movable between retracted and advanced positions. The knife is supported on the knife carrier and is movable with the knife carrier between the retracted and advanced positions.


Another aspect of the disclosure is directed to a stapling device including a handle assembly, an adaptor assembly, and a reload assembly. The adaptor assembly has a proximal portion supported on the handle assembly and a distal portion. The reload assembly includes a shell housing, a staple cartridge, a plurality of staples, a staple pushing member, a knife carrier, and a knife. The shell housing supports a strain gauge and includes a distal portion, a proximal portion, and an outer housing portion defining a cavity. The staple cartridge is supported on the distal portion of the shell housing and the plurality of staples is received within the staple cartridge. The staple pushing member is supported within the cavity defined by the shell housing and defines a through bore. The knife carrier is supported within the through bore of the staple pushing member and is movable between retracted and advanced positions. The knife is supported on the knife carrier and is movable with the knife carrier between the retracted and advanced positions.


In aspects of the disclosure, the outer housing portion has a tubular extension and the strain gauge is supported on the tubular extension.


In some aspects of the disclosure, the strain gauge is molded into the tubular extension of the shell housing.


In certain aspects of the disclosure, the staple cartridge and the knife have an annular configuration.


In aspects of the disclosure, a coupling mechanism is supported about the tubular extension of the shell housing and is adapted to secure the reload assembly to a surgical stapling device.


In some aspects of the disclosure, the reload assembly includes a staple actuator that is positioned within the cavity defined by the shell housing in abutting relation to the staple pushing member, wherein the staple actuator is movable from a retracted position to an advanced position to move the staple pushing member from its retracted position to its advanced position.


The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the reload assembly described in this disclosure will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF DRAWINGS

Various aspects and features of the disclosure are described with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views and:



FIG. 1 is a side perspective view of a surgical stapling device including a tool assembly with a reload assembly including aspects of the disclosure in an unclamped position;



FIG. 2 is a side perspective exploded view of the shell assembly of the tool assembly shown in FIG. 2;



FIG. 3 is an enlarged view of indicted area of detail shown in FIG. 1;



FIG. 4 is a side perspective view of the tool assembly shown in FIG. 1 in the unclamped position with the coupling mechanism of the reload assembly removed;



FIG. 5 is an enlarged view of the indicated area of detail shown in FIG. 2;



FIG. 6 is a cross-sectional view taken along section line 6-6 of FIG. 5;



FIG. 7 is a cross-sectional view taken along section line 7-7 of FIG. 5; and



FIG. 8 is a side cross-sectional view of the tool assembly shown in FIG. 1 with the tool assembly in a clamped and fired position.





DETAILED DESCRIPTION

In this description, the term “proximal” is used generally to refer to that portion of the device that is closer to a clinician, while the term “distal” is used generally to refer to that portion of the device that is farther from the clinician. Further, the term “clinician” is used generally to refer to medical personnel including doctors, nurses, and support personnel.



FIG. 1 illustrates a circular stapling device 10 including a reload assembly in accordance with exemplary aspects of the disclosure shown generally as a reload assembly 100. The circular stapling device 10 includes a handle assembly 12, an elongate body or adaptor assembly 14, the reload assembly 100, and an anvil assembly 18 that is supported for movement in relation to the reload assembly 100 between an open position (FIG. 1) and a clamped position (FIG. 8). The reload assembly 100 includes a proximal portion 102 that can be releasably coupled to a distal portion 14a of the adaptor assembly 14 and the adaptor assembly 14 includes a proximal portion 14b that can be releasably coupled to the handle assembly 12. The handle assembly 12 includes a stationary grip 22 that supports actuation buttons 24 for controlling operation of various functions of the circular stapling device 10 including approximation of the reload assembly 100 and anvil assembly 18, firing of staples from the reload assembly 100, and cutting or coring of tissue as described in further detail below.


The circular stapling device 10 is illustrated as an electrically powered stapling device including an electrically powered handle assembly 12 that may support one or more batteries (not shown). The adaptor assembly 14 translates power from the handle assembly 12 to the reload and anvil assemblies 100, 18, respectively, to staple and cut tissue. Examples of electrically powered stapling devices can be found in U.S. Pat. Nos. 9,055,943, 9,023,014, and U.S. Publication Nos. 2018/0125495, and 2017/0340351. Alternately, it is envisioned that aspects of the reload assembly disclosed herein could also be incorporated into a manually powered stapling device such as disclosed in, e.g., U.S. Pat. No. 7,303,106 (the '106 Patent), or a stapling device that is configured for use with a robotic system as disclosed in, e.g., U.S. Pat. No. 9,962,159, that does not include a handle assembly.



FIG. 2 illustrates an exploded view of the reload assembly 100 which includes a shell housing 110, a staple actuator 112, a staple pushing member 112a, a knife carrier 114, an annular knife 116 supported on the knife carrier 114, a staple cartridge 118, and a plurality of staples 120 supported within the staple cartridge 118. The shell housing 110 includes an outer housing portion 121 and an inner housing portion 122 (FIG. 8) that are spaced from each other to define an annular cavity 124 (FIG. 8) positioned between the outer and inner housing portions 121 and 122. The inner housing portion 122 supports a bushing 122a that provides stability to the shell housing 110. The staple actuator 112 and the staple pushing member 112a are movable within the annular cavity 124 of the shell housing 110 from a retracted position to an advanced position to eject the staples 120 from the staple cartridge 118 as described in further detail below.


The staple cartridge 118 is annular and defines an annular array of staple pockets 126 (FIG. 8). Each of the staple pockets 126 supports one of the staples 120. The staple actuator 112 and the staple pushing member 112a together define a longitudinal through bore 128 (FIG. 8) that receives the knife carrier 114. The staple actuator 112 has a distal portion that abuts a proximal portion of the staple pushing member 112a such that distal movement of the staple actuator 112 within the shell housing 110 causes distal movement of the staple pushing member 112a within the shell housing 110. The staple pushing member 112a of the reload assembly 100 has a plurality of fingers 130. Each of the plurality of fingers 130 is received within a respective one of the staple pockets 126 of the staple cartridge 118 and is movable through the respective staple pocket 126 to eject the staples 120 from the staple pockets 126 when the staple pushing member 112a is moved from a retracted position to an advanced position within the shell housing 110.


The knife carrier 114 is received within the longitudinal through bore 128 of the staple actuator 112 and includes a distal body portion 140 and a plurality of spaced longitudinally extending proximal body portions 142. The distal body portion 140 and the proximal body portions 142 define a stepped central bore (FIG. 8) having a proximal portion 144a and a distal portion 144b. The proximal portion 144a of the stepped central bore of the knife carrier 114 I received about the inner housing portion 122 of the shell housing 110 such that the knife carrier 114 is movable within the staple actuator 112 about the inner housing portion 122 of the shell housing 110 between a retracted position and an advanced position (FIG. 8). The distal body portion 140 of the knife carrier 114 includes a plurality of longitudinal extensions 146. The proximal body portions 142 of the knife carrier 114 defines slots 148 that receive guide portions (not shown) of the shell housing 110 to limit the knife carrier 114 to longitudinal movement within the shell housing 110.


The shell housing 110 includes a proximal portion 150 that supports a coupling mechanism 152 (FIG. 3). The coupling mechanism 152 is operable to releasably couple the reload assembly 100 to the adaptor assembly 14 of the stapling device 10 (FIG. 1) to facilitate replacement of the reload assembly 100 and reuse of the stapling device 10. The coupling mechanism 152 includes a retaining member 154 and a coupling member 156. The coupling member 156 is received about a proximal portion 158 of the shell housing 110 and is configured to engage the distal portion of the adaptor assembly 14 (FIG. 1) to couple the adaptor assembly 14 to the reload assembly 100. It is envisioned that other types of coupling mechanisms can be used to secure the reload assembly 100 to the distal portion of the adaptor assembly 14.


The reload assembly 100 may include an e-prom holder 160 (FIG. 2) that is supported on the shell housing 110 to support an e-prom (not shown). As is known in the art, an e-prom communicates with the adaptor assembly 14 to provide information to the adaptor assembly 14 and the handle assembly 12 related to characteristics of the reload assembly 10.


In certain aspects of the disclosure, the reload assembly 110 of the stapling device 10 designed to be disposable and the handle assembly 12 and the adaptor assembly 14 are designed to be reprocessed or resterilized and reused. As such, the reload assembly 100 and components that form the reload assembly 100 are formed of materials, e.g., plastics, that are less costly and less durable than materials e.g., stainless steel, used to form the handle assembly 12 and the adaptor assembly 14.



FIGS. 2-7 illustrate the proximal portion 158 of the shell housing 110 of the reload assembly 100. The shell housing 110 of the reload assembly 100 is molded of a plastic material, e.g., polycarbonate, polyethylene, nylon, etc. . . . . The proximal portion 158 of the shell housing 110 includes a tubular extension 158a of the outer housing portion 121 of the shell housing 110. The tubular extension 158a defines a cylindrical cavity 164 that is dimensioned to receive the distal portion 14a (FIG. 1) of the adaptor assembly 14. The coupling mechanism 152 is supported about the tubular extension 158a of the proximal portion 158 of the shell housing 110 and is operable to secure the reload assembly 100 to the adaptor assembly 14.


The shell housing 110 of the reload assembly 100 supports a strain gauge 170. In one aspect of the disclosure, the strain gauge 170 includes one or more components that are molded into the shell housing 110 of the reload assembly 100 and is disposable with the reload assembly 100 after the reload assembly 100 is fired. In certain aspects of the disclosure, the strain gauge 170 is molded into the tubular extension 158a of the proximal portion 158 of the shell housing 110. It is envisioned, however, that the strain gauge 170 could be molded or supported on or within other portions of the shell housing 110 or reload assembly 100.


As illustrated in FIG. 8, the strain gauge 170 is connected to a processor (not shown) located in the handle assembly 12 (FIG. 1) by wires 180. When the reload assembly 100 is in a clamped position and is fired, the firing and clamping forces are translated through the shell housing 100 and through the strain gauge 170 to effect a change in a circuit defined by the strain gauge 170 and the electrical wires 180. The processor interprets this change to identify certain parameters related to the characteristics of the tissue and/or clamping and firing conditions. As described above, the strain gauge is formed of inexpensive materials to facilitate disposal of the reload assembly 100 after use.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A reload assembly comprising: a shell housing including an outer housing portion defining a cavity and having a proximal portion and a distal portion, the outer housing portion having a tubular extension that forms a proximal-most portion of the proximal portion of the outer housing portion of the shell housing and is configured to receive a distal portion of a stapling device, the proximal-most portion of the outer housing portion having a diameter that is smaller than a diameter of the distal portion of the outer housing;a strain gauge molded into the tubular extension of the shell housing;a staple cartridge supported on the distal portion of the shell housing and having an annular configuration;a plurality of staples received within the staple cartridge;a staple pushing member supported within the cavity defined by the shell housing, the staple pushing member defining a through bore;a knife carrier supported within the through bore of the staple pushing member, the knife carrier being movable between retracted and advanced positions;a knife supported on the knife carrier, the knife being movable with the knife carrier between the retracted and advanced positions and having an annular configuration; anda coupling mechanism extending about the tubular extension of the shell housing, the coupling mechanism adapted to secure the reload assembly to a stapling device, the reload assembly being separable from the adaptor assembly such that the reload assembly including the strain gauge is disposable;wherein the strain gauge is positioned such that when the reload assembly is clamped and fired, firing and clamping forces are translated through the shell housing and through the strain gauge.
  • 2. The reload assembly of claim 1, further including a staple actuator, the staple actuator positioned within the cavity defined by the shell housing in abutting relation to the staple pushing member, the staple actuator movable from a retracted position to an advanced position to move the staple pushing member from its retracted position to its advanced position.
  • 3. The reload assembly of claim 1, wherein the staple cartridge defines an annular array of staple pockets and the staple pushing member includes a plurality of fingers that are received within the annular array of staple pockets, each of the plurality of staples received within one of the annular array of staple pockets such that movement of the staple pushing member from its retracted position to its advanced position ejects the plurality of staples from the staple cartridge.
  • 4. A stapling device comprising: a handle assembly;an adaptor assembly having a proximal portion and a distal portion, the proximal portion supported on the handle assembly; anda reload assembly releasably coupled to the distal portion of the adaptor assembly, the reload assembly including a shell housing, a staple cartridge, a plurality of staples, a staple pushing member, a knife carrier, a knife, and a coupling mechanism, the shell housing including an outer housing portion defining a cavity and having a proximal portion and a distal portion, the outer housing portion including a tubular extension that forms a proximal-most portion of the proximal portion of the outer housing portion of the shell housing and receives the distal portion of the adaptor assembly, the coupling mechanism extending about the tubular extension of the shell housing and releasably securing the reload assembly to the adaptor assembly, the proximal-most portion of the outer housing portion having a diameter that is smaller than a diameter of the distal portion of the outer housing, a strain gauge molded into the tubular extension, the staple cartridge supported on the distal portion of the shell housing and having an annular configuration, the plurality of staples received within the staple cartridge, the staple pushing member supported within the cavity defined by the shell housing and defining a through bore, the knife carrier supported within the through bore of the staple pushing member and being movable between retracted and advanced positions, the knife supported on the knife carrier and being movable with the knife carrier between the retracted and advanced positions, the knife having an annular configuration, wherein the strain gauge is positioned such that when the reload assembly is clamped and fired, firing and clamping forces are translated through the shell housing and through the strain gauge, the reload assembly being separable from the adaptor assembly such that the reload assembly including the strain gauge is disposable.
  • 5. The stapling device of claim 4, further including a staple actuator, the staple actuator positioned within the cavity defined by the shell housing in abutting relation to the staple pushing member, the staple actuator movable from a retracted position to an advanced position to move the staple pushing member from its retracted position to its advanced position.
  • 6. The stapling device of claim 4, wherein the staple cartridge defines an annular array of staple pockets and the staple pushing member includes a plurality of fingers that are received within the annular array of staple pockets, each of the plurality of staples received within one of the annular array of staple pockets such that movement of the staple pushing member from its retracted position to its advanced position ejects the plurality of staples from the staple cartridge.
US Referenced Citations (613)
Number Name Date Kind
3193165 Akhalaya et al. Jul 1965 A
3388847 Kasulin et al. Jun 1968 A
3552626 Astafiev et al. Jan 1971 A
3638652 Kelley Feb 1972 A
3771526 Rudie Nov 1973 A
3986254 Nordstrom Oct 1976 A
4066133 Voss Jan 1978 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4289133 Rothfuss Sep 1981 A
4304236 Conta et al. Dec 1981 A
4319576 Rothfuss Mar 1982 A
4350160 Kolesov et al. Sep 1982 A
4351466 Noiles Sep 1982 A
4379457 Gravener et al. Apr 1983 A
4473077 Noiles et al. Sep 1984 A
4476863 Kanshln et al. Oct 1984 A
4485817 Swiggett Dec 1984 A
4488523 Shichman Dec 1984 A
4505272 Utyamyshev et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4550870 Krumme et al. Nov 1985 A
4573468 Conta et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4592354 Rothfuss Jun 1986 A
4603693 Conta et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4632290 Green et al. Dec 1986 A
4646745 Noiles Mar 1987 A
4665917 Clanton et al. May 1987 A
4667673 Li May 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4717063 Ebihara Jan 1988 A
4738140 Kempf Apr 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4776506 Green Oct 1988 A
4817847 Redtenbacher et al. Apr 1989 A
4873977 Avant et al. Oct 1989 A
4893662 Gervasi Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4907591 Vasconcellos et al. Mar 1990 A
4917114 Green et al. Apr 1990 A
4957499 Lipatov et al. Sep 1990 A
4962877 Hervas Oct 1990 A
5005749 Aranyi Apr 1991 A
5042707 Taheri Aug 1991 A
5047039 Avant et al. Sep 1991 A
5104025 Main et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5139513 Segato Aug 1992 A
5158222 Green et al. Oct 1992 A
5188638 Tzakis Feb 1993 A
5193731 Aranyi Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5217478 Rexroth Jun 1993 A
5221036 Takase Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5247172 Riemer Sep 1993 A
5253793 Green et al. Oct 1993 A
5261920 Main et al. Nov 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
5275322 Brinkerhoff et al. Jan 1994 A
5282810 Allen et al. Feb 1994 A
5285944 Green et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5292053 Bilotti et al. Mar 1994 A
5309927 Welch May 1994 A
5312024 Grant et al. May 1994 A
5314435 Green et al. May 1994 A
5314436 Wilk May 1994 A
5330486 Wilk Jul 1994 A
5333773 Main et al. Aug 1994 A
5344059 Green et al. Sep 1994 A
5346115 Perouse et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350104 Main et al. Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5360154 Green Nov 1994 A
5368215 Green et al. Nov 1994 A
5389098 Tsuruta Feb 1995 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne Mar 1995 A
5403333 Kaster et al. Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5425738 Gustafson et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5437684 Calabrese et al. Aug 1995 A
5439156 Grant et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5447514 Gerry et al. Sep 1995 A
5454825 Van Leeuwen et al. Oct 1995 A
5464415 Chen Nov 1995 A
5470006 Rodak Nov 1995 A
5474223 Viola et al. Dec 1995 A
5497934 Brady et al. Mar 1996 A
5503635 Sauer et al. Apr 1996 A
5522534 Viola et al. Jun 1996 A
5533661 Main et al. Jul 1996 A
5588579 Schnut et al. Dec 1996 A
5609285 Grant et al. Mar 1997 A
5626591 Kockerling et al. May 1997 A
5632433 Grant et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5641111 Ahrens et al. Jun 1997 A
5658300 Bito et al. Aug 1997 A
5669918 Balazs et al. Sep 1997 A
5685474 Seeber Nov 1997 A
5709335 Heck Jan 1998 A
5715987 Kelley et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5720755 Dakov Feb 1998 A
5732872 Bolduc et al. Mar 1998 A
5749896 Cook May 1998 A
5758814 Gallagher et al. Jun 1998 A
5792165 Klieman Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5855312 Toledano Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5881943 Heck et al. Mar 1999 A
5915616 Viola et al. Jun 1999 A
5947363 Bolduc et al. Sep 1999 A
5951576 Wakabayashi Sep 1999 A
5957363 Heck Sep 1999 A
5993468 Rygaard Nov 1999 A
6024748 Manzo et al. Feb 2000 A
6050472 Shibata Apr 2000 A
6053390 Green et al. Apr 2000 A
6068636 Chen May 2000 A
6083241 Longo et al. Jul 2000 A
6102271 Longo et al. Aug 2000 A
6117148 Ravo et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6176413 Heck et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6193129 Bittner et al. Feb 2001 B1
6203553 Robertson et al. Mar 2001 B1
6209773 Bolduc et al. Apr 2001 B1
6241140 Adams et al. Jun 2001 B1
6253984 Heck et al. Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6269997 Balazs et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6361542 Dimitriu et al. Mar 2002 B1
6387105 Gifford, III et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6402008 Lucas Jun 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6450390 Heck et al. Sep 2002 B2
6478210 Adams et al. Nov 2002 B2
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6494877 Odell et al. Dec 2002 B2
6503259 Huxel et al. Jan 2003 B2
6517566 Hovland et al. Feb 2003 B1
6520398 Nicolo Feb 2003 B2
6533157 Whitman Mar 2003 B1
6551334 Blatter et al. Apr 2003 B2
6578751 Hartwick Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6592596 Geitz Jul 2003 B1
6601749 Sullivan et al. Aug 2003 B2
6605078 Adams Aug 2003 B2
6605098 Nobis et al. Aug 2003 B2
6626921 Blatter et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6631837 Heck Oct 2003 B1
6632227 Adams Oct 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6652542 Blatter et al. Nov 2003 B2
6659327 Heck et al. Dec 2003 B2
6676671 Robertson et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6685079 Sharma et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6716222 McAlister et al. Apr 2004 B2
6716233 Whitman Apr 2004 B1
6726697 Nicholas et al. Apr 2004 B2
6740058 Lal May 2004 B2
6742692 Hartwick Jun 2004 B2
6743244 Blatter et al. Jun 2004 B2
6763993 Bolduc et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6820791 Adams Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6852122 Rush Feb 2005 B2
6866178 Adams et al. Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6905504 Vargas Jun 2005 B1
6938814 Sharma et al. Sep 2005 B2
6942675 Vargas Sep 2005 B1
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6957758 Aranyi Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981941 Whitman et al. Jan 2006 B2
6981979 Nicolo Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
7059331 Adams et al. Jun 2006 B2
7059510 Orban, III Jun 2006 B2
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7086267 Dworak et al. Aug 2006 B2
7114642 Whitman Oct 2006 B2
7118528 Piskun Oct 2006 B1
7122044 Bolduc et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7141055 Abrams et al. Nov 2006 B2
7168604 Milliman et al. Jan 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7188535 Spletzer Mar 2007 B1
7195142 Orban, III Mar 2007 B2
7207168 Doepker et al. Apr 2007 B2
7220237 Gannoe et al. May 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
RE39841 Bilotti et al. Sep 2007 E
7285125 Viola Oct 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7322994 Nicholas et al. Jan 2008 B2
7325713 Aranyi Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335212 Edoga et al. Feb 2008 B2
7364060 Milliman Apr 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399305 Csiky et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7401722 Hur Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7422137 Manzo Sep 2008 B2
7422138 Bilotti et al. Sep 2008 B2
7431191 Milliman Oct 2008 B2
7438718 Milliman et al. Oct 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7481347 Roy Jan 2009 B2
7494038 Milliman Feb 2009 B2
7506791 Omaits et al. Mar 2009 B2
7516877 Aranyi Apr 2009 B2
7527185 Harari et al. May 2009 B2
7537602 Whitman May 2009 B2
7540839 Butler et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7559451 Sharma et al. Jul 2009 B2
7585306 Abbott et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7600663 Green Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7635385 Milliman et al. Dec 2009 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7694864 Okada et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7708181 Cole et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7721932 Cole et al. May 2010 B2
7726539 Holsten et al. Jun 2010 B2
7743958 Orban, III Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7770776 Chen et al. Aug 2010 B2
7771440 Ortiz et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845536 Viola et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7857187 Milliman Dec 2010 B2
7886951 Hessler Feb 2011 B2
7896215 Adams et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909219 Cole et al. Mar 2011 B2
7909222 Cole et al. Mar 2011 B2
7909223 Cole et al. Mar 2011 B2
7913892 Cole et al. Mar 2011 B2
7918377 Measamer et al. Apr 2011 B2
7922062 Cole et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7931183 Orban, III Apr 2011 B2
7938307 Bettuchi May 2011 B2
7942302 Roby et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7959050 Smith et al. Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7975895 Milliman Jul 2011 B2
8002795 Beetel Aug 2011 B2
8006701 Bilotti et al. Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011554 Milliman Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8020741 Cole et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066169 Viola Nov 2011 B2
8070035 Holsten et al. Dec 2011 B2
8070037 Csiky Dec 2011 B2
8096458 Hessler Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8109427 Orban, III Feb 2012 B2
8113405 Milliman Feb 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8118206 Zand Feb 2012 B2
8123103 Milliman Feb 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8146790 Milliman Apr 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8181838 Milliman et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8203782 Brueck et al. Jun 2012 B2
8211130 Viola Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8267301 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8276802 Kostrzewski Oct 2012 B2
8281975 Criscuolo et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317073 Milliman et al. Nov 2012 B2
8317074 Ortiz et al. Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8328060 Jankowski et al. Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8343185 Milliman et al. Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8353930 Heinrich et al. Jan 2013 B2
8360295 Milliman et al. Jan 2013 B2
8365974 Milliman Feb 2013 B2
8403942 Milliman et al. Mar 2013 B2
8408441 Wenchell et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424535 Hessler et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8430291 Heinrich et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453911 Milliman et al. Jun 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8529599 Holsten Sep 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8567655 Nalagatla et al. Oct 2013 B2
8579178 Holsten et al. Nov 2013 B2
8590763 Milliman Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8608047 Holsten et al. Dec 2013 B2
8613230 Blumenkranz Dec 2013 B2
8616428 Milliman et al. Dec 2013 B2
8616429 Viola Dec 2013 B2
8622275 Baxter, III et al. Jan 2014 B2
8622935 Leo Jan 2014 B1
8631993 Kostrzewski Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8662370 Takei Mar 2014 B2
8663258 Bettuchi et al. Mar 2014 B2
8672931 Goldboss et al. Mar 2014 B2
8678264 Racenet et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684251 Rebuffat et al. Apr 2014 B2
8684252 Patel et al. Apr 2014 B2
8709012 Muller Apr 2014 B2
8733611 Milliman May 2014 B2
8862209 Whitman Oct 2014 B2
9055962 Blumenkranz Jun 2015 B2
9636112 Penna May 2017 B2
9655616 Aranyi May 2017 B2
9724094 Baber Aug 2017 B2
9883860 Leimbach Feb 2018 B2
10016199 Baber Jul 2018 B2
10492814 Snow Dec 2019 B2
11172580 Gaertner, II Nov 2021 B2
11424027 Shelton, IV Aug 2022 B2
20020165541 Whitman Nov 2002 A1
20030111507 Nunez Jun 2003 A1
20040073090 Butler et al. Apr 2004 A1
20050051597 Toledano Mar 2005 A1
20050107813 Gilete Garcia May 2005 A1
20050131390 Heinrich Jun 2005 A1
20060000869 Fontayne Jan 2006 A1
20060011698 Okada et al. Jan 2006 A1
20060020213 Whitman Jan 2006 A1
20060097025 Milliman May 2006 A1
20060201989 Ojeda Sep 2006 A1
20060273135 Beetel Dec 2006 A1
20070027473 Vresh et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070060952 Roby et al. Mar 2007 A1
20070151390 Blumenkranz Jul 2007 A1
20070179408 Soltz Aug 2007 A1
20080164296 Shelton Jul 2008 A1
20080216704 Eisenbeis Sep 2008 A1
20080221598 Dlugos Sep 2008 A1
20080255629 Jenson Oct 2008 A1
20090054908 Zand Feb 2009 A1
20090057369 Smith Mar 2009 A1
20090090763 Zemlok Apr 2009 A1
20090234248 Zand Sep 2009 A1
20090236392 Cole et al. Sep 2009 A1
20090236398 Cole et al. Sep 2009 A1
20090236401 Cole et al. Sep 2009 A1
20090248041 Williams Oct 2009 A1
20100019016 Edoga et al. Jan 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100084453 Hu Apr 2010 A1
20100096435 Fuchs Apr 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100192705 Chu Aug 2010 A1
20100200637 Beetel Aug 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100292691 Brogna Nov 2010 A1
20100327041 Milliman et al. Dec 2010 A1
20110011916 Levine Jan 2011 A1
20110022032 Zemlok Jan 2011 A1
20110060249 Schulze Mar 2011 A1
20110095069 Patel Apr 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110125138 Malinouskas May 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110147432 Heinrich et al. Jun 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110218484 Zemlok Sep 2011 A1
20110282170 Bannerjee Nov 2011 A1
20120012638 Huang Jan 2012 A1
20120016413 Timm Jan 2012 A1
20120078278 Bales, Jr. Mar 2012 A1
20120145755 Kahn Jun 2012 A1
20120193395 Pastorelli et al. Aug 2012 A1
20120193398 Williams et al. Aug 2012 A1
20120203213 Kimball Aug 2012 A1
20120228358 Zemlok Sep 2012 A1
20120232339 Csiky Sep 2012 A1
20120273548 Ma et al. Nov 2012 A1
20120277790 Zemlok Nov 2012 A1
20120325888 Qiao et al. Dec 2012 A1
20130015232 Smith et al. Jan 2013 A1
20130020372 Jankowski et al. Jan 2013 A1
20130020373 Smith et al. Jan 2013 A1
20130032628 Li et al. Feb 2013 A1
20130056516 Viola Mar 2013 A1
20130060258 Giacomantonio Mar 2013 A1
20130069088 Speck Mar 2013 A1
20130072982 Simonson Mar 2013 A1
20130105544 Mozdzierz et al. May 2013 A1
20130105546 Milliman et al. May 2013 A1
20130105551 Zingman May 2013 A1
20130126580 Smith et al. May 2013 A1
20130153630 Miller et al. Jun 2013 A1
20130153631 Vasudevan et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130175315 Milliman Jul 2013 A1
20130175318 Felder et al. Jul 2013 A1
20130175319 Felder et al. Jul 2013 A1
20130175320 Mandakolathur Vasudevan et al. Jul 2013 A1
20130181035 Milliman Jul 2013 A1
20130181036 Olson et al. Jul 2013 A1
20130186930 Wenchell et al. Jul 2013 A1
20130193185 Patel Aug 2013 A1
20130193187 Milliman Aug 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130193191 Stevenson et al. Aug 2013 A1
20130193192 Casasanta, Jr. et al. Aug 2013 A1
20130200131 Racenet et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130214027 Hessler et al. Aug 2013 A1
20130214028 Patel et al. Aug 2013 A1
20130228609 Kostrzewski Sep 2013 A1
20130240597 Milliman et al. Sep 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130248581 Smith et al. Sep 2013 A1
20130270814 Anton Oct 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130277412 Gresham et al. Oct 2013 A1
20130282024 Blumenkranz Oct 2013 A1
20130284792 Ma Oct 2013 A1
20130291654 Blumenkranz Nov 2013 A1
20130292449 Bettuchi et al. Nov 2013 A1
20130299553 Mozdzierz Nov 2013 A1
20130299554 Mozdzierz Nov 2013 A1
20130306112 Blumenkranz Nov 2013 A1
20130306701 Olson Nov 2013 A1
20130306707 Viola et al. Nov 2013 A1
20140008413 Williams Jan 2014 A1
20140012289 Snow Jan 2014 A1
20140012317 Orban et al. Jan 2014 A1
20140037464 Kochan, Jr. Feb 2014 A1
20140088614 Blumenkranz Mar 2014 A1
20140110455 Ingmanson Apr 2014 A1
20140175149 Smith Jun 2014 A1
20140188101 Bales, Jr. Jul 2014 A1
20140249557 Koch, Jr. Sep 2014 A1
20140276735 Boudreaux Sep 2014 A1
20140358129 Zergiebel Dec 2014 A1
20150005768 Sutherland Jan 2015 A1
20150014393 Milliman Jan 2015 A1
20150048139 Penna Feb 2015 A1
20150048140 Penna Feb 2015 A1
20150157354 Bales, Jr. Jun 2015 A1
20150216525 Collins Aug 2015 A1
20150351765 Valentine Dec 2015 A1
20150351819 Gustafson Dec 2015 A1
20160066916 Overmyer Mar 2016 A1
20160100839 Marczyk Apr 2016 A1
20160143641 Sapienza et al. May 2016 A1
20160157856 Williams et al. Jun 2016 A1
20160174988 D'Agostino et al. Jun 2016 A1
20160174998 Lal Jun 2016 A1
20160220150 Sharonov Aug 2016 A1
20160249921 Cappola Sep 2016 A1
20160249928 Cappola Sep 2016 A1
20160265938 Hryb Sep 2016 A1
20160273687 Rubinski Sep 2016 A1
20160302792 Motai Oct 2016 A1
20160374672 Bear Dec 2016 A1
20170079640 Overmyer Mar 2017 A1
20180042610 Sgroi, Jr. Feb 2018 A1
20180067003 Michiwaki Mar 2018 A1
20180092710 Bosisio Apr 2018 A1
20180116667 Bae May 2018 A1
20180243042 Eschbach Aug 2018 A1
20180353185 Nicholas Dec 2018 A1
20180360460 Mozdzierz Dec 2018 A1
20190125432 Shelton, IV May 2019 A1
20190125459 Shelton, IV May 2019 A1
20190154526 Burrow May 2019 A1
20190174636 Sgroi, Jr. Jun 2019 A1
20190200977 Shelton, IV Jul 2019 A1
20190200981 Harris Jul 2019 A1
20190201029 Shelton, IV Jul 2019 A1
20190201030 Shelton, IV Jul 2019 A1
20190206565 Shelton, IV Jul 2019 A1
20200054337 Sgroi, Jr. Feb 2020 A1
20200088592 Burrow Mar 2020 A1
20200093484 Shelton, IV Mar 2020 A1
20200405304 Mozdzierz Dec 2020 A1
20210128019 Pearlman May 2021 A1
20210128153 Sgroi May 2021 A1
20220283047 Ogawa Sep 2022 A1
Foreign Referenced Citations (35)
Number Date Country
908529 Aug 1972 CA
2805365 Aug 2013 CA
1057729 May 1959 DE
3301713 Jul 1984 DE
0152382 Aug 1985 EP
0173451 Mar 1986 EP
0190022 Aug 1986 EP
0282157 Sep 1988 EP
0503689 Sep 1992 EP
1354560 Oct 2003 EP
2138118 Dec 2009 EP
2168510 Mar 2010 EP
2238926 Oct 2010 EP
2524656 Nov 2012 EP
2777518 Sep 2014 EP
3315082 May 2018 EP
3415102 Dec 2018 EP
1136020 May 1957 FR
1461464 Feb 1966 FR
1588250 Apr 1970 FR
2443239 Jul 1980 FR
1185292 Mar 1970 GB
2016991 Sep 1979 GB
2070499 Sep 1981 GB
2004147969 May 2004 JP
2013510971 Mar 2013 JP
2013138860 Jul 2013 JP
7711347 Apr 1979 NL
1509052 Sep 1989 SU
8706448 Nov 1987 WO
8900406 Jan 1989 WO
9006085 Jun 1990 WO
9835614 Aug 1998 WO
0154594 Aug 2001 WO
2008107918 Sep 2008 WO
Non-Patent Literature Citations (1)
Entry
European Search Report dated Nov. 16, 2020, issued in corresponding EP Appln. No. 20180349, 9 pages.
Related Publications (1)
Number Date Country
20200397439 A1 Dec 2020 US