Reload shaft assembly for surgical stapler

Abstract
A surgical stapling system can include a reload shaft. The shaft can include an elongate tubular member with have a jaw assembly at the distal end thereof and a coupling collar at the proximal end thereof. The shaft assembly also includes an articulation joint coupling the jaw assembly to the distal end. A drive member and an articulation member extend within the tubular body of the shaft from the proximal end to the distal end. A firing member is connected to the distal end of the drive member such that advancement of the drive beam advances the firing member to close the jaw assemblies and fire staples from a reload positioned in the jaw assembly. The shaft assembly can also include a lockout mechanism to prevent a firing operation on a previously-fired reload or no reload.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present application relates generally to surgical occlusion instruments and, more particularly, to surgical staplers.


Description of the Related Art

Surgical staplers are used to approximate or clamp tissue and to staple the clamped tissue together. As such, surgical staplers have mechanisms to ensure that tissue is properly positioned and captured and to drive staples through the tissue. As a result, this has produced, for example, multiple triggers and handles in conjunction with complex mechanisms to provide proper stapling of the clamped tissue. With these complex mechanisms, surgical staplers can have increased manufacturing burdens, as well as potential sources for device failure and confusion for the user. Thus, reliable stapling of clamped tissue without complex mechanisms is desired.


SUMMARY OF THE INVENTION

In certain embodiments, a surgical stapler is provided herein. The surgical stapler comprises an elongate shaft, a jaw assembly, and a handle assembly. The elongate shaft has a proximal end and a distal end. The elongate shaft defines a longitudinal axis between the proximal end and the distal end. The jaw assembly is positioned at the distal end of the elongate shaft. The jaw assembly comprises a first jaw, a second jaw, and a plurality of staples. The jaw assembly is selectively positionable in one of a closed configuration, an open configuration, and a firing configuration. The handle assembly is positioned at the proximal end of the elongate shaft.


In certain embodiments, the elongate shaft comprises a jaw assembly at the distal end thereof coupled at an articulation joint. The articulation joint can allow articulation of the jaw assembly about an articulation range. Translation of an articulation member that extends through the elongate shaft articulates the jaw assembly. The elongate shaft further comprises a drive member extending through the elongate shaft. The drive member has a flexible segment extending through the articulation joint. A firing member is coupled to the distal end of the drive member.


In certain embodiments, the jaw assembly at the distal end of the elongate shaft comprises a reload support and an anvil pivotably coupled to the reload support. A firing member having an I-beam configuration is positioned in the jaw assembly. The jaw assembly can further comprise a lockout mechanism to prevent the firing member from being advanced unless an unfired reload is positioned in the jaw assembly.


In various embodiments, a shaft coupler can be positioned at the proximal end of the shaft. The shaft coupler can be configured to engage a coupler on a handle assembly in a bayonet connection. The bayonet connection simultaneously couples an articulation member, a drive member, and the elongate shaft. The coupler can further comprise a shaft identification mechanism. The coupler can further comprise a lock-in mechanism to retain the shaft assembly in connection with the handle assembly.


In various embodiments, a reload assembly for a surgical stapling system is provided. The reload assembly comprises an elongate shaft, a jaw assembly, a firing member, an actuation beam, and a reload lockout mechanism. The elongate shaft has a proximal end and a distal end. The elongate shaft defines a longitudinal axis extending between the proximal end and the distal end. The jaw assembly is positioned at the distal end of the elongate shaft. The jaw assembly comprises a first jaw, and a second jaw. The first jaw comprises a reload support configured to receive a staple reload. The second jaw is pivotably coupled to the first jaw. The second jaw comprises an anvil surface. The firing member is longitudinally slidable within the jaw assembly. The actuation beam is longitudinally slidable within the elongate shaft. The actuation beam has a proximal end and a distal end. The distal end of the actuation beam is coupled to the firing member. The reload lockout mechanism comprises a lockout lever pivotally coupled to the reload support and pivotable between a locked position preventing distal movement of the actuation beam relative to the elongate shaft and an unlocked position allowing distal movement of the actuation beam relative to the elongate shaft.


In various embodiments, a reload assembly for a surgical stapling system is provided. The reload assembly comprises an elongate shaft, a jaw assembly, an actuation beam, and a shaft coupler. The elongate shaft has a proximal end and a distal end and defines a longitudinal axis extending between the proximal end and the distal end. The jaw assembly is positioned at the distal end of the elongate shaft. The jaw assembly comprises a first jaw, and a second jaw. The first jaw comprises a reload support configured to receive a staple reload. The second jaw is pivotably coupled to the first jaw. The second jaw comprises an anvil surface. The actuation beam is longitudinally slidable within the elongate shaft. The actuation beam has a proximal end and a distal end. The distal end of the actuation beam is coupled to the jaw assembly. The shaft coupler is positioned at the proximal end of the elongate shaft. The shaft coupler comprises a locking member positioned therein. The locking member is radially outwardly advanceable by distal actuation of the proximal end of the actuation beam.


In various embodiments, a reload assembly for a surgical stapling system is provided. The reload assembly comprises an elongate shaft, a jaw assembly, an actuation beam, and a shaft coupler. The elongate shaft has a proximal end and a distal end and defines a longitudinal axis extending between the proximal end and the distal end. The jaw assembly is positioned at the distal end of the elongate shaft. The jaw assembly comprises a first jaw and a second jaw. The first jaw comprises a reload support configured to receive a staple reload. The second jaw is pivotably coupled to the first jaw. The second jaw comprises an anvil surface. The actuation beam is longitudinally slidable within the elongate shaft. The actuation beam has a proximal end and a distal end. The distal end of the actuation beam is coupled to the jaw assembly. The shaft coupler is positioned at the proximal end of the elongate shaft. The shaft coupler is configured to removably couple to a handle assembly. The shaft coupler comprises a lockout mechanism positioned therein. The lockout mechanism comprises a locking ring and a lockout member. The locking ring is rotatable about the longitudinal axis. The lockout member is radially outwardly advanceable by rotation of the locking ring.


In various embodiments, a reload assembly for a surgical stapling system is provided. The reload assembly comprises an elongate shaft, a jaw assembly, an actuation beam, an articulation link, a support link, and an articulation latching mechanism. The elongate shaft has a proximal end and a distal end and defines a longitudinal axis extending between the proximal end and the distal end. The jaw assembly is articulably coupled to the elongate shaft at the distal end of the elongate shaft. The jaw assembly comprises a first jaw and a second jaw. The first jaw comprises a reload support configured to receive a staple reload. The second jaw is pivotably coupled to the first jaw. The second jaw comprises an anvil surface. The actuation beam is longitudinally slidable within the elongate shaft to actuate the jaw assembly. The actuation beam has a proximal end and a distal end. The articulation link is longitudinally slidable within the elongate shaft to articulate the jaw assembly relative to the elongate shaft. The articulation link has a proximal end positioned adjacent the proximal end of the elongate shaft and a distal end pivotably coupled to the jaw assembly. The support link is longitudinally slidable within the elongate shaft. The support link has a proximal end extending longitudinally to a distal end pivotably coupled to the jaw assembly. The articulation latching mechanism is positioned within the elongate shaft between the proximal end and the distal end. The articulation latching mechanism has an unlatched configuration in which the articulation link and the support link are slidable within the elongate shaft and a latched configuration wherein the articulation latching mechanism engages the articulation link and the support link to prevent longitudinal sliding of the articulation link and the support link.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an embodiment of surgical stapling system with the jaws in an open configuration;



FIG. 2a is a perspective view of several embodiments of shaft assembly for the surgical stapling system of FIG. 1;



FIG. 2b is a perspective view of several embodiments of jaw assembly for the surgical stapling system of FIG. 1;



FIG. 3 is a perspective view of a jaw assembly at the distal end of the shaft assembly for the surgical stapling system of FIG. 1;



FIG. 4 is a perspective view of the jaw assembly of FIG. 3 with a staple reload;



FIG. 5 is a perspective view of the jaw assembly of FIG. 3 with a staple reload inserted;



FIG. 6A is a top view of an anvil for the jaw assembly of FIG. 3;



FIG. 6B is a top view of an anvil plate for the jaw assembly of FIG. 3;



FIG. 7 is an exploded perspective view of the anvil of the jaw assembly of FIG. 3;



FIG. 8 is a perspective view of the top jaw of the jaw assembly of FIG. 3 in an initial state and a formed state;



FIG. 9 is a perspective view of the anvil surface of the jaw assembly of FIG. 3;



FIG. 10 schematic diagram of staple recesses in the anvil surface of FIG. 9;



FIG. 11A is a perspective view of the anvil of the jaw assembly of FIG. 3;



FIG. 11B is a top view of the anvil of the jaw assembly of FIG. 3;



FIG. 12 is a perspective view of the reload support of the jaw assembly of FIG. 3 with a reload partially inserted;



FIG. 13 is a perspective view of the reload support of the jaw assembly of FIG. 3 with a reload inserted;



FIG. 14 is a side view of a closure beam of the jaw assembly of FIG. 3;



FIG. 15 is a partial cut-away front view of the closure beam of FIG. 14 with a flange thereof positioned in a channel in the anvil of the jaw assembly of FIG. 3;



FIG. 16 is an exploded perspective view of a reload for use in the staple system of FIG. 1;



FIG. 17 is an upper perspective view of the reload for use in the staple system of FIG. 1;



FIG. 18 is a lower perspective view of the reload for use in the staple system of FIG. 1;



FIG. 19 is an exploded lower perspective view of the reload for use in the staple system of FIG. 1;



FIG. 20 is a perspective view of the reload for use in the staple system of FIG. 1;



FIG. 21 is a top detail view of the reload for use in the staple system of FIG. 1;



FIG. 22 is a perspective view of a staple pusher for the reload of FIG. 16;



FIG. 23 is a perspective view of a staple pusher of the reload of FIG. 16;



FIG. 24 is a perspective view of the reload for use in the staple system of FIG. 1;



FIG. 25 is a partial cut-away view of the jaw assembly of FIG. 3 in a closed configuration;



FIG. 26 is a perspective view of the reload of FIG. 16;



FIG. 27 is a perspective view of the jaw assembly of FIG. 3 in a closed configuration with a reload inserted;



FIG. 28 is a perspective view of the jaw assembly of FIG. 3 with a reload positioned for insertion;



FIG. 29 is a perspective view of the jaw assembly of FIG. 3 with a reload inserted;



FIG. 30 is a top view of the reload of FIG. 16;



FIG. 31 is a side view of the jaw assembly of FIG. 3 with a reload inserted;



FIG. 32A is a perspective view of a reload lockout mechanism of the shaft assembly;



FIG. 32B is a side view of the reload lockout mechanism of the shaft assembly;



FIG. 33 is a side view of the reload lockout mechanism of the shaft assembly in a locked configuration;



FIG. 34 is a side view of the reload lockout mechanism of the shaft assembly in an unlocked configuration;



FIG. 35 is a perspective view of the distal end of the elongate shaft at an articulation joint connection with the jaw assembly of FIG. 3;



FIG. 36 is a partial cut-away perspective view of one embodiment of articulation joint at the distal end of the elongate shaft;



FIG. 37 is a partial cut-away perspective view of one embodiment of articulation joint at the distal end of the elongate shaft;



FIG. 38A is a partial cut-away top view of the articulation joint of FIG. 36 in an articulated position;



FIG. 38B is a partial cut-away top view of the articulation joint of FIG. 36 in another articulated position;



FIG. 39 is a partial cut-away perspective view of another embodiment of articulation joint at the distal end of the elongate shaft;



FIG. 40 is a partial cut-away perspective view of the embodiment of articulation joint of FIG. 39 at the distal end of the elongate shaft;



FIG. 41 is a partial cut-away top view of the articulation joint of FIG. 39 in an articulated position;



FIG. 42 is a partial cut-away top view of the articulation joint of FIG. 39 in another articulated position;



FIG. 43 is a partial cut-away top view of the articulation joint of FIG. 39 in a latched position;



FIG. 44 is a side view of the proximal end of the shaft assembly positioned adjacent a handle assembly for the stapler system of FIG. 1;



FIGS. 45A-45D are perspective views of a coupling of the proximal end of the shaft assembly to the handle assembly in a stapler system of FIG. 1;



FIG. 46 is an exploded perspective view of the proximal end of the shaft assembly of the stapler system of FIG. 1;



FIG. 47 is a cut-away side view of the proximal end of the shaft assembly positioned adjacent a handle assembly for the stapler system of FIG. 1;



FIGS. 48A-48B are perspective views of a coupling of the proximal end of the shaft assembly to the handle assembly in a stapler system of FIG. 1;



FIGS. 49A-49B are perspective partial cut-away views of a coupling of the proximal end of the shaft assembly to the handle assembly in a stapler system of FIG. 1;



FIG. 50 is a perspective partial cut-away view of the proximal end of the shaft assembly in a stapler system of FIG. 1;



FIG. 51 is a perspective partial cut-away view of the proximal end of the shaft assembly in a stapler system of FIG. 1; and



FIG. 52 is an exploded perspective view of the proximal end of the shaft assembly in a stapler system of FIG. 1.





DETAILED DESCRIPTION OF THE INVENTION

With reference to FIG. 1, an embodiment of surgical stapling system is illustrated. The illustrated embodiment of surgical stapler 10 comprises an elongate shaft 20, a jaw assembly 30, and a handle assembly 40. FIG. 1 illustrates the surgical stapler 10 with the jaw assembly 30 in an open configuration. A staple reload 50 can be positioned in the jaw assembly. While the illustrated surgical stapling system is illustrated with a powered handle, it is contemplated that the elongate shaft 20 and jaw assembly 30 can be interchangeably used in a stapling system including a mechanical stapler handle. For example, it is contemplated that the various embodiments of elongate shaft assembly 20 and jaw assembly 20 described herein can be used interchangeably with either the powered handle assemblies described in U.S. patent application Ser. No. 15/486,008, entitled “SURGICAL STAPLER HAVING A POWERED HANDLE,” filed Apr. 12, 2017, currently pending, and the mechanical manually actuated handle assemblies described in U.S. patent application Ser. No. 15/485,620, entitled “SURGICAL STAPLER HAVING ARTICULATION MECHANISM,” filed Apr. 12, 2017, currently pending. These applications are incorporated by reference herein in their entireties.


With continued reference to FIG. 1, the illustrated embodiment of surgical stapler 10 can be sized and configured for use in laparoscopic surgical procedures. For example, the elongate shaft 20 and jaw assembly 30 can be sized and configured to be introduced into a surgical field through an access port or trocar cannula. In some embodiments, the elongate shaft 20 and jaw assembly 30 can be sized and configured to be inserted through a trocar cannula having a relatively small working channel diameter, such as, for example, less than 8 mm. In other embodiments, elongate shaft 20 and jaw assembly 30 can be sized and configured to be inserted through a trocar cannula having a larger working channel diameter, such as, for example, 10 mm, 11 mm, 12 mm, or 15 mm. In other embodiments, it is contemplated that certain aspects of the surgical staplers described herein can be incorporated into a surgical stapling device for use in open surgical procedures.


With continued reference to FIG. 1, as illustrated, the elongate shaft 20 comprises a generally tubular member. The elongate shaft 20 extends from a proximal end to a distal end. The elongate shaft 20 defines a central longitudinal axis, L. of the surgical stapler 10 extending between the proximal end and the distal end.


With reference to FIG. 2a, it is contemplated that the stapling system can include an elongate shaft having a desired length. While the features of the jaw assembly and handle coupling described herein can be substantially similar for each of these shaft assemblies, the shaft bodies can be scalable. For example, a stapling system can include a relatively short elongate shaft 20′, a mid-length elongate shaft 20, or a relatively long elongate shaft 20″. Each of these shaft lengths can have particular applicability for a subset of patients or procedures. For example, the short elongate shaft 20′ can be useful in pediatric procedures, and the long elongate shaft 20″ can be useful in bariatric procedures.


With reference to FIG. 2b, it is contemplated that the stapling system can include a jaw assembly having a desired length. While the features of the jaw assembly and articulation joint described herein can be substantially similar for each of these shaft assemblies, the jaw assemblies bodies can be scalable. For example, a stapling system can include a relatively short jaw assembly 30′, a mid-length jaw assembly 30, or a relatively long jaw assembly 30″. Each of these jaw assemblies can have particular applicability for a subset of patients or procedures. In certain embodiments, it is contemplated that the jaw assembly have a length of approximately 45 mm. In other embodiments, it is contemplated that the jaw assembly have a length of approximately 60 mm.


With continued reference to FIG. 1, in the illustrated embodiment, the jaw assembly 30 is coupled to the elongate shaft 20 at the distal end 24 of the elongate shaft 20. The jaw assembly 30 comprises a first jaw 32 and a second jaw 34 pivotally coupled to the first jaw 32. In the illustrated embodiment, the jaw assembly 30 is articulable with respect to the elongate shaft 20.


With continued reference to FIG. 1, in the illustrated embodiment, the jaw assembly 30 can be actuated from an open configuration (FIG. 1) to a closed configuration to a stapling configuration by an actuation member or beam that is longitudinally slidable within the elongate shaft. In an initial position, the beam can be positioned at the distal end of the elongate shaft 20. With the beam in the initial position, the second jaw 34 is pivoted away from the first jaw 32 such that the jaw assembly 30 is in the open configuration. The actuation beam engages the second jaw 34 upon translation of the actuation member or beam distally along the longitudinal axis L. Translation of the actuation beam distally from the initial position a first distance can actuate the jaw assembly from the open configuration to the closed configuration. With the jaw assembly 30 in the closed configuration, the actuation beam can be returned proximally the first distance to return the jaw assembly 30 to the open configuration. A distal end of the actuation beam can advance a staple slider configured to deploy staples from the first jaw 32 such that further translation of the actuation beam distally past the first distance deploys the plurality of staples from the reload positioned in the first jaw 32.


With continued reference to FIG. 1, in the illustrated embodiment, the handle assembly is coupled to the elongate shaft 20 at the proximal end of the elongate shaft 20. As illustrated, the handle assembly 40 has a pistol grip configuration with a housing defining a stationary handle 42 and a movable handle 44 or trigger pivotably coupled to the stationary handle 42. It is contemplated that in other embodiments, surgical stapler devices including aspects described herein can have handle assemblies with other configuration such as, for example, scissors-grip configurations, or in-line configurations. As further described in greater detail below, the handle assembly 40 houses an actuation mechanism configured to selectively advance an actuation shaft responsive to movement of the movable handle 44.


With reference to FIG. 3, an embodiment of jaw assembly at the distal end of the shaft assembly 20 is illustrated. In the illustrated embodiment, the jaw assembly comprises a reload support 210 articulably coupled to the distal end of the shaft assembly 20 at an articulation joint 230. An anvil 220 is pivotably coupled to the reload support 210 and defines a top jaw of the jaw assembly 30. A firing member 240 can slide within the jaw assembly to initially close the anvil 220 relative to the reload support 210, then fire staples from a reload. In some embodiments, the firing member 240 has an I-beam configuration with a vertical beam 242 spanning between two horizontally-protruding flanges 244, 246. Advantageously, with an I-beam configuration, one horizontal flange 244 can engage a channel in the anvil 220 and the other flange 246 can engage a channel in the reload or reload support to close the jaw assembly then maintain a desired closed spacing of the jaw assembly when the firing member is advanced distally. In some embodiments, the firing member 240 can comprise a cutting blade 248 formed on or mounted to the vertical beam in an I-beam configuration. This cutting blade can separate tissue as staples are fired to form staple lines on both sides of the separated tissue.


With reference to FIGS. 4 and 5, the reload support 210 can be sized to receive and retain a disposable reload 50. The reload 50 can be lowered and moved proximally into the reload support 210 until mating features on the reload engage corresponding features on the reload support 210.


With reference to FIGS. 6A, 6B, 7, and 8, various aspects of the anvil 220 of the jaw assembly 30 are illustrated. In certain embodiments, the anvil 220 comprises an anvil plate 222 coupled to a top surface 224. The anvil plate can comprise a longitudinal channel 225 formed therein in which a horizontal flange of the firing member rides and a longitudinal slot 227 formed through the longitudinal channel 225 in which the vertical beam of the firing member rides. The top surface 224 can be formed of a sheet of material that is subsequently formed to overly the anvil plate. (FIG. 8 illustrates the flat sheet 224′ and shaped top surface 224). Advantageously, the addition of the top surface 224 to the anvil plate 222 enhances the strength of the anvil of the jaw assembly.


With reference to FIGS. 9 and 10, various aspects of the anvil plate 222 of the jaw assembly 30 are illustrated. The anvil plate comprises a plurality of staple forming pockets 223 thereon. In the illustrated embodiment, the staple forming pockets 223 are positioned in two arrays of three rows with the arrays positioned on either side of the slot for the firing member. Thus, the stapler can form two sets of three linear rows of staples with the sets separated by divided tissue. In other embodiments, it is contemplated that the anvil can include staple forming pockets configured to form other numbers and configurations of staples. The staple forming pockets have a tapered configuration with a relatively large staple entry side narrowing to a relatively small staple formation side. Advantageously, this tapered configuration can guide staples to complete formation and reduce the incidence of poorly formed staples. Adjacent rows of staples can be longitudinally offset from one another such that the relatively wide entry sides of all of the rows are offset from one another to reduce the overall width of the sets of staple rows.


With reference to FIGS. 11a and 11b, in certain embodiments of anvil 220, the top surface 224 can be coupled to the anvil plate 222 by a welding operation along a weld line 226. Advantageously, this closed anvil formed by the welding operation covers the channel for the firing member.


With reference to FIGS. 12 and 13, insertion of a reload 50 in the reload support 210 is illustrated. The reload support can comprise proximal jaw tabs 212 that protrude radially inwardly from side walls of the reload support 210 adjacent the proximal end thereof. The reload can comprise a relatively short, tapered proximal deck 510 sized to be positioned under and retained by the proximal jaw tabs. Moreover, the reload 50 can include retention tabs 512 protruding laterally outwardly adjacent a distal end thereof. The reload support 210 can comprise a corresponding pair of retention recesses 214 sized and configured to receive the retention tabs when the reload is positioned in the reload support.


With reference to FIGS. 14 and 15, an embodiment of firing member 240 having an I-beam configuration is illustrated. In the illustrated embodiment, The firing member comprises a vertical beam 242 having a cutting blade formed therein at a leading edge. The cutting blade comprises a curved cutting blade 248. A trailing edge of the firing member 240 comprises a drive member interface 245 such as a cutout or protrusion to allow the firing member to be securely coupled with the drive member extending through the elongate shaft. The trailing edge of the firing member 240 can further comprise a lockout interface 247, such as a proximally extending ‘tail’ that can position a reload lockout in an unlocked configuration when the firing member is in a proximal position. The firing member further comprises an upper horizontal flange 244 configured to ride in the channel 225 of the anvil and a lower horizontal flange 246 configured to engage the reload or reload support. As illustrated in FIG. 15, although the firing member has a general I-beam configuration, in some embodiments the horizontal flanges are curved or tapered such to conform with a shape of the channel 225 in the anvil. In some embodiments, the firing member 240 can further be configured to reduce friction during a firing sequence such as by surface finishing operations, addition of a film lubricant, or deposition of a low-friction surface on the firing member, channel, or both.


With reference to FIGS. 16-19, an embodiment of reload 50 for use in the stapling system is illustrated. The reload 50 comprises a plurality of staples 520 positioned in a corresponding plurality of staple pockets 532 formed in a cartridge 530. The staple pockets 532 are arranged in two sets of three rows each with each set separated by a slot formed through the cartridge 530. The staples 520 rest in a plurality of staple pushers 540 underlying the staple pockets 532. A slider 550 having a ramp 552 corresponding to each row of staple pusher 540 and a lockout tail 554 is positioned at the proximal end of the reload. The slider 550 is longitudinally slidable within the reload responsive to movement of the firing member. A jacket 560 underlies the cartridge and maintains the staples and staple pushers in the staple pockets. The jacket can have protruding hooks 562 to engage the cartridge.


With reference to FIG. 20, in some embodiments, the reload 50 can include a shipping cover 570 covering an upper surface of the cartridge. Advantageously, the shipping cover 570 can prevent one or more of the staples from becoming dislodged from or misaligned within the staple pockets before the reload is used. The shipping cover 570 is removed before the reload 50 is positioned in the reload support.


With reference to FIGS. 21-23, in some embodiments, the reload 50 can include certain staple alignment and retention features. For example the staple pockets 532 formed in the cartridge 530 can include staple guides 534 at ends thereof to receive legs of the staples 520 positioned therein. The staple pushers 540 can additionally include nubs 542 sized and configured to ride in the staple guides 534. As illustrated, in certain embodiments, the staple pushers 540 can be formed in groups of three such that one staple pusher 540 can push a single staple in each of three adjacent rows of staples. Moreover, an upper surface 544 of each of the staple pushers 540 can include a staple saddle configuration to relatively securely receive a staple. Secure positioning of the staples 520 in the staple pushers 540 and engagement of the staple legs and nubs 542 of the staple pushers with the staple guides can advantageously reduce the incidence of misaligned or malformed staples.


With reference to FIGS. 24-31, in various embodiments, the reload 50 and jaw assembly can be configured to be securely coupled to one another to align the staple pockets on the reload 50 with the staple forming pockets on the anvil and maintain the position of the reload 50 in the jaw assembly during staple firing. The reload 50 can include upwardly protruding bosses 538 at a proximal end thereof (FIG. 24) that define a tissue gap between the anvil 220 and an upper surface of the cartridge 530 of the reload 50 with the jaw assembly in a closed configuration (FIG. 25). Moreover, the retention tabs 512 formed adjacent the distal end of the reload (FIG. 26) are positioned within recesses 214 of the reload support 210 and prevent the reload from shifting distally during a firing operation. Thus, the reload 50 can be rapidly and securely coupled to the reload support 210 (FIGS. 28-29). Additionally, a proximal end of the cartridge 530 can taper to a reduced height to further facilitate placement on the reload support (FIG. 30). Furthermore, the cartridge can be configured with a lowered distal end 514 having a profile protruding below the reload support (FIG. 31). This lowered profile ensures secure engagement of the reload with the reload support.


With reference to FIGS. 32A, 32B, and 33-34, in certain embodiments, the jaw assembly can comprise a reload lockout mechanism 580. The reload lockout mechanism 580 can prevent advancement of the firing member if no reload is positioned within the jaw assembly or if an empty reload is positioned within the jaw assembly. The reload lockout mechanism 580 includes a lockout lever 582 pivotally coupled to the reload support. An axis defined by the pivot extends generally transverse to the longitudinal axis of the elongate shaft. With the firing member 240 fully retracted such that the jaw assembly is in an open configuration, a tail 247 extending proximally from the firing member 240 maintains the lockout lever 582 pivoted to the unlocked position. In the illustrated embodiment, a proximal portion of the lockout lever 582 proximal the pivot is forked or bifurcated to receive the firing member 240 therein such that the tail 247 can act on a surface of the lockout lever 582 distal the pivot. If no reload is inserted, an attempt to advance the firing member 240 will allow the lockout lever to pivot about a pivot point 584 from the unlocked position to the locked position as the tail 247 of the firing member is advanced distally along the lockout lever. (FIG. 33). With the lockout lever 582 in the locked position, a proximal, locking end 586 of the lockout lever interferes with a lock recess on the drive member 26, preventing further distal movement of the drive member.


With continued reference to FIGS. 32A, 32B, and 33-34, if an unfired reload is inserted into the reload support (FIG. 34), a tail 554 extending proximally from the slider 550 engages a distal end of the lockout lever 582. As illustrated, the tail 554 acts on a lower surface of a distal portion of the lockout lever 582 distal the pivot point. This engagement of the slider tail 554 with the distal end of the lockout lever 582 pivots the proximal end of the lookout lever 582 away from the drive member 26 even once the tail 247 of the firing member 240 is no longer acting on the proximal portion of the lockout lever. Accordingly, the drive member 26 and firing member 240 can be distally advanced to fire the staples from the reload. Upon completion of a firing stroke, the slider 550 remains at a distal end of the reload. Thus if the jaw assembly is returned to the open configuration, withdrawing the firing member, the fired reload should be removed and a new unfired reload should be inserted to unlock the reload lockout.


With reference to FIGS. 35-37, an embodiment of articulation joint 300 to couple the jaw assembly 30 to the distal end of the elongate shaft 20 is illustrated. In the illustrated embodiment, the articulation joint 300 comprises an articulation rod 310 pivotably coupled to the jaw assembly laterally offset from a central longitudinal axis of the shaft assembly. A pivot joint is positioned along the central longitudinal axis. The articulation joint 300 further comprises a support link 320 pivotably coupled to the jaw assembly laterally offset from the central longitudinal axis of the shaft and opposite the articulation rod. The drive beam 26 extends longitudinally along the central longitudinal axis between the articulation rod 310 and the support link 320. At least a segment of the drive beam 26 extending through the articulation joint 300 is flexible. In some embodiments, the drive beam 26 can be coupled to a flexible segment comprising a stack of shim material, which is flexible while maintaining desired force transmission capabilities for a staple firing operation. The articulation joint can further comprise one or more drive member bearings 330 positioned laterally outwardly of the drive beam 26. In some embodiments, the drive bearings 330 can comprise a flexible plastic material (FIG. 36). In other embodiments, the drive bearings 330′ can be comprised of a metal shim material (FIG. 37). Advantageously, the metal shim drive bearing 330′ can be keyed into the shaft to provide support to the flexible segment of the drive member. Moreover, the metal shim bearings can have a relatively low profile configuration. The metal shim bearings can include a low friction coating such as a TEFLON coating to reduce friction during a firing.


With reference to FIGS. 38A-38B, articulation of the articulation joint to position the jaw assembly in a first articulation position and a second articulation position are illustrated. The articulation rod 310 can be translated proximally (FIG. 38A) or distally (FIG. 38B) relative to the shaft. The lateral offset positioning of the articulation rod 310 articulates the jaw assembly relative to the shaft responsive to translation of the articulation rod. The support link 320 opposite the articulation rod 310 is passive, but can guide articulation motion of the jaw assembly and can advantageously assist in maintaining the flexible portion of the drive beam 26 towards the center of the shaft at the articulation joint, preventing the flexible portion of the drive beam 26 from buckling at the articulated bend at the articulation joint. In other embodiments, the articulation joint can include two articulation rods instead of an articulation rod and support link. In embodiments with two articulation rods, an articulation latch mechanism can be positioned in the shaft to prevent undesired articulation once a staple firing operation has commenced. For example, a latch or brake mechanism can retain the articulation rods from further movement once the drive beam 26 is translated distally.


With reference to FIGS. 39-40, another embodiment of articulation joint 300′ to couple the jaw assembly 30 to the distal end of the elongate shaft 20 is illustrated. The articulation joint 300′ comprises an articulation latch mechanism 340 positioned in the elongate shaft. In the illustrated embodiment, the articulation joint 300′ comprises an articulation rod 310′ pivotably coupled to the jaw assembly laterally offset from a central longitudinal axis of the shaft assembly. A pivot joint is positioned along the central longitudinal axis. The articulation joint 300′ further comprises a support link 320′ pivotably coupled to the jaw assembly laterally offset from the central longitudinal axis of the shaft and opposite the articulation rod. The drive beam 26′ extends longitudinally along the central longitudinal axis between the articulation rod 310′ and the support link 320′. At least a segment of the drive beam 26′ extending through the articulation joint 300′ is flexible. In some embodiments, the drive beam 26′ can be coupled to a flexible segment comprising a stack of shim material, which is flexible while maintaining desired force transmission capabilities for a staple firing operation. The articulation joint can further comprise one or more drive member bearings 330 positioned laterally outwardly of the drive beam 26′. In some embodiments, the drive bearings 330 can comprise a flexible plastic material (FIG. 36). In other embodiments, the drive bearings 330′ can be comprised of a metal shim material (FIG. 37). Advantageously, the metal shim drive bearing 330′ can be keyed into the shaft to provide support to the flexible segment of the drive member. Moreover, the metal shim bearings can have a relatively low profile configuration. The metal shim bearings can include a low friction coating such as a TEFLON coating to reduce friction during a firing.


With reference to FIGS. 41-42, articulation of the articulation joint to position the jaw assembly in a first articulation position and a second articulation position are illustrated. The articulation rod 310′ can be translated proximally (FIG. 41) or distally (FIG. 42) relative to the shaft. The lateral offset positioning of the articulation rod 310′ articulates the jaw assembly relative to the shaft responsive to translation of the articulation rod. The support link 320′ opposite the articulation rod 310′ is passive, but can guide articulation motion of the jaw assembly and can advantageously assist in maintaining the flexible portion of the drive beam 26′ towards the center of the shaft at the articulation joint, preventing the flexible portion of the drive beam 26′ from buckling at the articulated bend at the articulation joint. In other embodiments, the articulation joint can include two articulation rods instead of an articulation rod and support link.


With reference to FIGS. 39-43, the articulation latch mechanism 340 or brake mechanism of the articulation joint 300′ can retain the articulation rod and support link from further movement once the drive beam 26′ is translated distally. In the illustrated embodiment, the latch mechanism 340 is positioned within the elongate shaft between the proximal end and the distal end thereof. The articulation latching mechanism 340 has an unlatched configuration in which the articulation rod and the support link are slidable within the elongate shaft. Thus, with the articulation latching mechanism in the unlatched configuration, a user can articulate the jaw assembly relative to the elongate shaft by operation of an articulation control on the handle assembly. The articulation latching mechanism 340 further comprises a latched configuration (FIG. 43), wherein the articulation latching mechanism engages the articulation rod and the support link to prevent longitudinal sliding of the articulation link and the support link relative to the elongate shaft. Thus, in the latched configuration, the jaw assembly is retained in an articulated position and the user is prevented from articulating the jaw assembly relative to the elongate shaft.


With continued reference to FIGS. 39-43, in the illustrated embodiment, the articulation latching mechanism 340 comprises a first latch surface, such as a first plurality of teeth 342 formed on the articulation rod 310′. As illustrated, the first plurality of teeth 342 is positioned within the elongate shaft between the proximal end and the distal end of the articulation rod 310′. The articulation latching mechanism 340 can further comprise a second latch surface, such as a second plurality of teeth 344 formed on the support link 320′. As illustrated, in the embodiment of elongate shaft assembly having a latching articulation mechanism, the support link 320′ can extend proximally within the shaft through the articulation latching mechanism 340. In the illustrated embodiment, the second plurality of teeth 344 is positioned between the proximal end of the support link and the distal end of the support link adjacent the proximal end of the support link 320′.


In the illustrated embodiment, the articulation latching mechanism 340 further comprises a first shoe 346 having a mating surface such as a first pawl surface 348 formed thereon. The first pawl surface 348 is sized and configured to be engageable with the first plurality of teeth 342. The first shoe 346 can have a deployment surface opposite the mating surface, the deployment surface is in sliding engagement with the drive beam 26′. The articulation mechanism 340 can further comprise a second shoe 350 having a mating surface such as a second pawl surface 352 formed thereon. The second pawl surface 352 is sized and configured to be engageable with the second plurality of teeth 344. The second shoe 350 can have a deployment surface opposite the mating surface, the deployment surface in sliding engagement with the drive beam 26′. The articulation latching mechanism 340 can further comprise a latching profile formed on the drive beam 26′ between the proximal end and the distal end thereof and positioned within the elongate shaft. In the illustrated embodiment, the drive beam 26′ comprises a recess segment 360 formed therein, a tapered or ramped segment 362 proximal the recess segment, and a latching segment 364 proximal the ramped segment. The recess segment 360 has a first width in a direction generally perpendicular to the longitudinal axis of the elongate shaft, and the latching segment 364 has a second width greater than the first width. The articulation latching mechanism can further comprise a biasing member such as a spring clip 370 coupled to the first and second shoes and biasing the shoes 346, 350 out of engagement with the first and second pluralities of teeth 342, 344. The spring clip can also maintain engagement of the deployment surfaces of the shoes 346, 350 with the latching profile of the drive beam 26′.


With continued reference to FIGS. 39-43, in operation, the articulation latching mechanism 340 can initially be positioned in the unlatched configuration (FIGS. 39-42) such that the jaw assembly can be articulated to a desired orientation relative to the elongate shaft. In this initial positioning, the drive beam 26′ is in a proximal position relative to the elongate shaft, corresponding to an open or partially closed configuration of the jaw assembly. In the unlatched configuration, the first and second shoes 346, 350 are positioned adjacent the recess segment 360 of the drive beam 26′ in a radially inward position. Once a desired articulated position of the jaw assembly has been selected, a user can proceed to close and fire the jaw assembly, resulting in distal actuation of the drive beam 26′ relative to the elongate shaft. This distal movement of the drive beam 26′ advances the ramped and latching segments 362, 364 over the deployment surfaces of the first and second shoes 346, 350, advancing the shoes radially outwardly. (FIG. 43). With the first and second shoes 346, 350 in the radially outward configuration, the first pawl surface 348 engages the first plurality of teeth 342, and the second pawl surface 348 engages the second plurality of teeth 342 to configure the articulation latch mechanism in the latched configuration. Opening the jaw assembly after a firing sequence will reverse the sequence and return the articulation latch to the unlatched configuration. Thus, desirably, actuation of the drive member 26′ to close and fire the jaw assembly automatically latches an articulated position of the jaw assembly. Advantageously, this latching can reduce or prevent any tendency of the jaw to ‘wag’ relative to the elongate shaft as the drive beam is advanced around and retracted through the articulation bend. While the illustrated embodiment of actuation latching mechanism includes meshing arrays of teeth on the shoes and actuation rod and support link that define a plurality of discreet latched positions, it is contemplated that in other embodiments, the shoes, actuation rod, and support link can be configured to frictionally engage to define a continuous array of latched articulation positions. Moreover, while the illustrated embodiment includes two shoes each engageable with a corresponding plurality of teeth, in other embodiments, a single shoe can be advanceable to engage a single plurality of teeth on the articulation rod or support link.


With reference to FIGS. 44 and 45A-45D, a coupler 46 at the distal end of the handle assembly 40 can be coupled to the proximal end of the shaft assembly 20. The coupler 46 can include a bayonet connection with a lock-in. In the illustrated embodiment, the reload shaft 20 to handle 40 connection comprises a bayonet style connection, in which a user axially aligns and inserts the reload shaft 20 into the handle 40 and rotates the reload shaft 20 approximately 90 degrees to connect. This bayonet connection operatively couples two mechanical functions of the reload shaft 20 to corresponding actuators of the handle 40. When the bayonet connection is fully coupled, an articulation member within the shaft 20 is coupled to an articulation adapter of the handle and a drive member within the shaft 20 is coupled to the actuation adapter. Furthermore, the handle 40 and shaft 20 can be configured with a latch mechanism at the coupler 46 to prevent a user from removing the shaft 20 once the actuation adapter and drive member has been activated. Moreover, the connection at the coupler 46 can include a reload identifying mechanism such that the control system of the handle can detect if a reload shaft is connected, and if so what the attached jaw length of the reload is. It is contemplated that the handle can be used with reload shafts 20 including different length jaw assemblies. In some embodiments the same handle 40 can be used with either 45 mm or 60 mm length jaw assemblies.


In FIG. 45A, the shaft 20 is positioned in alignment with the coupler 46 on the handle, and a release knob of the coupler 46 is withdrawn to expose a bayonet channel 152 of the coupler 46 on a rotation insert of the coupler 46. The shaft 20 can include a retention post 22 or boss positionable within the bayonet channel 152. In the illustrated embodiment, the shaft includes two bosses positioned 180 degrees apart on the outer surface thereof and the coupler 46 includes a corresponding two bayonet channels 152. It is contemplated that in other embodiments, other numbers and configurations of bosses and bayonet channels can be used to provide a desired connection strength and ease of alignment.


With reference to FIG. 45B, the retention post 22 of the shaft is positioned within the bayonet channel 152. With reference to FIG. 45C, the reload shaft 20 has been rotated 90 degrees relative to the handle such that the retention post 22 of the shaft has reached a connected end of the bayonet channel 152. With reference to FIG. 45D, the release knob of the coupler is released to allow a retention recess 154 on the release knob to retain the retention post 22 of the reload shaft 20.


With reference to FIGS. 46 and 47, the shaft assembly can include a tubular shaft with the drive member or drive beam 26 and articulation member 206 extending therethrough from the proximal end to the distal end. The drive member can extend generally centrally through the shaft assembly while the articulation member is laterally offset. The proximal end of the tubular shaft can include a coupling collar 410 for coupling to the coupler 46 at the distal end of the handle. In the illustrated embodiment, the shaft assembly can include a proximal shaft ‘lock out’ mechanism. The lockout mechanism comprises a locking ring positioned within a shaft coupler at the proximal end of the elongate shaft and at least one lockout member radially outwardly advanceable through the coupling collar 410. The lockout member can be biased radially outwardly, but held in a radially inward position by the locking ring in an initial position. When the proximal end of the shaft is coupled to a handle assembly in a rotation sequence corresponding to a bayonet connection, the locking ring is engaged with a mating surface in the handle assembly and rotates relative to the elongate shaft. This rotation of the locking ring releases the lockout member. Upon removal of the shaft from the handle assembly, the lockout member radially expands. In this expanded position, the lockout member interferes with recoupling the elongate shaft to the handle assembly. Thus, this lockout mechanism can serve to limit inadvertent reuse of an elongate shaft assembly.


With reference to FIGS. 48A and 48B, engagement of the bayonet coupling between the shaft assembly and the handle is illustrated. The coupler of the handle can comprise a rotation sleeve for coupling to the coupling collar 410 in which an actuation adapter 124, an articulation adapter 204, and an identification sleeve 208 are positioned. During a bayonet coupling, the drive member of the shaft engages 26 with the actuation adapter 124, the articulation member 206 of the shaft engages with the articulation adapter 204, and a shaft identifier engages with the identification sleeve 208. FIGS. 49A and 49B illustrate the respective engagements with the shaft in a coupled configuration.


With reference to FIGS. 50 and 51, instead of or in addition to the lockout mechanism described with reference to FIGS. 46 and 47, certain embodiments of elongate shaft can include a lock-in or retention mechanism that operates upon initial distal advancement of the actuation adapter 124. As illustrated, a locking member 24 is pivotably coupled to a proximal end of the shaft 20. The locking member 24 can include a ramped or tapered lock surface at a proximal edge thereof. As illustrated in FIG. 50, the shaft 20 is in a coupled, but unlocked configuration with respect to the coupler 46. In the coupled, unlocked configuration, the shaft 20 can be removed from the coupler 46 through the bayonet connection by a reverse of the sequence of operations of FIGS. 45A-45D. Once the actuation adapter 124 is advancing to operate the stapler, the actuation adapter 124 interacts with the ramped surface of the locking member 24 to advance the locking member radially outward into a locked position. In the locked position (FIG. 51), the locking member 24 engages a locking ledge on the coupler 46 to lock in the shaft. With the shaft 20 locked in with respect to the handle 40, the shaft 20 cannot be removed from the handle 40 until the actuation adapter 124 has been returned to a fully proximally retracted position (typically corresponding to a return to a jaws open configuration following a full closure and stapling cycle of the jaw assembly).


Thus, the “lock In” feature prevents a user from removing the shaft from the handle once the drive member 26 has been driven forward. Once the locking member 24 is situated in the slot or ledge of a rotation insert of the coupler 46, a release knob of the coupler 46 is restricted from being pulled back. This locking action on the coupler prevents the user from rotating the shaft 20 out of the bayonet connection of the coupler 46.


With reference to FIG. 52, a proximal end of the shaft assembly comprises a shaft coupler or coupling collar 410 positioned on the proximal end of the tubular shaft. Thus, the stapling system described herein can easily be adapted for use with shaft assemblies having various diameters. In some embodiments, an inner diameter the shaft coupler can be readily resized to accommodate various tubular shafts without requiring different handle assemblies to accommodate shaft assemblies of various diameters.


Although this application discloses certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Further, the various features of these inventions can be used alone, or in combination with other features of these inventions other than as expressly described above. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims.

Claims
  • 1. A reload assembly for a surgical stapling system, the reload assembly comprising: an elongate shaft having a proximal end and a distal end and defining a longitudinal axis extending between the proximal end and the distal end;a jaw assembly positioned at the distal end of the elongate shaft, the jaw assembly comprising: a first jaw comprising a reload support configured to receive a staple reload; anda second jaw pivotably coupled to the first jaw, the second jaw comprising an anvil surface;a firing member longitudinally slidable within the jaw assembly from a proximal position in which the jaw assembly is open to a distal position, the firing member having a tail portion extending proximally therefrom;an actuation beam longitudinally slidable within the elongate shaft, the actuation beam having a proximal end and a distal end, the distal end of the actuation beam coupled to the firing member, wherein the actuation beam comprises a lock recess formed therein; and a reload lockout mechanism comprising:a lockout lever having a proximal end and a distal end, the lockout lever pivotally coupled to the reload support and pivotable between a locked position preventing distal movement of the actuation beam relative to the elongate shaft and an unlocked position allowing distal movement of the actuation beam relative to the elongate shaft, and wherein the tail portion of the firing member engages the proximal end of the lockout lever to maintain the lockout lever in the unlocked position with the firing member in the proximal position and with no staple reload inserted in the reload support.
  • 2. The reload assembly of claim 1, wherein the lockout lever comprises a pivot between the proximal end and the distal end, the pivot defining a pivot axis of the lockout lever.
  • 3. The reload assembly of claim 2, wherein the pivot axis is perpendicular to the longitudinal axis of the elongate shaft.
  • 4. The reload assembly of claim 1, wherein the lockout lever engages the lock recess when the lockout lever is in the locked position.
  • 5. The reload assembly of claim 1, wherein with no staple reload inserted in the reload support, the lockout lever pivots from the unlocked position to the locked position as the firing member is advanced distally from the proximal position.
  • 6. The reload assembly of claim 1, wherein with the lockout lever in the locked position, the proximal end of the lockout lever interferes with the lock recess on the actuation beam.
  • 7. A reload assembly for a surgical stapling system, the reload assembly comprising: an elongate shaft having a proximal end and a distal end and defining a longitudinal axis extending between the proximal end and the distal end;a jaw assembly positioned at the distal end of the elongate shaft, the jaw assembly comprising: a first jaw comprising a reload support configured to receive a staple reload; anda second jaw pivotably coupled to the first jaw, the second jaw comprising an anvil surface;a firing member longitudinally slidable within the jaw assembly from a proximal position in which the jaw assembly is open to a distal position, the firing member having a tail portion extending proximally therefrom;an actuation beam longitudinally slidable within the elongate shaft, the actuation beam having a proximal end and a distal end, the distal end of the actuation beam coupled to the firing member, wherein the actuation beam comprises a lock recess formed therein; a reload lockout mechanism comprising:a lockout lever having a proximal end and a distal end, the lockout lever pivotally coupled to the reload support and pivotable between a locked position preventing distal movement of the actuation beam relative to the elongate shaft and an unlocked position allowing distal movement of the actuation beam relative to the elongate shaft, and wherein the tail portion of the firing member engages the proximal end of the lockout lever to maintain the lockout lever in the unlocked position with the firing member in the proximal position and with no staple reload inserted in the reload support; anda staple reload positionable in the reload support, the reload comprising: a plurality of staples positioned therein, anda slider longitudinally advanceable within the reload from a proximal position to a distal position to deploy the staples from the reload, the slider comprising a slider tail extending proximally therefrom;wherein the slider tail engages the lockout lever with the slider in the proximal position to maintain the lockout lever in the unlocked position.
  • 8. The reload assembly of claim 7, wherein the slider tail acts on a lower surface of a distal portion of the lockout lever.
  • 9. The reload assembly of claim 7, wherein the staple reload comprises retention tabs and the reload support comprises recesses therein to receive the retention tabs to prevent distal movement of the staple reload relative to the reload support.
  • 10. The reload assembly of claim 7, wherein the staple reload comprises upwardly protruding bosses positioned at a proximal end thereof, the protruding bosses defining a gap between the anvil surface and the staple reload with the jaw assembly in a closed configuration.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/321,618, entitled “RELOAD SHAFT ASSEMBLY FOR SURGICAL STAPLER,” filed Apr. 12, 2016. The above-referenced application is incorporated by reference herein in its entirety.

US Referenced Citations (855)
Number Name Date Kind
2073960 Crosby Mar 1937 A
2140593 Pankonin Dec 1938 A
2351608 Greenwood Jun 1944 A
2487565 Leber et al. Nov 1949 A
2641154 Heller Jun 1953 A
3076373 Matthews Feb 1963 A
3077812 Dietrich Feb 1963 A
3080564 Strekopitov et al. Mar 1963 A
3203220 Kaepernik Aug 1965 A
3252643 Strekopitov et al. May 1966 A
3273562 Brown Sep 1966 A
3373646 Ehlert Mar 1968 A
3459187 Pallotta Aug 1969 A
3494533 Green et al. Feb 1970 A
3662939 Bryan May 1972 A
3675688 Bryan et al. Jul 1972 A
3692224 Astafiev et al. Sep 1972 A
4261244 Becht et al. Apr 1981 A
4281785 Brooks Aug 1981 A
4304236 Conta et al. Dec 1981 A
4312363 Rothfuss et al. Jan 1982 A
4317451 Cerwin et al. Mar 1982 A
4407286 Noiles et al. Oct 1983 A
4434796 Karapetian et al. Mar 1984 A
4442964 Becht Apr 1984 A
4454875 Pratt et al. Jun 1984 A
4522327 Korthoff et al. Jun 1985 A
4527724 Chow et al. Jul 1985 A
4589582 Bilotti May 1986 A
4591085 Di Giovanni May 1986 A
4606344 Di Giovanni Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4728020 Green et al. Mar 1988 A
4805823 Rothfuss Feb 1989 A
4892244 Fox et al. Jan 1990 A
4923350 Hinksman et al. May 1990 A
4941623 Pruitt Jul 1990 A
4955959 Tompkins et al. Sep 1990 A
4978049 Green Dec 1990 A
5031814 Tompkins Jul 1991 A
5065929 Schulze et al. Nov 1991 A
5071052 Rodak et al. Dec 1991 A
5106008 Tompkins et al. Apr 1992 A
5116349 Aranyi May 1992 A
5129570 Schulze et al. Jul 1992 A
5201746 Shichman Apr 1993 A
5221036 Takase Jun 1993 A
5236440 Hlavacek Aug 1993 A
5240163 Stein et al. Aug 1993 A
RE34519 Fox et al. Jan 1994 E
5275323 Schulze et al. Jan 1994 A
5289963 McGarry et al. Mar 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350400 Esposito et al. Sep 1994 A
5360305 Kerrigan Nov 1994 A
5364002 Green et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5381943 Allen et al. Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395034 Allen et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5413267 Solyntjes et al. May 1995 A
5415334 Williamson, IV et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5439155 Viola Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5452836 Huitema et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5458279 Plyley Oct 1995 A
5462215 Viola et al. Oct 1995 A
5464144 Guy et al. Nov 1995 A
5465895 Knodel Nov 1995 A
5470006 Rodak Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470008 Rodak Nov 1995 A
5470009 Rodak Nov 1995 A
5472132 Savage et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5485952 Fontayne Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5507426 Young et al. Apr 1996 A
5507773 Huitema et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5509920 Phillips et al. Apr 1996 A
5529235 Boiarski et al. Jun 1996 A
5547117 Hamblin et al. Aug 1996 A
5553765 Knodel et al. Sep 1996 A
5554164 Wilson et al. Sep 1996 A
5558266 Green et al. Sep 1996 A
5562241 Knodel et al. Oct 1996 A
5562700 Huitema et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571285 Chow et al. Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5615820 Viola Apr 1997 A
5626587 Bishop et al. May 1997 A
5630539 Plyley et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5657921 Young et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5678748 Plyley Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5697542 Knodel et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5704898 Kokish Jan 1998 A
5706998 Blyley et al. Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5715988 Palmer Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5732871 Clark et al. Mar 1998 A
5735445 Vidal et al. Apr 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5794834 Hamblin et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5810240 Robertson Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5820009 Melling et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5860995 Berkelaar Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5878937 Green et al. Mar 1999 A
5878938 Bittner et al. Mar 1999 A
5893506 Powell Apr 1999 A
5894979 Powell Apr 1999 A
5901895 Heaton et al. May 1999 A
5918791 Sorrentino et al. Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5964394 Robertson Oct 1999 A
D416089 Barton et al. Nov 1999 S
5988479 Palmer Nov 1999 A
6032849 Mastri et al. Mar 2000 A
6053390 Green et al. Apr 2000 A
6079606 Milliman et al. Jun 2000 A
6109500 Alli et al. Aug 2000 A
6131789 Schulze et al. Oct 2000 A
6155473 Tompkins et al. Dec 2000 A
D441865 Racenet et al. May 2001 S
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264087 Whitman Jul 2001 B1
6270453 Sakai Aug 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6488196 Fenton, Jr. Dec 2002 B1
6550757 Sesek Apr 2003 B2
6569171 DeGuillebon et al. May 2003 B2
6595509 Sesek Jul 2003 B2
6619529 Green et al. Sep 2003 B2
6644532 Green et al. Nov 2003 B2
6669073 Milliman et al. Dec 2003 B2
6716233 Whitman Apr 2004 B1
6786382 Hoffman Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6821282 Perry et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6913181 Mochizuki et al. Jul 2005 B2
6923360 Sesek et al. Aug 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7044947 de la Torre et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7097089 Marczyk Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7108472 Norris et al. Sep 2006 B2
7128253 Mastri et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7213736 Wales et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7258262 Mastri et al. Aug 2007 B2
7275674 Racenet et al. Oct 2007 B2
7278562 Mastri et al. Oct 2007 B2
7290692 Marks Nov 2007 B2
7293685 Ehrenfels et al. Nov 2007 B2
7303107 Milliman et al. Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399310 Edoga et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
RE40514 Mastri et al. Sep 2008 E
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422139 Shelton, IV et al. Sep 2008 B2
7431188 Marczyk Oct 2008 B1
7434715 Shelton, IV et al. Oct 2008 B2
7434716 Viola Oct 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7461767 Viola et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7513408 Shelton, IV et al. Apr 2009 B2
7530484 Durrani May 2009 B1
7543730 Marczyk Jun 2009 B1
7543731 Green et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641093 Doll et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7690547 Racenet et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7717312 Beetel May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721935 Racenet et al. May 2010 B2
7721936 Shelton, IV et al. May 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7731073 Wixey et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753246 Scirica Jul 2010 B2
7757925 Viola et al. Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815090 Marczyk Oct 2010 B2
7815091 Marczyk Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819896 Racenet Oct 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7828188 Jankowski Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857187 Milliman Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7891534 Wenchell et al. Feb 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918376 Knodel et al. Apr 2011 B1
7918377 Measamer et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7934628 Wenchell et al. May 2011 B2
7934629 Wixey et al. May 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7942300 Rethy et al. May 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006887 Marczyk Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8008598 Whitman et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8033441 Marczyk Oct 2011 B2
8033442 Racenet et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056789 White et al. Nov 2011 B1
8061576 Cappola Nov 2011 B2
8061577 Racenet et al. Nov 2011 B2
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8070036 Knodel Dec 2011 B1
8074861 Ehrenfels et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8087563 Milliman et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091754 Ehrenfels et al. Jan 2012 B2
8092493 Marczyk Jan 2012 B2
8100309 Marczyk Jan 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8118207 Racenet et al. Feb 2012 B2
8123100 Holsten et al. Feb 2012 B2
8127976 Scirica et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8152041 Kostrzewski Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8181839 Beetel May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186556 Viola May 2012 B2
8186560 Hess et al. May 2012 B2
8191752 Scirica Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8205619 Shah et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8235274 Cappola Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8240536 Marczyk Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245900 Scirica Aug 2012 B2
8256656 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8281972 Wixey et al. Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8292146 Holsten et al. Oct 2012 B2
8292148 Viola Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292153 Jankowski Oct 2012 B2
8292157 Smith et al. Oct 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8342380 Viola Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8393513 Jankowski Mar 2013 B2
8397972 Kostrzewski Mar 2013 B2
8397973 Hausen Mar 2013 B1
8403198 Sorrentino et al. Mar 2013 B2
8413868 Cappola Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8419768 Marczyk Apr 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453913 Milliman Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459522 Marczyk Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8469252 Holcomb et al. Jun 2013 B2
8479967 Marczyk Jul 2013 B2
8496152 Viola Jul 2013 B2
8496155 Knodel Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8505799 Viola et al. Aug 2013 B2
8505801 Ehrenfels et al. Aug 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517240 Mata et al. Aug 2013 B1
8523043 Ullrich et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8540625 Miyoshi Sep 2013 B2
8544712 Jankowski Oct 2013 B2
8556151 Viola Oct 2013 B2
8556152 Marczyk et al. Oct 2013 B2
8556153 Knodel Oct 2013 B1
8561871 Rajappa et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8573459 Smith et al. Nov 2013 B2
8573460 Cappola Nov 2013 B2
8573462 Smith et al. Nov 2013 B2
8573463 Scirica et al. Nov 2013 B2
8573464 Nalagatla et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579177 Beetel Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584921 Scirica Nov 2013 B2
8596513 Olson Dec 2013 B2
8608043 Scirica Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8627992 Edoga et al. Jan 2014 B2
8627993 Smith et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8631990 Park et al. Jan 2014 B1
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8636189 Knodel et al. Jan 2014 B1
8636190 Zemlok et al. Jan 2014 B2
8636192 Farascioni et al. Jan 2014 B2
8636193 Whitman et al. Jan 2014 B2
8636762 Whitman et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8657174 Yates et al. Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8672209 Crainich Mar 2014 B2
8672951 Smith et al. Mar 2014 B2
8685004 Zemlock et al. Apr 2014 B2
8695865 Smith et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8708211 Zemlok et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740035 Mastri et al. Jun 2014 B2
8740036 Williams Jun 2014 B2
8752748 Whitman et al. Jun 2014 B2
8763876 Kostrzewski Jul 2014 B2
8770458 Scirica Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8789741 Baxter, III et al. Jul 2014 B2
8800839 Beetel Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8806973 Ross et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820608 Miyamoto Sep 2014 B2
8833631 Munro, III et al. Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8887979 Mastri et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8899463 Schall et al. Dec 2014 B2
8905288 Wenchell Dec 2014 B2
8920435 Smith et al. Dec 2014 B2
8925783 Zemlok et al. Jan 2015 B2
8931679 Kostrzewski Jan 2015 B2
8931683 Racenet et al. Jan 2015 B2
8939343 Milliman et al. Jan 2015 B2
8967444 Beetel Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8967447 Hartoumbekis Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8979827 Cappola Mar 2015 B2
9004340 Scirica Apr 2015 B2
9010611 Ross et al. Apr 2015 B2
9016541 Viola et al. Apr 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9022271 Scirica May 2015 B2
9023014 Chowaniec et al. May 2015 B2
9027817 Milliman et al. May 2015 B2
9027818 Scirica et al. May 2015 B2
9033202 Scirica May 2015 B2
9038880 Donohoe May 2015 B1
9055943 Zemlok et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9084601 Moore et al. Jul 2015 B2
9101358 Kerr et al. Aug 2015 B2
9204876 Cappola et al. Dec 2015 B2
9237890 Kostrzewski Jan 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9282966 Shelton, IV et al. Mar 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9402629 Ehrenfels et al. Aug 2016 B2
9510830 Shelton, IV et al. Dec 2016 B2
9532782 Kostrzewski Jan 2017 B2
9662108 Williams May 2017 B2
9737302 Shelton, IV et al. Aug 2017 B2
9737303 Shelton, IV et al. Aug 2017 B2
9797486 Zergiebel et al. Oct 2017 B2
10245036 Schaller Apr 2019 B1
20020025243 Heck Feb 2002 A1
20020029044 Monassevitch et al. Mar 2002 A1
20020062136 Hillstead May 2002 A1
20020120279 Deguillebon et al. Aug 2002 A1
20030130677 Whitman et al. Jul 2003 A1
20040006372 Racenet et al. Jan 2004 A1
20040138705 Heino et al. Jul 2004 A1
20040232200 Shelton, IV Nov 2004 A1
20050234478 Wixey Oct 2005 A1
20060097026 Shelton, IV May 2006 A1
20060100644 Viola May 2006 A1
20060180634 Shelton, IV et al. Aug 2006 A1
20060235442 Huitema Oct 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070034664 Jiang Feb 2007 A1
20070057014 Whitman et al. Mar 2007 A1
20070068990 Shelton, IV et al. Mar 2007 A1
20070084897 Shelton, IV et al. Apr 2007 A1
20070102472 Shelton, IV May 2007 A1
20070102475 Ortiz May 2007 A1
20070119901 Ehrenfels et al. May 2007 A1
20070131732 Holsten et al. Jun 2007 A1
20070175950 Shelton, IV et al. Aug 2007 A1
20070175951 Shelton, IV et al. Aug 2007 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080041918 Holsten et al. Feb 2008 A1
20080078807 Hess et al. Apr 2008 A1
20080083807 Beardsley et al. Apr 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080179375 Scirica Jul 2008 A1
20080255607 Zemlok Oct 2008 A1
20090001129 Marczyk Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090026245 Holsten et al. Jan 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090057369 Smith et al. Mar 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090277948 Beardsley et al. Nov 2009 A1
20090277949 Viola et al. Nov 2009 A1
20100065604 Weng Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100072258 Farascioni et al. Mar 2010 A1
20100089970 Smith et al. Apr 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100301095 Shelton, IV Dec 2010 A1
20100331820 Prisco et al. Dec 2010 A1
20110036892 Marczyk et al. Feb 2011 A1
20110042440 Holsten et al. Feb 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110108601 Clark et al. May 2011 A1
20110108603 Racenet et al. May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110127185 Ward Jun 2011 A1
20110139852 Zingman Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110155787 Baxter, III et al. Jun 2011 A1
20110290853 Shelton, IV et al. Dec 2011 A1
20120061446 Knodel et al. Mar 2012 A1
20120074198 Huitema et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120078243 Worrell et al. Mar 2012 A1
20120080482 Schall et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120091182 Marczyk Apr 2012 A1
20120168487 Holsten et al. Jul 2012 A1
20120193396 Zemlok et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120286022 Olson et al. Nov 2012 A1
20120318844 Shelton, IV et al. Dec 2012 A1
20120325893 Pastorelli et al. Dec 2012 A1
20130001270 Kostrzewski Jan 2013 A1
20130015229 Viola Jan 2013 A1
20130015230 Wixey et al. Jan 2013 A1
20130015232 Smith et al. Jan 2013 A1
20130015233 Viola Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130037595 Gupta et al. Feb 2013 A1
20130048697 Shelton, IV et al. Feb 2013 A1
20130056521 Swensgard Mar 2013 A1
20130079814 Hess et al. Mar 2013 A1
20130087603 Viola Apr 2013 A1
20130092717 Marczyk et al. Apr 2013 A1
20130098964 Smith et al. Apr 2013 A1
20130098965 Kostrzewski et al. Apr 2013 A1
20130098969 Scirica et al. Apr 2013 A1
20130105545 Burbank May 2013 A1
20130105547 Beardsley May 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105549 Holsten et al. May 2013 A1
20130112730 Whitman et al. May 2013 A1
20130112731 Hodgkinson May 2013 A1
20130126583 Hueil et al. May 2013 A1
20130126586 Zhang et al. May 2013 A1
20130146640 Jankowski Jun 2013 A1
20130172928 Kostrzewski Jul 2013 A1
20130172929 Hess et al. Jul 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130175322 Yates et al. Jul 2013 A1
20130184718 Smith et al. Jul 2013 A1
20130186931 Beardsley Jul 2013 A1
20130186932 Shelton, IV et al. Jul 2013 A1
20130186933 Shelton, IV et al. Jul 2013 A1
20130193188 Shelton, IV et al. Aug 2013 A1
20130200132 Moore et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130221065 Aronhalt et al. Aug 2013 A1
20130240604 Knodel Sep 2013 A1
20130248582 Scirica Sep 2013 A1
20130256370 Smith et al. Oct 2013 A1
20130256371 Shelton, IV Oct 2013 A1
20130270321 Marczyk Oct 2013 A1
20130270323 Marczyk Oct 2013 A1
20130284789 Smith et al. Oct 2013 A1
20130284791 Olson et al. Oct 2013 A1
20130299552 Viola Nov 2013 A1
20130306702 Viola et al. Nov 2013 A1
20130306703 Ehrenfels et al. Nov 2013 A1
20130306706 Knodel Nov 2013 A1
20130313303 Shelton, IV et al. Nov 2013 A1
20130327808 Chen Dec 2013 A1
20130327809 Shelton, IV et al. Dec 2013 A1
20130327810 Swayze et al. Dec 2013 A1
20130334278 Kerr et al. Dec 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20130334283 Swayze et al. Dec 2013 A1
20130334284 Swayze et al. Dec 2013 A1
20130334285 Swayze et al. Dec 2013 A1
20130334286 Swayze et al. Dec 2013 A1
20130334287 Shelton, IV Dec 2013 A1
20130334288 Shelton, IV Dec 2013 A1
20140014704 Onukuri et al. Jan 2014 A1
20140014707 Onukuri et al. Jan 2014 A1
20140021239 Kostrzewski Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140027491 Beardsley et al. Jan 2014 A1
20140027493 Jankowski Jan 2014 A1
20140042204 Beetel Feb 2014 A1
20140058388 Weisshaupt Feb 2014 A1
20140103092 Kostrzewski et al. Apr 2014 A1
20140103093 Koch, Jr. et al. Apr 2014 A1
20140107640 Yates et al. Apr 2014 A1
20140110453 Wingardner et al. Apr 2014 A1
20140131416 Whitman et al. May 2014 A1
20140135832 Park et al. May 2014 A1
20140151433 Shelton, IV et al. Jun 2014 A1
20140151434 Shelton, IV et al. Jun 2014 A1
20140158746 Mastri et al. Jun 2014 A1
20140166727 Swayze et al. Jun 2014 A1
20140175146 Knodel Jun 2014 A1
20140175149 Smith et al. Jun 2014 A1
20140203063 Hessler et al. Jul 2014 A1
20140205637 Widenhouse et al. Jul 2014 A1
20140224856 Smith et al. Aug 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236184 Leimbach Aug 2014 A1
20140239038 Leimbach et al. Aug 2014 A1
20140239041 Zerkle et al. Aug 2014 A1
20140239044 Hoffman Aug 2014 A1
20140246474 Hall et al. Sep 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140246478 Baber et al. Sep 2014 A1
20140246479 Baber et al. Sep 2014 A1
20140260746 Sakaguchi et al. Sep 2014 A1
20140263537 Leimbach et al. Sep 2014 A1
20140263539 Leimbach et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263542 Leimbach et al. Sep 2014 A1
20140263543 Leimbach et al. Sep 2014 A1
20140263545 Williams et al. Sep 2014 A1
20140263546 Aranyi Sep 2014 A1
20140263550 Aranyi Sep 2014 A1
20140263553 Leimbach et al. Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263555 Hufnagel et al. Sep 2014 A1
20140263559 Williams et al. Sep 2014 A1
20140263562 Patel et al. Sep 2014 A1
20140263564 Leimbach et al. Sep 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140263566 Williams et al. Sep 2014 A1
20140263567 Williams et al. Sep 2014 A1
20140263568 Williams et al. Sep 2014 A1
20140263569 Williams et al. Sep 2014 A1
20140263570 Hopkins et al. Sep 2014 A1
20140263571 Morgan et al. Sep 2014 A1
20140263572 Shelton, IV et al. Sep 2014 A1
20140284372 Kostrzewski Sep 2014 A1
20140291378 Shelton, IV et al. Oct 2014 A1
20140299649 Shelton, IV et al. Oct 2014 A1
20140305986 Hall et al. Oct 2014 A1
20140305988 Boudreaux et al. Oct 2014 A1
20140305992 Kimsey et al. Oct 2014 A1
20140305994 Parihar et al. Oct 2014 A1
20140353359 Hall et al. Dec 2014 A1
20150008248 Giordano et al. Jan 2015 A1
20150034697 Mastri et al. Feb 2015 A1
20150041518 Shelton, IV et al. Feb 2015 A1
20150053738 Morgan et al. Feb 2015 A1
20150053740 Shelton, IV Feb 2015 A1
20150053741 Shelton, IV et al. Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053743 Yates et al. Feb 2015 A1
20150053744 Swayze et al. Feb 2015 A1
20150053745 Yates et al. Feb 2015 A1
20150053746 Shelton, IV et al. Feb 2015 A1
20150053748 Yates et al. Feb 2015 A1
20150053749 Shelton, IV et al. Feb 2015 A1
20150054753 Morgan et al. Feb 2015 A1
20150060516 Collings et al. Mar 2015 A1
20150060517 Williams Mar 2015 A1
20150060521 Weisenburgh, II et al. Mar 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150076206 Sapre Mar 2015 A1
20150076209 Shelton, IV et al. Mar 2015 A1
20150076210 Shelton, IV et al. Mar 2015 A1
20150076212 Shelton, IV Mar 2015 A1
20150083781 Giordano et al. Mar 2015 A1
20150083783 Shelton, IV et al. Mar 2015 A1
20150090760 Giordano et al. Apr 2015 A1
20150090761 Giordano et al. Apr 2015 A1
20150090762 Giordano et al. Apr 2015 A1
20150090764 Zemlok et al. Apr 2015 A1
20150108201 Williams Apr 2015 A1
20150122872 Olson et al. May 2015 A1
20150127046 Peterson May 2015 A1
20150129631 Beetel May 2015 A1
20150129634 Shelton, IV et al. May 2015 A1
20150133995 Shelton, IV et al. May 2015 A1
20150133996 Shelton, IV et al. May 2015 A1
20150134076 Shelton, IV et al. May 2015 A1
20150144678 Hall et al. May 2015 A1
20150201935 Weisenburgh, II et al. Jul 2015 A1
20150208902 Okamoto Jul 2015 A1
20150245834 Scirica et al. Sep 2015 A1
20150265275 Chen Sep 2015 A1
20150272576 Cappola Oct 2015 A1
20150289873 Shelton, IV et al. Oct 2015 A1
20150297221 Kerr et al. Oct 2015 A1
20150297233 Huitema et al. Oct 2015 A1
20150316431 Collins Nov 2015 A1
20150374363 Laurent, IV Dec 2015 A1
20160000439 Weisenburgh, II et al. Jan 2016 A1
20160000440 Weisenburgh, II et al. Jan 2016 A1
20160058447 Posada et al. Mar 2016 A1
20160157863 Williams Jun 2016 A1
20160183948 Shelton, IV et al. Jun 2016 A1
20160338702 Ehrenfels et al. Nov 2016 A1
20160374672 Bear et al. Dec 2016 A1
20160374675 Shelton, IV et al. Dec 2016 A1
20170007241 Shelton, IV et al. Jan 2017 A1
20170007242 Shelton, IV et al. Jan 2017 A1
20170007243 Shelton, IV et al. Jan 2017 A1
20170007249 Shelton, IV et al. Jan 2017 A1
20170231633 Marczyk et al. Aug 2017 A1
20170245856 Baxter, III et al. Aug 2017 A1
20170245858 Williams Aug 2017 A1
20170281161 Shelton, IV et al. Oct 2017 A1
20170281165 Harris et al. Oct 2017 A1
20170281168 Shelton, IV et al. Oct 2017 A1
20170290583 Reed et al. Oct 2017 A1
20170290584 Jasemian et al. Oct 2017 A1
20170296190 Aronhalt Oct 2017 A1
Foreign Referenced Citations (37)
Number Date Country
0 251 444 Jan 1988 EP
0 492 283 Jul 1992 EP
0 514 139 Nov 1992 EP
0 536 903 Apr 1993 EP
0 596 543 May 1994 EP
1 523 944 Apr 2005 EP
1 759 812 Mar 2007 EP
1 915 953 Apr 2008 EP
1 479 348 Jul 2008 EP
2 005 902 Dec 2008 EP
2 090 241 Aug 2009 EP
2 263 568 Dec 2010 EP
2 361 562 Aug 2011 EP
2 462 875 Jun 2012 EP
2 486 859 Aug 2012 EP
2 764 833 Aug 2014 EP
2 772 192 Sep 2014 EP
2 777 530 Sep 2014 EP
2 923 661 Mar 2015 EP
2 891 462 Jul 2015 EP
2 926 742 Oct 2015 EP
2 942 020 Nov 2015 EP
3 135 225 Mar 2017 EP
3 238 639 Mar 2017 EP
3 338 653 Jun 2018 EP
3 338 698 Jun 2018 EP
3 338 702 Jun 2018 EP
2001-087272 Apr 2001 JP
2063710 Jul 1996 RU
WO 8302247 Jul 1983 WO
WO 9424947 Nov 1994 WO
WO 0230296 Apr 2002 WO
WO 02096327 Dec 2002 WO
WO 2003094747 Nov 2003 WO
WO 2004032762 Apr 2004 WO
WO 2012052729 Apr 2012 WO
WO 2014139440 Sep 2014 WO
Non-Patent Literature Citations (36)
Entry
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027213, entitled “Surgical Stapler Having a Powered Handle,” dated Jul. 5, 2017, 11 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Jul. 10, 2017, 15 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Sep. 12, 2017, 22 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027213, entitled “Surgical Stapler Having a Powered Handle,” dated Sep. 13, 2017, 17 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Sep. 14, 2017, 21 pgs.
Ethicon Endo Surgery, Inc., Contour Curved Cutter Stapler, 2014, 2 pgs.
Justright Surgical, JustRight Surgery, Dec. 31, 2014, 2 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2014/028811, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Aug. 5, 2014, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2014/028811, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Sep. 15, 2015, 11 pgs.
European Patent Office, European Search Report for European Application No. EP 14764812.5, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Apr. 6, 2017, 6 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Jun. 28, 2017, 15 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/045993 titled “Surgical Stapler Having Locking Articulation Joint”, dated Jan. 24, 2017, 20 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2016/045993, entitled “Surgical Stapler Having Locking Articulation Joint,” dated Feb. 15, 2018, 13 pgs.
European Patent Office, European Search Report for European Application No. 07784007.2, entitled “Surgical Stapler,” dated Jun. 15, 2012, 6 pgs.
International Searching Authority, U.S., The International Search Report and the Written Opinion of the International Searching authority for international application PCT/US2014/027768, titled “Surgical Stapler with Expandable Jaw”, dated Jul. 25, 2014, 17 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2014/028211, entitled “Surgical Stapler with Partial Pockets,” dated Sep. 8, 2014, 17 pgs.
International Searching Authority, U.S., The International Search Report and the Written Opinion of the International Searching authority for international application PCT/US2015/0035379, titled “Surgical Stapler with Circumferential Firing”, dated Sep. 15, 2015, 22 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2014/027768, entitled “Surgical Stapler with Expandable Jaw,” dated Sep. 24, 2015, 9 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2015/050103 titled “Surgical Stapler with Self-Adjusting Staple Height” dated Feb. 17, 2016, 18 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2015/035379, entitled “Surgical Stapler with Circumferential Firing,” dated Dec. 22, 2016, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/050103, titled “Surgical Stapler With Self-Adjusting Staple Height,” dated Mar. 30, 2017, 12 pgs.
European Patent Office, Partial European Search Report for European Application No. EP 14762896.0, entitled “Surgical Stapler with Expandable Jaw,” dated Apr. 10, 2017, 6 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 18186558.5, entitled “Surgical Stapler with Partial Pockets,” dated Oct. 10, 2018, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Oct. 25, 2018, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027213, entitled “Surgical Stapler Having Powered Handle,” dated Oct. 25, 2018, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Oct. 25, 2018, 12 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 18189960.0, entitled “Surgical Stapler with Expandable Jaw,” dated Dec. 13, 2018, 6 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” dated May 24, 2019, 19 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” dated Jul. 19, 2019, 24 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 19150575.9, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Aug. 21, 2019, 5 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 19180055.6, entitled “Surgical Stapler with Circumferential Firing,” dated Sep. 20, 2019, 8 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2020/019938, entitled “Surgical Stapling Instrument Having a Two-Position Mechanism,” dated Jun. 18, 2020, 16 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 20157713.7, entitled “Surgical Stapler with Expandable Jaw,” dated May 11, 2020, 6 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees for PCTUS2020/025496, entitled “Reload Cover for Surgical Stapling System,” dated Jun. 18, 2019, 15 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 20161294.2, entitled “Surgical Stapler with Self-Adjusting Staple Height,” dated Jun. 22, 2020, 6 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2020/025496, entitled “Reload Cover for Surgical Stapling System,” dated Aug. 13, 2020, 20 pgs.
Related Publications (1)
Number Date Country
20170290584 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
62321618 Apr 2016 US