The present invention relates generally to the field of munitions, and more specifically to reloadable training ammunition. Law enforcement and military personnel require a need to regularly train in the use of munitions to achieve and maintain proficiency in their deployment. For example, less lethal impact munitions which impart blunt energy to redirect, control or incapacitate aggressive human targets, depends upon accurate shot placement to achieve the desired outcome while minimizing the risk of serious injury. As with any munition fired from a firearm or launcher, accurate and consistent shot placement is only achieved through repetitive training with the actual munitions or realistic training variant.
With the increased use of impact munitions by law enforcement and military forces, as well as the increased number of those forces, there is a need for a cost-effective training munition that matches the performance of the actual munition while allowing the user to easily reload and re-use the training munition in the field. For munitions that incorporate a high/low pressure propulsion system, it is critical to duplicate the features of this propulsion system design in order to achieve the same performance in a reloadable training munition. Many high/low pressure design munitions incorporate blank propellent cartridges that control the exact amount of propellent used, rupture discs of specified thickness, and vent holes of specific diameters. These features must be duplicated to achieve the same projectile velocities and shot-to-shot variation in the reloadable training munition as in the actual munition.
Various types of prior training and reload kits have been marketed and sold that involve reloading the actual munition projectiles into new loaded shell bases. Such designs or kits result in performance approximating the actual munition, but only at a minor cost savings. In order to achieve more of a cost savings, users of these training and reload kits have attempted to reload the shell bases by pressing out the fired blank cartridges and pressing in new cartridges. These efforts have been without success because such an operation needs to be done in a workshop with the proper equipment such as presses and holding fixtures which are not available in the field. The reloading operation consequently was frequently done incorrectly without duplicating the features of the high/low pressure propulsion system, and did not produce consistent performance when firing the projectiles, which decreased the value of the training.
Other prior training systems were developed that employ a reloadable blank cartridge insert that was pushed into the shell base and secured by glue. These systems have had poor results in the field because the glue used to secure the reload can accumulate on the wear face of the blank cartridge primer, in sufficient quantity to cause accidental discharge of the weapon when the breach was closed. In addition, this design did not allow the user to change out the reload in the field without the use of a press.
All current prior reloadable training munition systems share the same problem in that they are not easily reloaded in the field to allow rapid turn-around time and optimum use of training time on the range. To be reloaded properly and safely, these munitions require the use of special equipment and presses, and operations that should be done in a workshop environment. Consequently, a need exists for a reloadable training munition that accurately reproduces the performance of the actual munition, is easily and safely reloaded in the field without the use of specialized equipment, and achieves the goal of significant cost savings.
The present invention is directed to a reloadable training munition system that incorporates a reusable projectile, a reusable shell base to house a propulsive reload, and a reload insert that houses a blank smokeless propellent cartridge, rupture disc, and vent hole of a high/low pressure propulsion system. The propulsive reload can be inserted by hand into the shell base, where it is secured by a mechanical means such as a set screw, lock ring, or threaded interface that does not require specialized equipment to install. The projectile also can be inserted by hand. The entire reloading operation can be accomplished in the field to perform multiple firings with minimal turn-around time. Significant cost savings is achieved through the lower cost of the reusable hardware components, as well as the time savings resulting from the ability to reload the munitions in the field.
Referring to the drawings, a reloadable training munition 10 of the present invention is illustrated. The munition 10 comprises three main components, namely a reusable projectile 12, a reusable shell base 14 and a reload insert 16. The reusable projectile 12 has a nose section 18 which is designed to closely simulate the weight, flight stability and aerodynamic characteristics of an actual munitions projectile, but utilizing materials and manufacturing techniques to reduce the cost and allow the projectile to be reused numerous times without loss of performance. For example, an actual munition projectile could be a multi-component projectile made of plastic and foam components bonded together and the reusable projectile which would replace the actual munitions could be a single-piece, molded plastic projectile. Depending upon the actual munition projectile the reusable projectile is replacing, the projectile can be solid or can be hollow. The reusable projectile has a reduced diameter neck portion 20 sized to provide an interference fit inside the reusable shell base and can be inserted into the shell base by hand.
The reusable shell base 14 has the same internal and external dimensions as a single use shell base to preserve the interface and fit with the projectile and the weapon platform. The reusable shell base incorporates the hollow cavity 22 in the bottom of the shell which accepts the reload insert 16. The internal diameter of a hollow cavity is designed with sufficient tolerance to allow the reload insert to be loaded or removed by hand. The reload insert 16 houses a blank cartridge 24 and a rupture disc 26. The reload insert also has a vent hole 28 (seen best in
To retain the reload insert within the reusable shell base, a mechanical attachment means is incorporated. For example as shown in
As shown in
Another mechanical means of retention could be designed into the interface between the reload insert and the shell base such as steps or grooves that could lock the reload insert in place when it is inserted and turned in the shell base. A locking groove system would incorporate a reload with features that are keyed to the same pattern as the opening in the shell base, the keyed feature positioned axially on the reload to align with a radial groove on the interior of the shell cavity. The reload is inserted until the keyed feature and the groove align, and then rotated to lock the reload in place. Still another mechanical means of retaining the propulsion system reload could be an o-ring interface between the propulsion system reload and the interior surface of the hollow cavity in the shell base. The o-ring could be located either in a groove on the external surface of the propulsion system reload, meeting with the groove on the internal surface of the hollow cavity in the shell base, or vice versa wherein the o-ring is located in a groove on the internal surface of the hollow cavity of the shell base and mates with a groove on the surface of the propulsion system reload.
The ammunition as shown in
All of the present invention has been illustrated with respect to several embodiments thereof, it is not to be so limited since changes and modifications can be made which are within the intended scope of the invention as hereinafter claimed.
This application claims priority to U.S. Provisional Patent Application No. 60/916,746 filed May 8, 2007.
Number | Date | Country | |
---|---|---|---|
60916746 | May 2007 | US |