Relocatable habitat unit

Abstract
A construction set and method for assembling a Relocatable Habitat Unit (RHU) requires a plurality of flat panels that include male (M) and female (F) connectors located on their respective peripheries. The entire RHU can then be assembled using a single, hand-operated tool to engage a selected M with a selected F. First the floor is established and leveled. Next, starting at a corner, the walls are erected around the floor. Finally, the roof is created. A same, hand-operated tool is used for each task.
Description
FIELD OF THE INVENTION

The present invention pertains generally to Relocatable Habitat Units (RHUs) for use in simulating an environment for a military combat training scenario. More particularly, the present invention pertains to an RHU that can be assembled and disassembled on-site, using panels that can be maneuvered, positioned and interconnected by no more than two men. The present invention is particularly, but not exclusively, useful as a system and method for the complete assembly of an RHU using only a same, single, hand-operated tool.


BACKGROUND OF THE INVENTION

Military training must necessarily be conducted in an environment that will simulate anticipated combat operations as accurately as possible. For a comprehensive training program, this requires the ability and flexibility to relocate and set-up several different types of training environments. In general, training sites may need to selectively simulate either an urban, suburban or an open terrain environment.


For a training site, the realism that can be attained when simulating a particular environment can be clearly enhanced by introducing indigenous persons (i.e. actors) into the training scenario. Further, in addition to the indigenous persons, urban and suburban environments can be made even more realistic when trainees are confronted by obstacles, such as buildings (e.g. habitats). In most instances, such structures can be relatively modest. Nevertheless, their integration into the training scenario requires planning.


Providing realistic buildings for a training environment requires the collective consideration of several factors. For one, the buildings need to present a visual perception that is accurate for the particular training scenario. Stated differently, they need to “look the part”. For another, it is desirable that structures assembled on the training site be capable of disassembly for relocation to another training site and subsequent use. With this last point in mind, an ability to easily assemble and disassemble a building (i.e. training aide) is a key consideration.


Heretofore, military combat training scenarios have been conducted either on open terrain, or at locations where there have been pre-existing buildings. The alternative has been to bring prefabricated components of buildings to a training site, and then assemble the components to create the building. Typically, this has required special equipment and considerable man-hours of labor.


In light of the above, it is an object of the present invention to provide a construction set and method for assembling and disassembling an RHU, at a training site, with as few as two persons. Still another object of the present invention is to provide a construction set that requires the use of only a same, single, hand operated tool for the assembly and disassembly of an entire RHU. Yet another object of the present invention is to provide a construction set for the assembly and disassembly of an entire RHU that is relatively simple to manufacture, is extremely simple to use, and is comparatively cost effective.


SUMMARY OF THE INVENTION

A Relocatable Habitat Unit (RHU) in accordance with the present invention is assembled using a plurality of substantially flat panels. For this assembly operation, each panel includes male (M) and female (F) connectors. Specifically, these connectors are located along the periphery of the panel. Importantly, all of the male connectors can be engaged with a respective female connector using the same tool. Thus, an entire RHU can be assembled and disassembled in this manner. Further, each panel is sufficiently lightweight to be moved and positioned by one person. As a practical matter, a second person may be required to use the tool and activate the connectors as a panel is being held in place by the other person.


In detail, a construction set for use with the present invention includes a plurality of panels and only the one tool. Each panel has a periphery that is defined by a left side edge, a right side edge, a top edge and a bottom edge. Selected panels, however, can have different configurations that include a door or a window. Still others may simply be a solid panel. In particular, solid panels are used for the floor and ceiling (roof) of the RHU. Essentially, there are wall panels, floor panels, and ceiling panels. Each panel, however, regardless of its configuration, will include at least one male connector and at least one female connector that are located on its periphery.


In addition to the wall, floor, and ceiling panels, the construction set also includes corner connections and ceiling attachments. Specifically, corner connections are used to engage wall panels to each other at the corners of the RHU. The ceiling attachments, on the other hand, allow engagement of roof panels with the top edges of wall panels.


The placement and location of male (M) and female (F) lock connectors on various panels of the construction set is important. Specifically, along the right side edge of each wall panel, between its top edge and bottom edge, the lock configuration is (FMMF). Along its left side edge, the lock configuration is (MFFM). Further, along the top edge the lock configuration is (MM), and along the bottom edge it is (M or F [depending on the connector of the floor panel]).


Unlike the panels, the corner connections are elongated members with two surfaces that are oriented at a right angle to each other. The lock configurations for a corner connection are (F--F) along one surface and (-FF-) along the other surface. Like the corner connections, the ceiling attachments also present two surfaces that are at a right angle to each other. Their purpose, however, is different and accordingly they have a (FF) lock configuration on one surface for engagement with the top edge of a wall panel. They also have either a (MM) or a (FF) configuration along the other surface for connection with a ceiling panel.


Importantly, in addition to the above mentioned panels, connections and attachments, the construction set of the present invention includes a single hand tool. Specifically, this hand tool is used for activating the various male (M) connectors for engagement with a female (F) connector. For the present invention, this tool preferably includes a hex head socket, a drive that holds the hex head socket, and a ratchet handle that is swivel attached to the drive.


For assembly of the RHU, the first task is to establish a substantially flat floor. This is done by engaging male (M) connectors on a plurality of floor panels with female (F) connectors on other floor panels. The floor is then leveled using extensions that can be attached to the floor. Next, a wall is erected around the floor of the RHU by engaging a male connector on the right side edge of a respective wall panel with a female connector on the left side edge of an adjacent wall panel. Recall, the lock configurations on the left and right edges of wall panels are, respectively, (FMMF) and (MFFM). Additionally, the bottom edge of each panel in the wall is engaged to the floor using mutually compatible male (M) and female (F) connectors. Finally, the roof is created for the RHU by engaging male (M) connectors on ceiling panels with female (F) connectors on other ceiling panels. The ceiling attachments are then engaged to the assembled roof. In turn, the ceiling attachments are engaged to the top edge of a wall panel using mutually compatible male (M) and female (F) connectors. All connections for the assembly of the RHU are thus accomplished using the same tool.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:



FIG. 1 is a perspective view of an assembled Relocatable Habitat Unit (RHU) in accordance with the present invention;



FIG. 2 is an exploded perspective view of an RHU;



FIG. 3 is an elevation view of three panels for an RHU shown positioned for connection of their respective male (M) and female (F) connectors;



FIG. 4 is a perspective view of a single wall panel of an RHU positioned for engagement with a corner section and a ceiling attachment; and



FIG. 5 is a perspective view of portions of two panels from an RHU, with portions broken away to show the interaction of male (M) and female (F) connectors in their operational relationship with a tool that is used to assemble the RHU in accordance with the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring initially to FIG. 1, a Relocatable Habitat Unit (RHU) in accordance with the present invention is shown and is generally designated 10. As shown, the RHU 10 includes a plurality of individual panels, of which the generic panel 12 (sometimes hereinafter referred to as a wall panel) is exemplary. The panel 12 is substantially flat, and is rectangular in shape with a width “w” of approximately four feet and a length “l” of approximately eight feet (i.e. the panel 12 is a 4×8). Alternatively, a panel 12 may be dimensioned as a 4×4. The depth of the panel 12 can vary slightly but, in general, will only be two or three inches. Preferably, the panel 12 is made of a light-weight composite polymer foam type material.


For the present invention there are essentially three different types of panels 12. These are generally denominated by their structural function in the RHU 10 and are: a wall panel 12, a ceiling panel 14 and a floor panel 16. Further, the wall panels 12 may have any of three different configurations. Specifically, these configurations are shown in FIG. 1, and are: a door panel 18, a solid panel 20 and a window panel 22. Regardless of configuration, however, the exterior of each wall panel 12 can be dressed to appropriately simulate the desired indigenous environment. FIG. 1 also shows that the RHU 10 is supported by a plurality of adjustable extensions, of which the extensions 24a and 24b are exemplary.



FIG. 2 shows that, in addition to the panels 12, the RHU 10 includes a plurality of corner connections 26, of which the corner connections 26a and 26b are exemplary. Further, FIG. 2 shows there is a plurality of ceiling attachments 28, of which the ceiling attachments 28a and 28b are exemplary. As will be more fully appreciated with further disclosure, these corner connections 26 and ceiling attachments 28 are used to interconnect panels 12.


It is an important aspect of the present invention that the panels 12, the corner connections 26 and the ceiling attachments 28 have compatible male (M) and female (F) locking connectors. For example, FIG. 3 shows a door panel 18, a solid panel 20 and a window panel 22 placed in side-by-side relationship with their respective M and F locking connectors positioned for engagement. Details of the structure involved will, perhaps, be best appreciated by cross referencing FIG. 3 with FIG. 4.


In FIG. 4 a panel 12 is shown to have a substantially rectangular periphery 30 that is defined by a left side edge 32, a right side edge 34, a top edge 36 and a bottom edge 38. Further, FIG. 4 shows that the panel 12 includes a ledge 40 that extends along the bottom edge 38 and outwardly from the periphery 30. The purpose of ledge 40 is to rest on a floor panel 16 of an assembled RHU 10 (i.e. when a wall panel 12 has been engaged with the floor panel 16), to thereby provide additional support for the panel 12.



FIG. 4 also shows that a corner connection 26 is an elongated member having a first surface 42 and a second surface 44. For purposes of the present invention, the first surface 42 needs to be oriented at a right angle (i.e. orthogonal) to the second surface 44. Importantly, the first surface 42 is provided with F locking components that are aligned as (F--F). Thus, the first surface 42 of corner connection 26 is compatible with the alignment (MFFM) shown for locking connectors on the left side edge 32 of the panel 12. Stated differently, the top and bottom M lock connectors on the left edge 32 of panel 12 will lock, respectively, with the top and bottom F lock connectors on first surface 42 of corner connection 26. Note also that the alignment of locking connectors on the second surface 44 of corner connection 26 is (-FF-). This is likewise compatible with the alignment (FMMF) that is typical for the right side edge 34 of a panel 12 (see also FIG. 3).


Like the corner connections 26, the ceiling attachments 28 are elongated members. Also, the ceiling attachments 28 have a first surface 46 and a second surface 48. Like the corner connections 26, the first surface 46 of the ceiling attachment 28 needs to be oriented at a right angle (i.e. orthogonal) to its second surface 48. The similarities end there, however. As shown in FIG. 4, the second surface 48 of the ceiling attachment 28 includes a pair of F locking connectors that will interact with respective M locking connectors along the top edge 36 of the panel 12. On the other hand, the first surface 46 may have either M or F locking connectors for engagement with a ceiling panel 14.


The interaction of M and F locking connectors will be best appreciated with reference to FIG. 5. There it will be seen that the present invention employs a tool, generally designated 50. As shown, the tool 50 includes a hex head 52 that is connected to a drive 54. It will be appreciated by the skilled artisan that the hex head 52 shown in FIG. 5, however, is only exemplary of head configurations that may be used for the present invention. In any event, the drive 54 is connected to a swivel ratchet 56 that, in turn, is connected to a handle 58. As envisioned for the present invention, this tool 50 is all that is required to assemble the RHU 10.


Still referring to FIG. 5, it will be seen that the panel portions 12a and 12b have respective F and M locking connectors. As envisioned for the present invention, all M and F locking connectors used for the RHU 10 of the present invention are substantially identical. In detail, the M locking connector is shown to include a hex socket 60 with an attached cam lock 62. Further, the cam lock 62 is shown to have an upper ramp 64 and a lower ramp 66 that are inclined so there is an increasing taper extending from end 68 back to the hex socket 60. In contrast, the F locking connector on panel 12a is shown to include an upper abutment 70 and a lower abutment 72.


For an engagement between an M and an F locking connector, the connectors need to first be juxtaposed with each other. This can be accomplished in any of several ways. For instance, either side edges 32/34 of panels 12 are juxtaposed to each other (e.g. see FIG. 3); ceiling panels 14 and floor panels 16 are respectively juxtaposed (see FIG. 2); a corner connection 26 is juxtaposed with a side edge 32/34 of a panel 12 (e.g. see FIG. 4); a ceiling attachment 28 is juxtaposed with the top edge 36 of a panel 12 or with a ceiling panel 14; or the bottom edge 38 of a panel 12 is juxtaposed with a floor panel 16. In each case, it is important that an M locking connector be positioned opposite an F locking connector.


Once an M and an F locking connector have been properly positioned with each other, as indicated above, the hex head 52 of tool 50 is inserted into the hex socket 60. The tool 50 is then turned in the direction of arrow 74. This causes the ramps 64/66 of cam lock 62 to respectively go behind the abutments 70/72. The M and F locking connectors are then engaged.


In accordance with the present invention, assembly of the RHU 10 is best accomplished by following a predetermined sequence of steps. First, a plurality of floor panels 16 is engaged together to form a floor for the RHU 10. The floor is then positioned and leveled by adjusting the extensions 24 that are provided for that purpose. Next, starting at a corner for the RHU 10, a corner connection 26 is engaged with panels 12. Note: at this point the respective ledges 40 on panels 12 are positioned to rest on the adjacent floor panel 16. Also, the bottom edges 38 of the wall panels 12 are engaged through M/F locking connections to the adjacent floor panel 16. This continues until all walls of the RHU 10 have been erected. As intended for the present invention, door panels 18, solid panels 20 and window panels 22 can be used as desired in the assembly of the walls for the RHU 10.


After the walls of RHU 10 have been erected, the roof is created. Specifically, ceiling attachments 28 are engaged, as required, with a single ceiling panel 14 (see FIG. 2). This ceiling panel 14, with its ceiling attachments 28, is positioned so the ceiling attachments 28 can be connected, via M/F locking connectors, to the top edges 36 of respective panels 12. Additional ceiling panels 14 and their associated ceiling attachments 28 can then be similarly created, positioned and connected to other ceiling panels 14 and other wall panels 12, to complete the roof. The RHU 10 is thus assembled, and appropriate set dressing can then be added.


Importantly, all of the tasks described above for the assembly of an RHU 10 are accomplished using only the tool 50. Axiomatically, it follows that the entire RHU 10 is held together with only a plurality of M/F locking connections.


While the particular Relocatable Habitat Unit as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.

Claims
  • 1. A construction set for assembling a relocatable habitat unit consisting essentially of: a base plurality of substantially flat panels, with each panel having a periphery defined by a left side edge, a right side edge, a top edge and a bottom edge;a first plurality of panels selected from the base plurality for use as interchangeable wall panels;a second plurality of panels selected from the base plurality for use as ceiling panels;a third plurality of panels selected from the base plurality for use as floor panels;a plurality of male connectors disposed along the left side edge and the right side edge of each wall panel wherein the left side edge and right side edge of each wall panel include an equal number of female connectors, disposed in opposing sequences and located on the periphery thereof such that when the left side edge of a wall panel abuts the right side edge of another wall panel each male connector abuts a female connector, and wherein the top edge of each wall panel has at least one pair of connectors and the bottom edge has at least one connector; anda hand tool with a head for rotating one male connector on a first panel about its axis of rotation for engagement with one female connector on a second panel to fixedly join the panels together during assembly of the habitat unit,wherein the ceiling panels and floor panels are interchangeable, andwherein each male connector comprises a socket mounted on a panel for receiving the head therein, and a cam lock affixed to the socket for rotation therewith, andwherein the cam lock includes a first ramp and an opposed second ramp, with the ramps inclined to form a decreasing taper with increased distance from the socket, andwherein each female connector comprises a first abutment formed in a panel and a second abutment formed on the panel, with the second abutment being distanced from the first abutment for simultaneous engagement with a respective ramp on the male connector to hold the respective panels together.
  • 2. A set as recited in claim 1 wherein the tool comprises: a drive for holding the head; anda handle connected to the drive for manipulating the combination of drive and head.
  • 3. A set as recited in claim 1 wherein the head is a hex head wrench and the socket is a hex socket.
  • 4. A set as recited in claim 1 wherein each panel is substantially rectangular shaped.
  • 5. A set as recited in claim 1 wherein each panel is made of a composite polymer foam material.
  • 6. A set as recited in claim 1 further comprising at least one door panel and at least one window panel.
  • 7. A set as recited in claim 1 wherein each panel further comprises a ledge extending along a bottom edge thereof and extending outwardly therefrom.
  • 8. A set as recited in claim 1 further comprising a plurality of corner connections, wherein each corner connection is an elongated member with a first surface having at least one female connector located thereon and a second surface having at least one female connector located thereon, and wherein the first surface is substantially orthogonal to the second surface for interconnecting a left side edge of a first panel with a right side edge of a second panel.
  • 9. A set as recited in claim 1 further comprising a plurality of ceiling attachments, wherein each ceiling attachment is an elongated member with a first surface having at least one female connector located thereon and a second surface having at least one connector located thereon, wherein the connector on the second surface is selected from a group comprising a male connector and a female connector, and wherein the first surface is substantially orthogonal to the second surface for interconnecting a ceiling panel with the top edge of a wall panel.
  • 10. A construction set for assembling a relocatable habitat unit (RHU) consisting essentially of: a base plurality of panels, wherein each panel is substantially flat, is substantially rectangular and defines a periphery with at least one male (M) connector and at least one female (F) connector respectively located along the periphery thereof;a first plurality of panels selected from the base plurality for use as interchangeable wall panels;a second plurality of panels selected from the base plurality for use as ceiling panels;a third plurality of panels selected from the base plurality for use as floor panels;a plurality of corner connections, wherein each corner connection is an elongated member having a first end and a second end with a first surface and a second surface extending therebetween, wherein the first surface is substantially orthogonal to the second surface, and wherein the first surface and the second surface have a respective plurality of male (M) and female (F) connectors located thereon;a plurality of ceiling attachments, wherein each ceiling attachment is an elongated member having a first end and a second end with a first surface and a second surface extending therebetween, wherein the first surface is substantially orthogonal to the second surface, and wherein the first surface and the second surface have a respective plurality of male (M) and female (F) connectors, wherein the second surface has a plurality of connectors equal and opposite to that of the second surface; anda tool with a head for selectively cooperating with the male (M) connector to engage the male (M) connector with the female (F) connector for assembly of the RHU,wherein the floor panels and ceiling panels are interchangeable, andwherein each male (M) connector comprises a socket mounted on a panel for receiving the head therein and a cam lock affixed to the socket for rotation therewith, andwherein the cam lock includes a first ramp and an opposed second ramp, with the ramps inclined to form a decreasing taper with increased distance from the socket, andwherein each female (F) connector comprises a first abutment formed on a panel and a second abutment formed on the panel, with the second abutment being distanced from the first abutment for simultaneous engagement with a respective ramp on the male connector to hold the respective panels together.
  • 11. A set as recited in claim 10 wherein the tool comprises: a drive for holding the head; anda handle connected to the drive for manipulating the combination of drive and head.
  • 12. A set as recited in claim 10 wherein the head is a hex head wrench and the socket is a hex socket.
  • 13. A set as recited in claim 10 wherein each panel is substantially rectangular shaped, is a made of a composite polymer foam material, and can be selectively configured as door panels and window panels.
US Referenced Citations (56)
Number Name Date Kind
182141 Wilson Sep 1876 A
419920 Campbell Jan 1890 A
1149488 Arndt Aug 1915 A
1276932 King Aug 1918 A
2019692 Mueller Nov 1935 A
2581816 Schlueter Jan 1952 A
2647287 Jones Aug 1953 A
2793401 Paschke May 1957 A
2900678 Curtis Aug 1959 A
2952799 Wortman et al. Sep 1960 A
3236014 Edgar Feb 1966 A
3280522 Palfey et al. Oct 1966 A
3281169 Houvener Oct 1966 A
3298145 Minervini et al. Jan 1967 A
3372519 Russell Mar 1968 A
3391512 Lopina Jul 1968 A
3392497 Cushman Jul 1968 A
3421459 Sherwood Jan 1969 A
3461633 Ziegelman et al. Aug 1969 A
3469877 Hutchison Sep 1969 A
3611667 Maxwell Oct 1971 A
3645573 Strang Feb 1972 A
3665791 Carr May 1972 A
3818661 Pragg, III Jun 1974 A
4102097 Zalotay Jul 1978 A
4158338 Dippold et al. Jun 1979 A
4160610 Austin-Brown et al. Jul 1979 A
4315391 Piazza Feb 1982 A
4439971 Rutherford Apr 1984 A
4549831 Lautenschlager, Jr. Oct 1985 A
D283783 Park May 1986 S
4611841 Ravinet Sep 1986 A
4782972 Wenkman et al. Nov 1988 A
4813726 Ravinet Mar 1989 A
5038535 Van Praag, III Aug 1991 A
5386788 Linker et al. Feb 1995 A
5619826 Wu Apr 1997 A
5688003 Beale Nov 1997 A
5741032 Chaput Apr 1998 A
5768845 Beaulieu et al. Jun 1998 A
5788395 Grieser et al. Aug 1998 A
5960592 Lilienthal et al. Oct 1999 A
6178701 De Paepe et al. Jan 2001 B1
6523868 Timothy Feb 2003 B1
6609338 Hightower Aug 2003 B2
6626017 Herbeck et al. Sep 2003 B2
6662508 Else Dec 2003 B1
6786009 McGunn et al. Sep 2004 B1
7665775 Miller et al. Feb 2010 B1
7716895 Fairorth et al. May 2010 B2
7954294 Appleford Jun 2011 B2
20020095888 Winskye Jul 2002 A1
20060277852 Mower et al. Dec 2006 A1
20070044411 Meredith et al. Mar 2007 A1
20080282623 Powell Nov 2008 A1
20080302027 Appleford Dec 2008 A1
Related Publications (1)
Number Date Country
20090223161 A1 Sep 2009 US