Embodiments relate generally to an electronic watch or other electronic device. More particularly, the described embodiments relate to a reluctance actuator configured to provide a haptic output for an electronic device.
Modern electronic devices commonly include a number of output devices to provide feedback or information to a user. One type of output device is a haptic actuator which is used to provide a haptic output, such as an impulse or a vibration, to a user. Haptic output may be provided in response to operations of an electronic device, such as when a user account receives an electronic message.
Traditional haptic output devices include motors and other relatively large actuation mechanisms, which occupy significant space within device enclosures. These actuation mechanisms may additionally require a relatively large amount of energy, resulting in decreased battery life.
This summary is provided to introduce a selection of concepts in simplified form that are further described herein. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In various embodiments of the provided disclosure, a reluctance haptic engine may be used to provide a haptic signal. The reluctance haptic engine may be configured such that a direction of a haptic force opposes a corresponding input force. In accordance with this arrangement, additive forces may be minimized or avoided. Additional features will become apparent with reference to the provided disclosure.
In some embodiments, an electronic device may be provided. The electronic device may comprise a housing defining an opening, an input structure positioned at least partially within the opening and moveable with respect to the housing, the input structure defining an input surface, and a reluctance haptic engine. The reluctance haptic engine may be positioned beneath the input structure and may comprise a core affixed to a bottom surface of the housing and comprising a conduction loop operable to receive an electrical signal, an attractor plate separated from the core by a first gap and separated from a frame coupled to the housing by a second gap, and a mechanical suspension coupling the attractor plate to the input structure and securing the attractor plate and the input structure to the housing. The electronic device may further comprise a processor configured to cause the core to generate a reluctance force by providing the electrical signal to the conduction loop, the generation of the reluctance force causing the attractor plate to move toward the core, thereby deforming the mechanical suspension, reducing the first gap between the attractor plate and the core, increasing the second gap between the attractor plate and the frame, and applying the reluctance force to the input structure.
In some implementations, the mechanical suspension may comprise a sensing element that detects an input applied to the input structure and the processor may provide the electrical signal to the conduction loop in response to the detection of the input force. An input may comprise an input force that is applied to the input structure in a first direction. A reluctance force may be applied to the input structure in a second direction and the first direction may be opposite from the second direction. In some cases, the reluctance force may extend the input structure above the housing.
According to some embodiments, an electronic device may further comprise one or more spacers coupling the mechanical suspension to the housing. The input structure may further define one or more support structures that extend through the housing and couple with the mechanical suspension. In response to an input applied to the input structure, a first gap between the attractor plate and the core may increase and the second gap between the attractor plate and the frame may decrease. In response to the reluctance force, the first gap between the attractor plate and the core may decrease and the second gap between the attractor plate and the frame may increase. An electronic device may be a laptop computer and an input structure may be a touch strip of a laptop computer.
According to some implementations, an electronic device may be provided. The electronic device may comprise a housing, a display positioned at least partially within the housing, an input structure positioned at least partially within the housing, and a reluctance haptic engine positioned below the input structure. The reluctance haptic engine may comprise an attractor plate coupled to the housing and a core comprising a conduction loop and coupled to the input structure. The core may be separated from the attractor plate by a gap and may be configured to move toward the attractor plate in response to a reluctance force produced during an actuated state, thereby raising the input structure above the housing.
An actuated state may be engaged when the conduction loop of the core receives an electrical signal. An electronic device may further comprise one or more flexible members coupling the input structure to the housing and to the core. The one or more flexible members may deform when the actuated state is engaged.
In some cases an electronic device may further comprise a frame extending beneath the reluctance haptic engine. A gap between the attractor plate and the core may be a first gap and the core may be separated from the frame by a second gap.
When an input is applied to an input structure, the first gap between the attractor plate and the core may increase and the second gap between the core and the frame may decrease. In response to the reluctance force being produced during the actuated state, the first gap between the attractor plate and the core may decrease and the second gap between the core and the frame may increase. A user input applied to the input structure may move the core in a first direction opposite from a second direction that the core may move in response to the reluctance force.
In some implementations, a method of producing a haptic output at an electronic device may be provided. The method may comprise detecting an input at an input structure, determining, in response to detecting the input, output characteristics of the haptic output to be generated by a reluctance haptic engine, generating an output signal corresponding to the determined output characteristics, and applying an electrical signal to a core of the reluctance haptic engine to generate a reluctance force, the reluctance force opposing the input.
In some cases the output characteristics may include at least one of a force value of the reluctance force, a location of the reluctance force, or a rotational speed associated with the reluctance force. Detecting the input at the input structure may comprise detecting one of a force value, an intensity, or a location of the input. The haptic output may be a local haptic output applied to the input structure.
Reference will now be made to representative embodiments illustrated in the accompanying figures. It should be understood that the following descriptions are not intended to limit the embodiments to one or more preferred embodiments. To the contrary, they are intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the described embodiments as defined by the appended claims. Similar reference numerals have been used, where practicable, to designate similar features.
The use of cross-hatching or shading in the accompanying figures is generally provided to clarify the boundaries between adjacent elements and also to facilitate legibility of the figures. Accordingly, neither the presence nor the absence of cross-hatching or shading conveys or indicates any preference or requirement for particular materials, material properties, element proportions, element dimensions, commonalities of similarly illustrated elements, or any other characteristic, attribute, or property for any element illustrated in the accompanying figures.
Additionally, it should be understood that the proportions and dimensions (either relative or absolute) of the various features and elements (and collections and groupings thereof) and the boundaries, separations, and positional relationships presented therebetween, are provided in the accompanying figures merely to facilitate an understanding of the various embodiments described herein and, accordingly, may not necessarily be presented or illustrated to scale, and are not intended to indicate any preference or requirement for an illustrated embodiment to the exclusion of embodiments described with reference thereto.
The embodiments described herein are directed to an electronic device having a reluctance haptic engine configured to provide haptic output to a user of the electronic device. In various embodiments, the reluctance haptic engine includes a core and an attractor plate. The core and/or the attractor plate may be coupled to an input structure, such as a button cap, trackpad cover, touchscreen cover, and so on. In an unactuated configuration, flexible support members maintain a gap between the core and the attractor plate. An electrical current may be applied to one or more conduction loops of the core to actuate the reluctance haptic engine and provide a haptic output by moving the input structure. The electrical current may cause a magnetic flux resulting in a reluctance force that pulls the attractor and the core together and causes the input structure to move (e.g., translate, rotate, oscillate, vibrate, or deform) to produce a haptic output. In an actuated configuration, a biasing force applied by the flexible support members to maintain the gap may be overcome by the reluctance force, and the gap between the core and the attractor plate is reduced or closed.
Some of the embodiments herein are directed to a reluctance haptic engine that provides a force (e.g., an engine force) that opposes a user input force. For example, a user may impart an input force to an input device such as a button. The input force may cause the button to depress, or otherwise move, with respect to an associated housing. The reluctance haptic engine may, in response to detecting the input force, impart an engine force in a direction opposite from the user input force. As will become apparent throughout the disclosure, the engine force may at least partially offset the user input force.
The movement of the attractor plate and/or the core may result in deflection and/or deformation of one or more of the flexible support members. For example, the flexible support members may transition from a non-deformed state to a deformed state or from a deformed state to a further-deformed state under the applied reluctance force, resulting in and/or allowing the movement of the attractor plate toward the core and/or allowing the movement of the core toward the attractor plate. When the electrical currents applied to the one or more conduction loops are reduced or ceased, the biasing force of the flexible support members may overcome the reluctance force and cause the biasing members to transition from a deformed state to the non-deformed state (or from a deformed state to a less-deformed state), thereby separating the actuator plate and the core (e.g., moving the actuator away from the core) and/or reestablishing the gap.
As used herein, the terms “deform” or “deformation” may be used to refer to any change in shape or form of a component, including as a result of bending, torsion, tensile forces shear forces, compressive forces, or the like. As used herein, the terms “deflect” or “deflection” may refer to displacement of a component or a portion thereof from one position to another.
In some cases, the reluctance haptic engine may be used to detect inputs to the electronic device. The flexible support members may deflect or deform in response to a force applied to the input structure, for example by a user input. The flexible support members may include one or more sensing elements that may be used to sense inputs based on measuring deflection and/or deformation of the flexible support members. For example, the sensing elements may include one or more strain sensors positioned along the flexible support members and configured to output a signal that varies based on the deflection and/or deformation of the flexible support members.
In some cases, the signals provided by the sensing elements may be used to determine spatial parameters of the attractor plate, the core, and/or the input structure. The spatial parameters may include, but are not limited to, a position, displacement, velocity, and acceleration. The spatial parameters determined from the signals provided by the sensing elements may be used to determine a location and/or magnitude (e.g., force measurement) of an input to the input member. For example, a location and/or magnitude of an input may be determined by determining a difference between output signals of two or more sensing elements. The magnitude of one or more output signals may be used to estimate a magnitude of force applied to the input member.
A first flexible support member may be coupled to a first side of the core, and a second flexible support member may be coupled to a second side of the core that is opposite the first side. Positioning the flexible support members on opposite sides of the core may provide enhanced stability for the attractor plate and/or the core and may allow the sensing elements positioned along the flexible support members to more effectively be used to detect the locations and/or magnitudes of inputs and/or feedback related to haptic outputs.
As used herein, the terms “haptic output” and “tactile output” may refer to outputs produced by the electronic device that may be perceived through user touch. Examples of haptic outputs include vibrations, deflections, and other movements of a device enclosure, a device cover, or input device, or another device component that forms an input surface of the electronic device. In some cases, a reluctance haptic engine may vibrate, displace, and/or deflect a device component (e.g., an enclosure, a cover, or an input device) to produce a haptic output at an external surface of the device defined by the device component. In some cases, haptic outputs may be produced by relative movement of one or more device components with respect to one or more additional device components. As one example, a reluctance haptic engine may cause a first device component (for example, a cover) to vibrate, oscillate, rotate and/or translate relative to another device component (for example, an enclosure) to produce a haptic output that may be perceived by a user.
In various embodiments, an input to a reluctance haptic engine (e.g., an input to an input device as discussed herein) may be detected by the reluctance haptic engine through self-inductance properties of electrically conductive coils of a core of the reluctance haptic engine. As depicted throughout, a gap between a core and an attractor plate may increase in response to a user input (e.g., to the input device). As a result of the increase in the gap, a magnetic flux stimulated by a current associated with the electrically conductive coils may decrease. An inductance associated with the electrically conductive coils may similarly decrease in response to an increasing gap between the core and the attractor plate. By detecting these properties, an input may be detected.
In some cases, the reluctance haptic engine is coupled to an enclosure of the electronic device and provides haptic outputs that may be tactilely perceived by the user along one or more portions of an external surface (such as an input or output surface) of the electronic device. In some cases, the reluctance haptic engine is coupled to a contact member that moves (e.g., oscillates, vibrates, translates or rotates) with respect to other components of the electronic device, such as a housing member, to provide haptic outputs. Translation may include inward and outward translation, lateral translation, and other movement of the contact member. In some cases, the reluctance haptic engine provides haptic outputs by deflecting a portion of an enclosure of the electronic device. Different types of movement may be used to provide different haptic outputs.
In some cases, the haptic outputs described herein are localized haptic outputs. As used herein, the term “localized haptic output” may be used to refer to a haptic output that is outputted through or at a particular location or region along a particular external surface of the electronic device, such as at an input surface or a portion thereof, while being imperceptible or absent from other external surfaces (or another portion of the particular external surface). The reluctance haptic engines described herein may produce localized haptic outputs causing vibration, deflection, or movement at particular locations or regions of the external surfaces of the electronic device. In some cases, a localized haptic output may be felt strongly at one or more locations or regions of the external surfaces and may be imperceptible or less perceptible at one or more other locations or regions of the external surfaces of the electronic device.
In some cases, localized haptic outputs may provide feedback regarding inputs received at particular locations of the electronic device. For example, localized haptic outputs may be provided at and/or near an input device (e.g., a button, a key, a crown, a trackpad, or a touchscreen) to provide feedback related to an input provided at the input device. In other cases, localized haptic outputs may provide other types of feedback or information to users.
In some cases, the haptic outputs described herein are global haptic outputs. As used herein, the term “global haptic output” may refer to a haptic output that is produced in a large area and, in some cases, across or through substantially all of the electronic device. As described herein, a reluctance haptic engine may cause a mass or weighted member to move and, in some cases, oscillate, to produce a perceptible vibration or tactile effect along the external surfaces of the electronic device. In general, global haptic outputs are not localized to any particular location or region of the external surfaces of the electronic device. In some cases, global haptic outputs may provide feedback that is not related to a specific location on the electronic device. For example, global haptic outputs may be provided for alerts received at the electronic device. In other cases, global haptic outputs may provide other types of feedback or information to users.
The term “attached,” as used herein, may be used to refer to two or more elements, structures, objects, components, parts, or the like that are physically affixed, fastened, and/or retained to one another. The term “coupled,” as used herein, may be used to refer to two or more elements, structures, objects, components, parts, or the like that are physically attached to one another, operate with one another, communicate with one another, are in electrical connection with one another, and/or otherwise interact with one another. Accordingly, while elements attached to one another are coupled to one another, the reverse is not required. As used herein, “operably coupled” or “electrically coupled” may be used to refer to two or more devices that are coupled in any suitable manner for operation and/or communication, including wired, wirelessly, or some combination thereof.
These and other embodiments are discussed with reference to
The reluctance haptic engine 101 may be positioned at least partially within the housing 102 of the electronic device 100 and may be configured to provide haptic outputs along an external surface (e.g., an input surface 108) of the electronic device 100. In various embodiments, the reluctance haptic engine 101 may provide localized haptic outputs at particular locations or regions of the external surfaces of the electronic device 100. In some cases, the reluctance haptic engine 101 may provide global haptic outputs along the external surfaces of the electronic device.
In some cases, as shown in
In some cases, the input structure 106 may be a separate component from one or more portions of the housing 102. In some cases, the housing 102 and the input structure 106 cooperate to define at least part of the external surfaces of the electronic device 100. In some cases, the input structure 106 is positioned in an opening 104 defined by the housing 102. The input structure 106 may be configured to move (e.g., rotate, translate, or the like) relative to one or more additional components of the electronic device 100, such as the housing 102. For example, the input structure 106 may be configured to translate inward and outward (e.g., up and down with respect to
In some cases, the reluctance haptic engine 101 is positioned beneath a structure that is not a portion of an input device (e.g., a portion of the housing 102) and/or the reluctance haptic engine 101 provides haptic outputs at one or more surfaces that are not input surfaces.
The reluctance haptic engine 101 may include an attractor plate 112 and a core 122. The attractor plate 112 may be coupled to the core 122 by one or more flexible support members 118a/118b. The one or more flexible support members 118a/118b may include any mechanical suspension structure, such as a metallic flexure, an elastic gel structure, a wire mesh, any combination thereof, and so on. The flexible support members 118a/118b may be formed of a compliant or bendable material that allows the relative movement between the attractor plate 112 and the core 122.
The reluctance haptic engine 101 may include one or more spacers (e.g., spacers 116a/116b) between the flexible support members 118a/118b and the attractor plate 112 and/or the core 122 that help to define the gap 126.
The core 122 may include one or more conduction loops 124 (e.g., electromagnetic coils, electrically conductive coils, wire loops, or other electrically conductive materials). Electrical currents (e.g., alternating current, electromagnetic signals, or drive signals) induced in the conduction loops 124 may generate magnetic flux. The magnetic flux passing through the attractor plate 112 and/or the core 122 causes a reluctance force that results in attraction between the attractor plate 112 and the core 122. As depicted in
As depicted in
When the reluctance force is reduced or ceased (e.g., when the electrical currents applied to the conduction loops 124 are reduced or ceased) or when the input force is reduced or ceased, the biasing force of the flexible support members 118a/118b may overcome the reluctance force and/or the input force and cause the biasing members to transition from a deformed state to the non-deformed state (or from a deformed state to a less-deformed state), thereby displacing the core 122 away from the attractor plate 112 and/or reestablishing the gap 126. Displacing the core 122 away from the attractor plate 112 may produce a haptic output or a portion thereof.
The attractor plate 112 may be attached or otherwise coupled to a frame 110 extending from the housing 102. The frame 110 may be affixed, or otherwise coupled, to the housing 102 and may be immobile with respect to the housing 102. The core 122 may be moveable with respect to the housing 102 such that the core 122 moves in accordance with an attraction force between the attractor plate 112 and the core 122. The core 122 may move relative to the attractor plate 112, the frame 110, and/or the housing 102. The displacement of the core 122 may cause a corresponding movement and/or deformation of the portion of the input surface 108 defined by the input structure 106. For example, as shown in
In various embodiments, the positions of the attractor plate 112 and the core 122 may be reversed from what is shown in
The reluctance haptic engine 101 may provide a haptic output by deflecting or deforming a portion of the housing 102. For example, the reluctance haptic engine 101 may deflect or displace a portion of the housing 102 inward and/or outward to provide a haptic output at the input surface 108. Deflection or other movement of the housing 102 against a user’s skin, or other object, may produce a haptic output that can be perceived by the user.
The reluctance haptic engine 101 may provide a haptic output by oscillating, vibrating, translating, and/or rotating a component of the electronic device 100 relative to other components of the electronic device 100. For example, the reluctance haptic engine 101 may cause the input structure 106 to move relative to one or more other portions of the housing 102 of the electronic device 100. The movement of the input structure 106 may be inward (e.g., downward with respect to
In some cases, the reluctance haptic engine 101 may provide a global haptic output by moving a mass or weighted member within the housing 102. The reluctance haptic engine 101 may cause the mass or weighted member to move and, in some cases, oscillate, to produce a perceptible vibration or tactile effect along an external surface of the electronic device 100.
The attractor plate 112 may be or include a permanent magnet (e.g., formed of or including a magnetic material), an electromagnet, or may be or include a ferromagnetic element (e.g., formed of or including ferromagnetic material) that does not produce a magnetic field absent the influence of another magnetic field. Example magnetic materials include, but are not limited to, magnetized iron, nickel, and/or cobalt alloys (e.g., steel), ferrite, or other suitable materials. Example ferromagnetic materials include, but are not limited to, unmagnetized iron, nickel, and/or cobalt alloys (e.g., steel), ferrite, or other suitable materials. In some cases, the attractor plate 112 is formed of or includes an iron-cobalt alloy with equal parts iron and cobalt (e.g., FeCo50). The type of material used for the attractor plate 112 may depend on various factors, such as the particular electromagnetic interaction that the haptic output system uses to produce the haptic output.
The core 122 may be or include any suitable material or combination of materials, including metal, plastic, composites, ceramics, and so on. The core 122 may be or include a permanent magnet, or it may be or include a ferromagnetic element that does not produce a magnetic field absent the influence of another magnetic field. In some cases, the core 122 is formed of or includes an iron-cobalt alloy with equal parts iron and cobalt (e.g., FeCo50). In some cases, the core 122 is formed of or includes stainless steel, such as grade 430 stainless steel. The type of material used for the core 122 may depend on various factors, such as the particular electromagnetic interaction that the haptic output system uses to produce the haptic output.
The reluctance haptic engine 101 may produce haptic outputs in response to receiving one or more signals from the processing unit 130. In some cases, the haptic outputs may correspond to inputs received by the electronic device 100 and/or outputs provided by the electronic device 100. The haptic outputs may correspond to operational states, events, or other conditions at the electronic device 100, including inputs received at the electronic device 100 (e.g., touch inputs, rotational inputs, translational inputs), outputs of the electronic device 100 (e.g., graphical outputs, audio outputs, haptic outputs), applications and processes executing on the electronic device, predetermined sequences, user interface commands (e.g., volume, zoom, or brightness controls, audio or video controls, scrolling on a list or page, and the like), and so on.
The reluctance haptic engine 101 may be operably coupled to the processing unit 130 via a connector and/or via one or more additional components of the electronic device 100. In some cases, the reluctance haptic engine 101 may produce audio outputs in addition to or as an alternative to producing haptic outputs. For example, actuation of the reluctance haptic engine 101 may produce a sound. Audio outputs may be produced in response to any of the conditions, inputs, or the like discussed above with respect to haptic outputs. In some cases, audio outputs and haptic outputs are produced by the same actuation or actuations of the reluctance haptic engine 101.
As noted above, the reluctance haptic engine 101 may actuate (e.g., transition from an unactuated configuration to an actuated configuration) in response to a reluctance force generated within the reluctance haptic engine 101 and/or in response to a force applied to the reluctance haptic engine 101, such as by a user input on the input structure 106. In some cases, the reluctance haptic engine 101 may include sensing elements that may be used to determine whether and to what degree the haptic device has been actuated, either by an input or a reluctance force.
Still with respect to
In some cases, the signals provided by the sensing elements 120a/120b may be used to determine spatial parameters of the attractor plate 112, the core 122, the flexible support members 118a/118b, and/or the input structure 106. The spatial parameters may include, but are not limited to, a position, displacement, velocity, and acceleration. The spatial parameters determined from the signals provided by the sensing elements 120a/120b may be used to determine a location and/or magnitude (e.g., force measurement) of an input to the input structure 106. For example, a location of an input may be determined by determining a difference between output signals of two or more sensing elements 120a/120b. The magnitude of one or more output signals may be used to estimate a magnitude of force applied to the input structure 106.
In some cases, the processing unit 130 may analyze detected changes in inductance between the attractor plate 112 and the core 122 to detect inputs. In some embodiments an isolated inductive sensing coil may be positioned on the frame 110 and may be used to detect inputs by detecting a change in an air gap between the frame 110 and the flexible support members 118a/118b. Additionally or alternatively, an isolated inductive sensing coil may be positioned on or otherwise coupled to a flexible support member 118a/118b, and may be used to detect inputs by detecting a change in an air gap between the flexible support member 118a/118b and the frame 110.
In some cases, in response to detecting an input to the input structure 106, the processing unit 130 causes the reluctance haptic engine 101 to produce a haptic output. For example, in response to receiving an inward (e.g., downward with respect to
In some cases, the signals provided by the sensing elements 120a/120b may be used to determine characteristics of haptic outputs provided by the reluctance haptic engine 101. Characteristics of the haptic outputs may include a strength of the haptic output, a frequency of movement associated with the haptic output, and so on. The processing unit 130 may determine the haptic output characteristics by using the signals provided by the sensing elements 120a/120b to determine spatial parameters of the attractor plate 112, the core 122, the flexible support members 118a/118b, and/or the input structure 106 caused by a reluctance force. The processing unit 130 may use the determined spatial parameters and/or haptic output characteristics to adjust the haptic outputs by changing signal characteristics (e.g., frequency, amplitude, or waveform) of the electrical current provided to the conduction loops 124.
A first flexible support member 118a may be coupled to a first side of the core 122, and a second flexible support member 118b may be coupled to a second side of the core 122 that is opposite the first side, as depicted in
The flexible support members 118a/118b may be formed of any suitable material or combination of materials, including metal, plastic, composites, or ceramics. The flexible support members 118a/118b may be formed of a compliant or bendable material that allows the relative movement between the attractor plate 112 and the core 122. In some cases, the flexible support members 118a/118b are formed of stainless steel, such as grade 301 stainless steel. The spacers 116a/116b may be formed of any suitable material or combination of materials, including metal, plastic, composites, or ceramics. In some cases, the spacers 116a/116b are formed of stainless steel, such as grade 301 stainless steel. The frame 110 may be formed of any suitable material or combination of materials, including metal, plastic, composites, or ceramics. In some cases, the frame 110 is formed of stainless steel, such as grade 316 stainless steel.
In various embodiments, the display 134 may be positioned at least partially within the housing 102. The display 134 provides a graphical output, for example associated with an operating system, user interface, and/or applications of the electronic device 100. In one embodiment, the display 134 includes one or more sensors and is configured as a touch-sensitive (e.g., single-touch, multi-touch) and/or force-sensitive display to receive inputs from a user. The display 134 is operably coupled to the processing unit 130 of the electronic device 100, for example by a connector. In some cases, the graphical output of the display 134 is visible along at least a portion of an external surface of the electronic device 100.
In various embodiments, a graphical output of the display 134 is responsive to inputs provided at the display and one or more additional input devices 128. For example, the processing unit 130 may be configured to modify the graphical output of the display 134 in response to determining an electrocardiogram, receiving rotational inputs, receiving translational inputs, or receiving touch inputs. In some cases, a haptic output provided by the reluctance haptic engine 101 corresponds to the graphical output of the display 134. In some cases, the reluctance haptic engine 101 may produce a haptic output that is coordinated with a change in the graphical output of the display 134. For example, the haptic output may be produced at or near the same time as the change in the graphical output of the display 134. In some cases, a time that the haptic output is produced overlaps a time that the graphical output of the display 134 changes.
The display 134 can be implemented with any suitable technology, including, but not limited to, liquid crystal display (LCD) technology, light emitting diode (LED) technology, organic light-emitting display (OLED) technology, organic electroluminescence (OEL) technology, or another type of display technology. In some cases, the display 134 is positioned beneath and viewable through a transparent cover.
Broadly, the input devices 128 may detect various types of input, and the output devices 132 may provide various types of output. The input structure 106, either alone or in combination with the reluctance haptic engine 101, may be an example of an input device 128. Similarly, the input structure 106, either alone or in combination with the reluctance haptic engine 101, may be an example of an output device 132. The processing unit 130 may be operably coupled to the input devices 128 and the output devices 132, for example by connectors. The processing unit 130 may receive input signals from the input devices 128, in response to inputs detected by the input devices 128. The processing unit 130 may interpret input signals received from one or more of the input devices 128 and transmit output signals to one or more of the output devices 132. The output signals may cause the output devices 132 to provide one or more outputs. Detected input at one or more of the input devices 128 may be used to control one or more functions of the electronic device 100. In some cases, one or more of the output devices 132 may be configured to provide outputs that are dependent on, or manipulated in response to, the input detected by one or more of the input devices 128. The outputs provided by one or more of the output devices 132 may also be responsive to, or initiated by, a program or application executed by the processing unit 130 and/or an associated companion device. In some cases, the output devices 132 may include a speaker, and the processing unit 130 may cause the speaker to produce an audio output in conjunction with a haptic output provided using the reluctance haptic engine 101. Examples of suitable processing units, input devices, output devices, and displays are discussed in more detail below with respect to
In some implementations, the haptic engine 101 may act as a speaker for generating audio. A frequency of the core’s 122 position relative to the attractor plate 112 may be set to a relatively high frequency (e.g., above 500 Hz) or to any frequency suitable to produce audible sound. In some cases, a haptic output signal generated by the haptic engine 101 and an audio signal generated by the haptic engine 101 may be played simultaneously and/or at different frequencies. The frequencies may be multiplexed in the frequency domain and/or the time domain.
The input structures 206a and 206b may be configured to control various functions and components of the electronic device 200, such as a graphical output of the display 234, an audio output, or powering the electronic device on and off. An input structure 206a/206b may be configured, for example, as a power button, a control button (e.g., volume control), or a home button. In some implementations, the input structure 206a/206b may be a portion of the display 234.
The housing 202 provides a device structure, defines an internal volume of the electronic device 200, and houses device components. In various embodiments, the housing 202 may be constructed from any suitable material, including metals (e.g., aluminum, titanium, and the like), polymers, or ceramics (e.g., glass, sapphire). In one embodiment, the housing 202 is constructed from multiple materials. The housing 202 can form an external surface or partial external surface and protective case for the internal components of the electronic device 200, and may at least partially surround the display 234. The housing 202 can be formed of one or more components operably connected together, such as a front piece and a back piece. Alternatively, the housing 202 can be formed of a single piece operably connected to the display 234.
The display 234 can be implemented with any suitable technology, including, but not limited to, liquid crystal display (LCD) technology, light emitting diode (LED) technology, organic light-emitting display (OLED) technology, organic electroluminescence (OEL) technology, or another type of display technology. The display 234 provides a graphical output, for example associated with an operating system, user interface, and/or applications of the electronic device 200. In one embodiment, the display 234 includes one or more sensors and is configured as a touch-sensitive (e.g., single-touch, multi-touch) and/or force-sensitive display to receive inputs from a user. In various embodiments, a graphical output of the display 234 is responsive to inputs provided to the input structures 206a and 206b.
A first end of each flexible support member 218a/218b may be attached or otherwise coupled to the housing 202 (e.g., by a respective spacer 216a/216b), a frame 262, or another component of the electronic device 200. A second end of each flexible support member 218a/218b may be attached or otherwise coupled to an attractor plate 212 such that the attractor plate 212 is able to move relative to the housing 202, the frame 262, and/or the core 222. A first end portion of a first flexible support member 218a may be fixed with respect to (e.g., coupled or attached to) a first side of the attractor plate 212, and a first end portion of a second flexible support member 218b may be fixed with respect to (e.g., coupled or attached to) a second side of the attractor plate 212 that is opposite the first side, as shown in
Positioning the flexible support members 218a/218b on opposite sides of the attractor plate 212 may provide enhanced stability for the attractor plate 212 and/or the input structure 206a, and may allow sensing elements positioned along the flexible support members to more effectively be used to detect the locations and/or magnitudes of inputs and/or feedback related to haptic outputs.
The attractor plate 212 may be moveable with respect to the housing 202. The core 222 may be fixed with respect to the housing 202. In some cases, the housing 202 may be coupled or otherwise attached to the frame 262 and/or another component that is fixed with respect to the housing 202.
The second gap 260 may be reduced (e.g., made smaller) in response to a user input (e.g., input force) applied to the input structure 206a. The user input may depress the input structure 206a, with respect to the housing 202, and may move the attractor plate 212 closer to the frame 262.
Notably, the first gap 258 and the second gap 260 are arranged such that forces imparted on the input structure 206a in perpendicular directions affect the gaps in opposite manners. For example, a downward force imparted on the input structure 206a would decrease the second gap 260 but would increase the first gap 258. Similarly, an upward force imparted on the input structure 206a would increase the second gap 260 but would decrease the first gap 258.
One or more connectors 250a/250b/250c may additionally be provided to receive and/or provide electrical signals to a number of components, such as the core 222 and sensors within the flexible support members 218a/218b.
As noted above, the flexible support members 218a/218b may deform as the reluctance haptic engine 201 actuates (e.g., as the attractor plate 212 moves toward the core 222). When the reluctance force is reduced or ceased (e.g., when the electrical currents applied to the conduction loops 224 are reduced or ceased) or when the input force is reduced or ceased, the biasing force of the flexible support members 218a/218b may overcome the reluctance force and/or the input force and cause the biasing members to transition from a deformed state to the non-deformed state (or from a deformed state to a less-deformed state), thereby displacing the core 222 away from the attractor plate 212 and/or reestablishing the first gap 258. Displacing the attractor plate 212 away from the core 222 may produce a haptic output or a portion thereof, similar to actuation of the reluctance haptic engine 101 discussed above.
Similar to the reluctance haptic engine 101, the flexible support members 218a/218b may include one or more sensing elements that may be used to sense actuation based on measuring deflection and/or deformation of the flexible support members. As noted above, the flexible support members 218a/218b may deflect or deform in response to actuation of the reluctance haptic engine 201, for example by a user input and/or a reluctance force. The sensing elements may include one or more sensors (e.g., strain sensors) positioned along the flexible support members 218a/218b and configured to output a signal that varies based on the deflection and/or deformation of the flexible support members.
The core 222 and/or the conduction loop 224 may be communicably coupled to a processing unit or other circuitry of the electronic device 200 via a connector 250b. In some cases, the connector 250b may be or include one or more traces in a flex or other cable. In some cases, multiple connectors may be incorporated into a single flex or cable.
The flexible support members 218a/218b may be communicably coupled to a processing unit or other circuitry of the electronic device 200 via connectors 250a/250c. In some cases, the connectors 250a/250c may be or include one or more traces in a flex or other cable. In some cases, multiple connectors may be incorporated into a single flex or cable.
Even though in
The reluctance haptic engine 201 of
Though the reluctance haptic engine 201 is discussed with respect to the input structure 206a, in alternate or additional embodiments the input structure 206b may be provided with a reluctance haptic engine.
The reluctance haptic engine 301 is substantially similar to the reluctance haptic engine 201. However, instead of a moveable attractor plate (e.g., attractor plate 212) and an immoveable core (e.g., core 222), the reluctance haptic engine 301 may implement a moveable core 322 and an immoveable attractor plate 312. The core 322 may be moveable with respect to the housing 302. The attractor plate 312 may be fixed with respect to the housing 302. In some cases, the housing 302 may be coupled or otherwise attached to the frame 362 and/or another component that is fixed with respect to the housing 302.
In an unactuated state, a first gap 358 may be provided between the core 322 and the attractor plate 312. One or more conduction loops 324 of the core 322 may be periodically activated (e.g., in response to an electrical signal) and may cause the core 322 to move toward the attractor plate 312, thereby reducing or eliminating the first gap 358. As discussed with respect to
As the core 322 moves toward the attractor plate 312, thereby reducing/eliminating the first gap 358, a second gap 360 between the core 322 and the frame 362 may be increased. Conversely, a force applied to the input structure 306a may increase the first gap 358 and may reduce/eliminate the second gap 360. As a haptic force provided by the attraction between the core 322 and the attractor plate 312 opposes an input force applied to an input surface 308a of the input structure 306a, a need to account for both the input and haptic force in an additive manner may be eliminated, reducing a bottom-out risk of the reluctance haptic engine 301.
The reluctance haptic engine 401 may include a top plate 402, a core 422, a coil (e.g., conduction loops) 424, a first button element 408a, a second button element 408b, a first stool 464a, a second stool 464b, a first spacer 416a, a second spacer 416b, a first flexible support member 418a, and a second flexible support member 418b. Dimensions of the reluctance haptic engine 401 are not particularly limited and may, in some implementations, correspond to a length between 10 mm and 500 mm and a width between 3 mm and 50 mm.
The first button element 408a and the second button element 408b may be moveable with respect to certain elements of the reluctance haptic engine 401 (e.g., the first stool 464a, the second stool 464b, and the core 422). Operations of the reluctance haptic engine 401 are discussed with respect to
The reluctance haptic engine 401 as depicted in
As depicted in
Though the cross section B-B is taken across the second button element 408b, it is noted that a structure of the first button element 408a, and associated components thereof, may be substantially similar. Additionally, the second button element 408b and the first button element 408a may be operated in tandem and/or may be operated individually (e.g., if multiple coils are provided within the reluctance haptic engine 401.
In various embodiments, reluctance haptic engines may be configured to move input structures in different directions or in multiple directions. A reluctance haptic engine 500 may include multiple coils and/or actuators configured to move an input structure in multiple directions. For example, any number of the embodiments shown in
At operation 504, the processing unit determines output characteristics to be produced by the electronic device in response to the input received at operation 502. In some cases, the output characteristics correspond to one or more characteristics of the input detected at operation 502. For example, the associated output characteristics may correspond to a force of the input, a location of the input, a rotational speed or position of the crown, an output associated with a rotational input, a user interface command associated with the user input, and so on. The processing unit may determine one or more characteristics of the input to determine the output characteristics.
In some cases, determining the output characteristics at operation 504 may include determining a strength, length, or other characteristics of a haptic output to be produced. For example, the processing unit may determine whether to provide a localized haptic output or a global haptic output based, at least in part, on a characteristic of the input.
At operation 506, the processing unit outputs an output signal to provide a haptic output that corresponds to the output characteristics determined at operation 504. The output signal may be transmitted to a reluctance haptic engine of the electronic device to direct the reluctance haptic engine to produce the haptic output.
At operation 508, in response to receiving the output signal from the processing unit, the electronic device applies electrical current to conduction loops of a reluctance haptic engine to cause the reluctance haptic engine to actuate (e.g., move from an unactuated configuration to an actuated configuration). In particular, the force generated at operation 508 may oppose the input received at operation 502. In some cases, actuation of one or more reluctance haptic engines produces a first portion of the haptic output, for example by causing an input structure to move. As noted above, a gap between an attractor plate and a core of the reluctance haptic engine may be reduced or closed (e.g., the attractor plate may move toward the core and/or the core may move toward the attractor plate), thereby moving an input structure coupled to the attractor plate or the core (e.g., along a path that is parallel to an input surface of the input structure, along a path that is perpendicular to the input surface, or along a different path).
In some cases, following actuation of the reluctance haptic engine, the electrical current may be ceased, reduced, or otherwise changed, which causes the reluctance haptic engine to be restored (either partially or fully) to its initial configuration (e.g., to reestablish a gap between an attractor and one or more cores). As noted above, a gap between an attractor plate and a core of the reluctance haptic engine may be increased or restored (e.g., the attractor plate may move away from the core and/or the core may move away from the attractor plate), thereby moving an input structure coupled to the attractor plate or the core (e.g., along a path that is parallel to an input surface of the input structure, along a path that is perpendicular to the input surface, or along a different path).
In some cases, one or more reluctance haptic engines being restored produces a second portion of the haptic output, for example by causing the input structure to move. As noted above, in some cases, flexible support members of the reluctance haptic engine at least partially cause the restoration of the reluctance haptic engine, for example by applying a biasing force to move the attractor plate and/or the core(s) to an initial position.
In some cases, the reluctance haptic engine being restored may prepare the reluctance haptic engine for a subsequent actuation. In various embodiments, once the reluctance haptic engine has been restored (either partially or fully), it may be subsequently actuated by applying additional electrical current to the conduction loops (e.g., in response to receiving another output signal from the processing unit) to provide a third portion of the haptic output. The reluctance haptic engine may be subsequently restored (either partially or fully) to its initial configuration (either partially or fully), which may provide a fourth portion of the haptic output. Actuation and restoration may be repeated to repeatedly move the input structure in alternating directions to produce one or more haptic outputs and/or portions thereof.
The method 500 is an example method for providing haptic outputs and is not limiting. Methods for providing haptic outputs may omit and/or add steps to the method 500. Similarly, steps of the method 500 may be performed in different orders than the example order discussed above. The method 500 refers to providing haptic outputs in response to an input, but this is just one example. Haptic outputs may also be provided in response to a system state, an application operation on a device, a device state (e.g., temperature), application or system alerts (e.g., calendar alerts, notifications, alarms, and the like), incoming communications, push notifications, and so on.
In some cases, the wearable electronic device 670 includes a crown 680 configured to receive translational inputs, rotational inputs, and/or touch inputs. Inputs received at the crown 680 may result in changes in outputs provided by the wearable electronic device 670 such as a graphical output of the display, and/or otherwise modify operations of the wearable electronic device 670. In some cases, the crown 680 may be positioned along a side of the housing 672, and may extend through an opening defined in the housing 672. The crown 680 may include a user-rotatable crown body and a shaft. The crown body may be positioned at least partially outside of the device housing 672 and may be coupled to the shaft. In some cases, the shaft extends from the crown body and extends through the opening defined in the housing 672.
In some cases, the wearable electronic device 670 may include a conductive portion that may be used to perform an electrocardiogram (ECG) measurement. The crown body or another input structure may define a conductive surface for receiving touch inputs. In some cases, the conductive surface functions as an electrode to sense voltages or signals indicative of one or more touch inputs and/or biological parameters, such as an electrocardiogram, of a user in contact with the conductive surface. The housing 672 may define a touch-sensitive or conductive surface that is electrically coupled to the processing unit and also functions as an electrode. The processing unit may determine an ECG using outputs of the electrodes of the crown body and the housing 672. In various embodiments, the crown 680 is electrically isolated from the housing 672, for example to allow separate measurements at the electrodes. In various embodiments, the crown body may be electrically coupled to the processing unit or another circuit of the wearable electronic device 670, for example via a connector and/or the shaft.
The processing unit 702 can control some or all of the operations of the electronic device 700. The processing unit 702 can communicate, either directly or indirectly, with some or all of the components of the electronic device 700. For example, a system bus or other communication mechanism 714 can provide communication between the processing unit 702, the power source 712, the memory 704, the input device(s) 706, and the output device(s) 710.
The processing unit 702 can be implemented as any electronic device capable of processing, receiving, or transmitting data or instructions. For example, the processing unit 702 can be a microprocessor, a central processing unit (CPU), an application-specific integrated circuit (ASIC), a digital signal processor (DSP), or combinations of such devices. As described herein, the term “processing unit” is meant to encompass a single processor or processing unit, multiple processors, multiple processing units, or other suitably configured computing element or elements.
It should be noted that the components of the electronic device 700 can be controlled by multiple processing units. For example, select components of the electronic device 700 (e.g., an input device 706) may be controlled by a first processing unit and other components of the electronic device 700 (e.g., the display 708) may be controlled by a second processing unit, where the first and second processing units may or may not be in communication with each other. In some cases, the processing unit 702 may determine a biological parameter of a user of the electronic device, such as an ECG for the user.
The power source 712 can be implemented with any device capable of providing energy to the electronic device 700. For example, the power source 712 may be one or more batteries or rechargeable batteries. Additionally or alternatively, the power source 712 can be a power connector or power cord that connects the electronic device 700 to another power source, such as a wall outlet.
The memory 704 can store electronic data that can be used by the electronic device 700. For example, the memory 704 can store electrical data or content such as, for example, audio and video files, documents and applications, device settings and user preferences, timing signals, control signals, and data structures or databases. The memory 704 can be configured as any type of memory. By way of example only, the memory 704 can be implemented as random access memory, read-only memory, Flash memory, removable memory, other types of storage elements, or combinations of such devices.
In various embodiments, the display 708 provides a graphical output, for example associated with an operating system, user interface, and/or applications of the electronic device 700. In one embodiment, the display 708 includes one or more sensors and is configured as a touch-sensitive (e.g., single-touch, multi-touch) and/or force-sensitive display to receive inputs from a user. For example, the display 708 may be integrated with a touch sensor (e.g., a capacitive touch sensor) and/or a force sensor to provide a touch- and/or force-sensitive display. The display 708 is operably coupled to the processing unit 702 of the electronic device 700.
The display 708 can be implemented with any suitable technology, including, but not limited to liquid crystal display (LCD) technology, light emitting diode (LED) technology, organic light-emitting display (OLED) technology, organic electroluminescence (OEL) technology, or another type of display technology. In some cases, the display 708 is positioned beneath and viewable through a cover that forms at least a portion of an enclosure of the electronic device 700.
In various embodiments, the input devices 706 may include any suitable components for detecting inputs. Examples of input devices 706 include audio sensors (e.g., microphones), optical or visual sensors (e.g., cameras, visible light sensors, or invisible light sensors), proximity sensors, touch sensors, force sensors, mechanical devices (e.g., crowns, switches, buttons, or keys), vibration sensors, orientation sensors, motion sensors (e.g., accelerometers or velocity sensors), location sensors (e.g., global positioning system (GPS) devices), thermal sensors, communication devices (e.g., wired or wireless communication devices), resistive sensors, magnetic sensors, electroactive polymers (EAPs), strain gauges, electrodes, and so on, or some combination thereof. Each input device 706 may be configured to detect one or more particular types of input and provide a signal (e.g., an input signal) corresponding to the detected input. The signal may be provided, for example, to the processing unit 702.
As discussed above, in some cases, the input device(s) 706 include a touch sensor (e.g., a capacitive touch sensor) integrated with the display 708 to provide a touch-sensitive display. Similarly, in some cases, the input device(s) 706 include a force sensor (e.g., a capacitive force sensor) integrated with the display 708 to provide a force-sensitive display.
The output devices 710 may include any suitable components for providing outputs. Examples of output devices 710 include audio output devices (e.g., speakers), visual output devices (e.g., lights or displays), tactile output devices (e.g., haptic output devices), communication devices (e.g., wired or wireless communication devices), and so on, or some combination thereof. Each output device 710 may be configured to receive one or more signals (e.g., an output signal provided by the processing unit 702) and provide an output corresponding to the signal.
In some cases, input devices 706 and output devices 710 are implemented together as a single device. For example, an input/output device or port can transmit electronic signals via a communications network, such as a wireless and/or wired network connection. Examples of wireless and wired network connections include, but are not limited to, cellular, Wi-Fi, BLUETOOTH, infrared, and Ethernet connections.
The processing unit 702 may be operably coupled to the input devices 706 and the output devices 710. The processing unit 702 may be adapted to exchange signals with the input devices 706 and the output devices 710. For example, the processing unit 702 may receive an input signal from an input device 706 that corresponds to an input detected by the input device 706. The processing unit 702 may interpret the received input signal to determine whether to provide and/or change one or more outputs in response to the input signal. The processing unit 702 may then send an output signal to one or more of the output devices 710, to provide and/or change outputs as appropriate.
The foregoing description, for purposes of explanation, uses specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
This application is a nonprovisional and claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Pat. Application No. 63/246,432, filed Sep. 21, 2021, the contents of which are incorporated herein by reference as if fully disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
3001049 | Didier | Sep 1961 | A |
3390287 | Sonderegger | Jun 1968 | A |
3419739 | Clements | Dec 1968 | A |
4236132 | Zissimopoulos | Nov 1980 | A |
4412148 | Klicker et al. | Oct 1983 | A |
4414984 | Zarudiansky | Nov 1983 | A |
4490815 | Umehara et al. | Dec 1984 | A |
4695813 | Nobutoki et al. | Sep 1987 | A |
4975616 | Park | Dec 1990 | A |
5010772 | Bourland et al. | Apr 1991 | A |
5245734 | Issartel | Sep 1993 | A |
5283408 | Chen | Feb 1994 | A |
5293161 | MacDonald et al. | Mar 1994 | A |
5317221 | Kubo et al. | May 1994 | A |
5365140 | Ohya et al. | Nov 1994 | A |
5434549 | Hirabayashi et al. | Jul 1995 | A |
5436622 | Gutman et al. | Jul 1995 | A |
5510584 | Norris | Apr 1996 | A |
5510783 | Findlater et al. | Apr 1996 | A |
5513100 | Parker et al. | Apr 1996 | A |
5587875 | Sellers | Dec 1996 | A |
5590020 | Sellers | Dec 1996 | A |
5602715 | Lempicki et al. | Feb 1997 | A |
5619005 | Shibukawa et al. | Apr 1997 | A |
5621610 | Moore et al. | Apr 1997 | A |
5625532 | Sellers | Apr 1997 | A |
5629578 | Winzer et al. | May 1997 | A |
5635928 | Takagi et al. | Jun 1997 | A |
5718418 | Gugsch | Feb 1998 | A |
5739759 | Nakazawa et al. | Apr 1998 | A |
5742242 | Sellers | Apr 1998 | A |
5783765 | Muramatsu | Jul 1998 | A |
5793605 | Sellers | Aug 1998 | A |
5812116 | Malhi | Sep 1998 | A |
5813142 | Demon | Sep 1998 | A |
5818149 | Safari et al. | Oct 1998 | A |
5896076 | van Namen | Apr 1999 | A |
5907199 | Miller | May 1999 | A |
5951908 | Cui et al. | Sep 1999 | A |
5959613 | Rosenberg et al. | Sep 1999 | A |
5973441 | Lo et al. | Oct 1999 | A |
5982304 | Selker et al. | Nov 1999 | A |
5982612 | Roylance | Nov 1999 | A |
5995026 | Sellers | Nov 1999 | A |
5999084 | Armstrong | Dec 1999 | A |
6035257 | Epperson | Mar 2000 | A |
6069433 | Lazarus et al. | May 2000 | A |
6078308 | Rosenberg et al. | Jun 2000 | A |
6104947 | Heikkilä et al. | Aug 2000 | A |
6127756 | Iwaki et al. | Oct 2000 | A |
6135886 | Armstrong | Oct 2000 | A |
6198206 | Saarmaa et al. | Mar 2001 | B1 |
6218966 | Goodwin et al. | Apr 2001 | B1 |
6219033 | Rosenberg et al. | Apr 2001 | B1 |
6220550 | McKillip, Jr. | Apr 2001 | B1 |
6222525 | Armstrong | Apr 2001 | B1 |
6252336 | Hall | Jun 2001 | B1 |
6342880 | Rosenberg et al. | Jan 2002 | B1 |
6351205 | Armstrong | Feb 2002 | B1 |
6373465 | Jolly et al. | Apr 2002 | B1 |
6408187 | Merriam | Jun 2002 | B1 |
6411276 | Braun et al. | Jun 2002 | B1 |
6429849 | An et al. | Aug 2002 | B1 |
6437485 | Johansson | Aug 2002 | B1 |
6438393 | Suuronen | Aug 2002 | B1 |
6444928 | Okamoto et al. | Sep 2002 | B2 |
6455973 | Ineson et al. | Sep 2002 | B1 |
6465921 | Horng et al. | Oct 2002 | B1 |
6552404 | Hynes et al. | Apr 2003 | B1 |
6552471 | Chandran et al. | Apr 2003 | B1 |
6557072 | Osborn | Apr 2003 | B2 |
6642857 | Schediwy et al. | Nov 2003 | B1 |
6693626 | Rosenberg | Feb 2004 | B1 |
6717573 | Shahoian et al. | Apr 2004 | B1 |
6747400 | Maichl et al. | Jun 2004 | B2 |
6809462 | Pelrine et al. | Oct 2004 | B2 |
6809727 | Piot et al. | Oct 2004 | B2 |
6864877 | Braun et al. | Mar 2005 | B2 |
6906697 | Rosenberg | Jun 2005 | B2 |
6906700 | Armstrong | Jun 2005 | B1 |
6906703 | Vablais et al. | Jun 2005 | B2 |
6952203 | Banerjee et al. | Oct 2005 | B2 |
6954657 | Bork et al. | Oct 2005 | B2 |
6963762 | Kaaresoja et al. | Nov 2005 | B2 |
6965189 | Menzel | Nov 2005 | B2 |
6995752 | Lu | Feb 2006 | B2 |
7005811 | Wakuda et al. | Feb 2006 | B2 |
7016707 | Fujisawa et al. | Mar 2006 | B2 |
7022927 | Hsu | Apr 2006 | B2 |
7023112 | Miyamoto et al. | Apr 2006 | B2 |
7081701 | Yoon et al. | Jul 2006 | B2 |
7091948 | Chang et al. | Aug 2006 | B2 |
7121147 | Okada | Oct 2006 | B2 |
7123948 | Nielsen | Oct 2006 | B2 |
7130664 | Williams | Oct 2006 | B1 |
7136045 | Rosenberg et al. | Nov 2006 | B2 |
7158122 | Roberts | Jan 2007 | B2 |
7161580 | Bailey et al. | Jan 2007 | B2 |
7162928 | Shank et al. | Jan 2007 | B2 |
7170498 | Huang | Jan 2007 | B2 |
7176906 | Williams et al. | Feb 2007 | B2 |
7180500 | Marvit et al. | Feb 2007 | B2 |
7182691 | Schena | Feb 2007 | B1 |
7194645 | Bieswanger et al. | Mar 2007 | B2 |
7205978 | Poupyrev et al. | Apr 2007 | B2 |
7217891 | Fischer et al. | May 2007 | B2 |
7218310 | Tierling et al. | May 2007 | B2 |
7219561 | Okada | May 2007 | B2 |
7253350 | Noro et al. | Aug 2007 | B2 |
7269484 | Hein | Sep 2007 | B2 |
7333604 | Zernovizky et al. | Feb 2008 | B2 |
7334350 | Ellis, III | Feb 2008 | B2 |
7348968 | Dawson | Mar 2008 | B2 |
7382357 | Panotopoulos et al. | Jun 2008 | B2 |
7388741 | Konuma et al. | Jun 2008 | B2 |
7392066 | Haparnas | Jun 2008 | B2 |
7423631 | Shahoian et al. | Sep 2008 | B2 |
7446752 | Goldenberg et al. | Nov 2008 | B2 |
7469155 | Chu | Dec 2008 | B2 |
7469595 | Kessler et al. | Dec 2008 | B2 |
7471033 | Thiesen et al. | Dec 2008 | B2 |
7495358 | Kobayashi et al. | Feb 2009 | B2 |
7508382 | Denoue et al. | Mar 2009 | B2 |
7561142 | Shahoian et al. | Jul 2009 | B2 |
7562468 | Ellis, III | Jul 2009 | B2 |
7569086 | Chandran | Aug 2009 | B2 |
7575368 | Guillaume | Aug 2009 | B2 |
7586220 | Roberts | Sep 2009 | B2 |
7619498 | Miura | Nov 2009 | B2 |
7639232 | Grant et al. | Dec 2009 | B2 |
7641618 | Noda et al. | Jan 2010 | B2 |
7647196 | Kahn et al. | Jan 2010 | B2 |
7649305 | Priya et al. | Jan 2010 | B2 |
7675253 | Dorel | Mar 2010 | B2 |
7675414 | Ray | Mar 2010 | B2 |
7679611 | Schena | Mar 2010 | B2 |
7707742 | Ellis, III | May 2010 | B2 |
7710399 | Bruneau et al. | May 2010 | B2 |
7732951 | Mukaide | Jun 2010 | B2 |
7737828 | Yang et al. | Jun 2010 | B2 |
7742036 | Grant et al. | Jun 2010 | B2 |
7788032 | Moloney | Aug 2010 | B2 |
7793429 | Ellis, III | Sep 2010 | B2 |
7793430 | Ellis | Sep 2010 | B2 |
7798982 | Zets et al. | Sep 2010 | B2 |
7868489 | Amemiya et al. | Jan 2011 | B2 |
7886621 | Smith et al. | Feb 2011 | B2 |
7888892 | McReynolds et al. | Feb 2011 | B2 |
7893922 | Klinghult et al. | Feb 2011 | B2 |
7919945 | Houston et al. | Apr 2011 | B2 |
7929382 | Yamazaki | Apr 2011 | B2 |
7946483 | Miller et al. | May 2011 | B2 |
7952261 | Lipton et al. | May 2011 | B2 |
7952566 | Poupyrev et al. | May 2011 | B2 |
7956770 | Klinghult et al. | Jun 2011 | B2 |
7961909 | Mandella et al. | Jun 2011 | B2 |
8018105 | Erixon et al. | Sep 2011 | B2 |
8031172 | Kruse et al. | Oct 2011 | B2 |
8044940 | Narusawa | Oct 2011 | B2 |
8069881 | Cunha et al. | Dec 2011 | B1 |
8072418 | Crawford et al. | Dec 2011 | B2 |
8077145 | Rosenberg et al. | Dec 2011 | B2 |
8081156 | Ruettiger | Dec 2011 | B2 |
8082640 | Takeda | Dec 2011 | B2 |
8084968 | Murray et al. | Dec 2011 | B2 |
8098234 | Lacroix et al. | Jan 2012 | B2 |
8123660 | Kruse et al. | Feb 2012 | B2 |
8125453 | Shahoian et al. | Feb 2012 | B2 |
8141276 | Ellis | Mar 2012 | B2 |
8156809 | Tierling et al. | Apr 2012 | B2 |
8169401 | Hardwick | May 2012 | B2 |
8174344 | Yajima et al. | May 2012 | B2 |
8174372 | da Costa | May 2012 | B2 |
8179027 | Strittmatter et al. | May 2012 | B2 |
8179202 | Cruz-Hernandez et al. | May 2012 | B2 |
8188623 | Park et al. | May 2012 | B2 |
8205356 | Ellis | Jun 2012 | B2 |
8210942 | Shimabukuro et al. | Jul 2012 | B2 |
8232494 | Purcocks | Jul 2012 | B2 |
8242641 | Bae et al. | Aug 2012 | B2 |
8248277 | Peterson et al. | Aug 2012 | B2 |
8248278 | Schlosser et al. | Aug 2012 | B2 |
8253686 | Kyung et al. | Aug 2012 | B2 |
8255004 | Huang et al. | Aug 2012 | B2 |
8261468 | Ellis, III | Sep 2012 | B2 |
8264465 | Grant et al. | Sep 2012 | B2 |
8270114 | Argumedo et al. | Sep 2012 | B2 |
8270148 | Griffith et al. | Sep 2012 | B2 |
8288899 | Park et al. | Oct 2012 | B2 |
8291614 | Ellis | Oct 2012 | B2 |
8294600 | Peterson et al. | Oct 2012 | B2 |
8315746 | Cox et al. | Nov 2012 | B2 |
8339250 | Je et al. | Dec 2012 | B2 |
8344834 | Niiyama | Jan 2013 | B2 |
8345013 | Heubel et al. | Jan 2013 | B2 |
8373549 | Fadell et al. | Feb 2013 | B2 |
8378797 | Pance et al. | Feb 2013 | B2 |
8378798 | Bells et al. | Feb 2013 | B2 |
8378965 | Gregorio et al. | Feb 2013 | B2 |
8384316 | Houston et al. | Feb 2013 | B2 |
8384679 | Paleczny et al. | Feb 2013 | B2 |
8388346 | Rantala et al. | Mar 2013 | B2 |
8390594 | Modarres et al. | Mar 2013 | B2 |
8395587 | Cauwels et al. | Mar 2013 | B2 |
8398570 | Mortimer et al. | Mar 2013 | B2 |
8405618 | Colgate et al. | Mar 2013 | B2 |
8411058 | Wong et al. | Apr 2013 | B2 |
8446264 | Tanase | May 2013 | B2 |
8451255 | Weber et al. | May 2013 | B2 |
8452345 | Lee et al. | May 2013 | B2 |
8461951 | Gassmann et al. | Jun 2013 | B2 |
8466889 | Tong et al. | Jun 2013 | B2 |
8471690 | Hennig et al. | Jun 2013 | B2 |
8487759 | Hill | Jul 2013 | B2 |
8515398 | Song et al. | Aug 2013 | B2 |
8542134 | Peterson et al. | Sep 2013 | B2 |
8545322 | George et al. | Oct 2013 | B2 |
8547341 | Takashima et al. | Oct 2013 | B2 |
8547350 | Anglin et al. | Oct 2013 | B2 |
8552859 | Pakula et al. | Oct 2013 | B2 |
8570291 | Motomura et al. | Oct 2013 | B2 |
8575794 | Lee et al. | Nov 2013 | B2 |
8587955 | DiFonzo et al. | Nov 2013 | B2 |
8593409 | Heubel et al. | Nov 2013 | B1 |
8598893 | Camus | Dec 2013 | B2 |
8599047 | Schlosser et al. | Dec 2013 | B2 |
8599152 | Wurtenberger et al. | Dec 2013 | B1 |
8600354 | Esaki | Dec 2013 | B2 |
8614431 | Huppi et al. | Dec 2013 | B2 |
8621348 | Ramsay et al. | Dec 2013 | B2 |
8629843 | Steeves et al. | Jan 2014 | B2 |
8633916 | Bernstein et al. | Jan 2014 | B2 |
8674941 | Casparian et al. | Mar 2014 | B2 |
8680723 | Subramanian et al. | Mar 2014 | B2 |
8681092 | Harada et al. | Mar 2014 | B2 |
8682396 | Yang et al. | Mar 2014 | B2 |
8686952 | Burrough et al. | Apr 2014 | B2 |
8710966 | Hill | Apr 2014 | B2 |
8717309 | Almalki | May 2014 | B2 |
8723813 | Park et al. | May 2014 | B2 |
8733540 | Woiler et al. | May 2014 | B2 |
8735755 | Peterson et al. | May 2014 | B2 |
8760273 | Casparian et al. | Jun 2014 | B2 |
8760413 | Peterson et al. | Jun 2014 | B2 |
8780060 | Maschmeyer et al. | Jul 2014 | B2 |
8787006 | Golko et al. | Jul 2014 | B2 |
8797152 | Henderson et al. | Aug 2014 | B2 |
8798534 | Rodriguez et al. | Aug 2014 | B2 |
8803842 | Wakasugi et al. | Aug 2014 | B2 |
8816981 | Kai et al. | Aug 2014 | B2 |
8836502 | Culbert et al. | Sep 2014 | B2 |
8857248 | Shih et al. | Oct 2014 | B2 |
8860562 | Hill | Oct 2014 | B2 |
8861776 | Lastrucci | Oct 2014 | B2 |
8866600 | Yang et al. | Oct 2014 | B2 |
8890666 | Parker et al. | Nov 2014 | B2 |
8890668 | Pance et al. | Nov 2014 | B2 |
8918215 | Bosscher et al. | Dec 2014 | B2 |
8928621 | Ciesla et al. | Jan 2015 | B2 |
8947383 | Ciesla et al. | Feb 2015 | B2 |
8948821 | Newham et al. | Feb 2015 | B2 |
8952937 | Shih et al. | Feb 2015 | B2 |
8970534 | Adachi et al. | Mar 2015 | B2 |
8976141 | Myers et al. | Mar 2015 | B2 |
9008730 | Kim et al. | Apr 2015 | B2 |
9012795 | Niu | Apr 2015 | B2 |
9013426 | Cole et al. | Apr 2015 | B2 |
9019088 | Zawacki et al. | Apr 2015 | B2 |
9024738 | Van Schyndel et al. | May 2015 | B2 |
9035887 | Prud’Hommeaux et al. | May 2015 | B1 |
9072576 | Nishiura | Jul 2015 | B2 |
9083821 | Hughes | Jul 2015 | B2 |
9092129 | Abdo et al. | Jul 2015 | B2 |
9098984 | Heubel | Aug 2015 | B2 |
9098991 | Park et al. | Aug 2015 | B2 |
9117347 | Matthews | Aug 2015 | B2 |
9122325 | Peshkin et al. | Sep 2015 | B2 |
9131039 | Behles | Sep 2015 | B2 |
9134834 | Reshef | Sep 2015 | B2 |
9141225 | Cok et al. | Sep 2015 | B2 |
9158379 | Cruz-Hernandez et al. | Oct 2015 | B2 |
9178509 | Bernstein | Nov 2015 | B2 |
9189932 | Kerdemelidis | Nov 2015 | B2 |
9201458 | Hunt et al. | Dec 2015 | B2 |
9202355 | Hill | Dec 2015 | B2 |
9219401 | Kim et al. | Dec 2015 | B2 |
9235267 | Burrough et al. | Jan 2016 | B2 |
9274601 | Faubert et al. | Mar 2016 | B2 |
9274602 | Garg et al. | Mar 2016 | B2 |
9274603 | Modarres et al. | Mar 2016 | B2 |
9275815 | Hoffmann et al. | Mar 2016 | B2 |
9285923 | Liao et al. | Mar 2016 | B2 |
9293054 | Bruni et al. | Mar 2016 | B2 |
9300181 | Maeda et al. | Mar 2016 | B2 |
9310906 | Yumiki et al. | Apr 2016 | B2 |
9310950 | Takano et al. | Apr 2016 | B2 |
9317116 | Ullrich et al. | Apr 2016 | B2 |
9317118 | Puskarich | Apr 2016 | B2 |
9317154 | Perlin et al. | Apr 2016 | B2 |
9318942 | Sugita et al. | Apr 2016 | B2 |
9325230 | Yamada et al. | Apr 2016 | B2 |
9330544 | Levesque et al. | May 2016 | B2 |
9357052 | Ullrich | May 2016 | B2 |
9360944 | Pinault | Jun 2016 | B2 |
9367238 | Tanada | Jun 2016 | B2 |
9380145 | Tartz et al. | Jun 2016 | B2 |
9390599 | Weinberg et al. | Jul 2016 | B2 |
9396434 | Rothkopf | Jul 2016 | B2 |
9405369 | Modarres et al. | Aug 2016 | B2 |
9411423 | Heubel | Aug 2016 | B2 |
9417695 | Griffin et al. | Aug 2016 | B2 |
9430042 | Levin | Aug 2016 | B2 |
9448628 | Tan et al. | Sep 2016 | B2 |
9448713 | Cruz-Hernandez et al. | Sep 2016 | B2 |
9449476 | Lynn et al. | Sep 2016 | B2 |
9452268 | Zivkovic et al. | Sep 2016 | B2 |
9454239 | Elias | Sep 2016 | B2 |
9467033 | Jun et al. | Oct 2016 | B2 |
9468846 | Terrell et al. | Oct 2016 | B2 |
9471172 | Sirois | Oct 2016 | B2 |
9477342 | Daverman et al. | Oct 2016 | B2 |
9480947 | Salu et al. | Nov 2016 | B2 |
9501912 | Havskjold et al. | Nov 2016 | B1 |
9542028 | Filiz et al. | Jan 2017 | B2 |
9544694 | Abe et al. | Jan 2017 | B2 |
9564029 | Morrell et al. | Feb 2017 | B2 |
9576445 | Cruz-Hernandez et al. | Feb 2017 | B2 |
9594450 | Lynn et al. | Mar 2017 | B2 |
9595659 | Kim | Mar 2017 | B2 |
9600070 | Chatterjee et al. | Mar 2017 | B2 |
9608506 | Degner et al. | Mar 2017 | B2 |
9622214 | Ryu et al. | Apr 2017 | B2 |
9640048 | Hill | May 2017 | B2 |
9652040 | Martinez et al. | May 2017 | B2 |
9659482 | Yang et al. | May 2017 | B2 |
9665198 | Kies et al. | May 2017 | B2 |
9692286 | Endo et al. | Jun 2017 | B2 |
9696803 | Cruz-Hernandez et al. | Jul 2017 | B2 |
9727157 | Ham et al. | Aug 2017 | B2 |
9733704 | Cruz-Hernandez et al. | Aug 2017 | B2 |
9746945 | Sheynblat et al. | Aug 2017 | B2 |
9778743 | Grant et al. | Oct 2017 | B2 |
9779592 | Hoen | Oct 2017 | B1 |
9785251 | Martisauskas | Oct 2017 | B2 |
9823833 | Grant et al. | Nov 2017 | B2 |
9830782 | Morrell et al. | Nov 2017 | B2 |
9831871 | Lee et al. | Nov 2017 | B2 |
9836123 | Gipson et al. | Dec 2017 | B2 |
9846484 | Shah | Dec 2017 | B2 |
9857872 | Terlizzi et al. | Jan 2018 | B2 |
9870053 | Modarres et al. | Jan 2018 | B2 |
9886093 | Moussette et al. | Feb 2018 | B2 |
9891708 | Cruz-Hernandez et al. | Feb 2018 | B2 |
9904393 | Frey et al. | Feb 2018 | B2 |
9911553 | Bernstein | Mar 2018 | B2 |
9928950 | Lubinski et al. | Mar 2018 | B2 |
9934661 | Hill | Apr 2018 | B2 |
9970757 | Das et al. | May 2018 | B2 |
9990099 | Ham et al. | Jun 2018 | B2 |
9997306 | Bernstein | Jun 2018 | B2 |
10013058 | Puskarich et al. | Jul 2018 | B2 |
10032550 | Zhang et al. | Jul 2018 | B1 |
10038361 | Hajati et al. | Jul 2018 | B2 |
10039080 | Miller et al. | Jul 2018 | B2 |
10061386 | Frescas et al. | Aug 2018 | B2 |
10062832 | Caraveo et al. | Aug 2018 | B2 |
10067585 | Kim et al. | Sep 2018 | B2 |
10069392 | Degner et al. | Sep 2018 | B2 |
10108151 | Cardinali et al. | Oct 2018 | B2 |
10108265 | Harley et al. | Oct 2018 | B2 |
10120446 | Pance et al. | Nov 2018 | B2 |
10126817 | Morrell et al. | Nov 2018 | B2 |
10127778 | Hajati et al. | Nov 2018 | B2 |
10133352 | Lee et al. | Nov 2018 | B2 |
10139907 | Billington | Nov 2018 | B2 |
10139959 | Butler et al. | Nov 2018 | B2 |
10152116 | Wang et al. | Dec 2018 | B2 |
10198097 | Lynn et al. | Feb 2019 | B2 |
10204494 | Do et al. | Feb 2019 | B2 |
10236760 | Moussette et al. | Mar 2019 | B2 |
10268272 | Chen | Apr 2019 | B2 |
10276001 | Smith, IV et al. | Apr 2019 | B2 |
10289199 | Hoellwarth | May 2019 | B2 |
10338682 | Heubel et al. | Jul 2019 | B2 |
10345905 | McClure et al. | Jul 2019 | B2 |
10353382 | Bodenstein | Jul 2019 | B2 |
10353467 | Augenbergs et al. | Jul 2019 | B2 |
10367950 | Davis et al. | Jul 2019 | B2 |
10372250 | Zhang et al. | Aug 2019 | B2 |
10416811 | Abdollahian et al. | Sep 2019 | B2 |
10423214 | Mistry et al. | Sep 2019 | B2 |
10429929 | Sulem et al. | Oct 2019 | B2 |
10436607 | Chen et al. | Oct 2019 | B2 |
10444834 | Vescovi et al. | Oct 2019 | B2 |
10444841 | Nakamura et al. | Oct 2019 | B2 |
10456622 | Szabados et al. | Oct 2019 | B2 |
10459521 | Puskarich | Oct 2019 | B2 |
10475300 | Hill | Nov 2019 | B2 |
10481691 | Uttermann et al. | Nov 2019 | B2 |
10481692 | Ullrich et al. | Nov 2019 | B2 |
10488927 | Lim et al. | Nov 2019 | B2 |
10490035 | Morrell et al. | Nov 2019 | B2 |
10503255 | Ramstein et al. | Dec 2019 | B2 |
10504339 | Birnbaum et al. | Dec 2019 | B2 |
10514761 | Rihn et al. | Dec 2019 | B2 |
10540043 | Tanemura et al. | Jan 2020 | B2 |
10545604 | Bijamov et al. | Jan 2020 | B2 |
10564721 | Cruz-Hernandez et al. | Feb 2020 | B2 |
10566888 | Degner et al. | Feb 2020 | B2 |
10585480 | Bushnell et al. | Mar 2020 | B1 |
10608162 | Noguchi | Mar 2020 | B2 |
10609677 | Miller et al. | Mar 2020 | B2 |
10622538 | Zhang et al. | Apr 2020 | B2 |
10651716 | Moussette et al. | May 2020 | B2 |
10762752 | Persson et al. | Sep 2020 | B1 |
10788932 | Iuchi et al. | Sep 2020 | B2 |
10809805 | Chen | Oct 2020 | B2 |
10890973 | Hajati | Jan 2021 | B2 |
10976824 | Amin-Shahidi et al. | Apr 2021 | B1 |
11043088 | Hill | Jun 2021 | B2 |
11165382 | Creary et al. | Nov 2021 | B2 |
11380470 | Amin-Shahidi et al. | Jul 2022 | B2 |
11402911 | Uttermann et al. | Aug 2022 | B2 |
20020194284 | Haynes | Dec 2002 | A1 |
20030210259 | Liu et al. | Nov 2003 | A1 |
20040021663 | Suzuki et al. | Feb 2004 | A1 |
20040127198 | Roskind et al. | Jul 2004 | A1 |
20050057528 | Kleen | Mar 2005 | A1 |
20050107129 | Kaewell et al. | May 2005 | A1 |
20050110778 | Ben Ayed | May 2005 | A1 |
20050118922 | Endo | Jun 2005 | A1 |
20050217142 | Ellis, III | Oct 2005 | A1 |
20050237306 | Klein et al. | Oct 2005 | A1 |
20050248549 | Dietz et al. | Nov 2005 | A1 |
20050258715 | Schlabach | Nov 2005 | A1 |
20060014569 | DelGiorno | Jan 2006 | A1 |
20060154674 | Landschaft et al. | Jul 2006 | A1 |
20060209037 | Wang et al. | Sep 2006 | A1 |
20060239746 | Grant | Oct 2006 | A1 |
20060252463 | Liao et al. | Nov 2006 | A1 |
20070032270 | Orr | Feb 2007 | A1 |
20070043725 | Hotelling et al. | Feb 2007 | A1 |
20070099574 | Wang | May 2007 | A1 |
20070152974 | Kim et al. | Jul 2007 | A1 |
20070168430 | Brun et al. | Jul 2007 | A1 |
20070178942 | Sadler et al. | Aug 2007 | A1 |
20070188450 | Hernandez et al. | Aug 2007 | A1 |
20080084384 | Gregorio et al. | Apr 2008 | A1 |
20080165148 | Williamson et al. | Jul 2008 | A1 |
20080181501 | Faraboschi et al. | Jul 2008 | A1 |
20080181706 | Jackson | Jul 2008 | A1 |
20080192014 | Kent et al. | Aug 2008 | A1 |
20080204428 | Pierce et al. | Aug 2008 | A1 |
20080255794 | Levine | Oct 2008 | A1 |
20090002328 | Ullrich et al. | Jan 2009 | A1 |
20090015560 | Robinson et al. | Jan 2009 | A1 |
20090115734 | Fredriksson et al. | May 2009 | A1 |
20090120105 | Ramsay et al. | May 2009 | A1 |
20090128503 | Grant et al. | May 2009 | A1 |
20090135142 | Fu et al. | May 2009 | A1 |
20090167702 | Nurmi | Jul 2009 | A1 |
20090218148 | Hugeback et al. | Sep 2009 | A1 |
20090225046 | Kim et al. | Sep 2009 | A1 |
20090236210 | Clark et al. | Sep 2009 | A1 |
20090267892 | Faubert | Oct 2009 | A1 |
20090291670 | Sennett et al. | Nov 2009 | A1 |
20100020036 | Hui et al. | Jan 2010 | A1 |
20100053087 | Dai et al. | Mar 2010 | A1 |
20100089735 | Takeda et al. | Apr 2010 | A1 |
20100110018 | Faubert et al. | May 2010 | A1 |
20100141408 | Doy et al. | Jun 2010 | A1 |
20100141606 | Bae et al. | Jun 2010 | A1 |
20100148944 | Kim et al. | Jun 2010 | A1 |
20100152620 | Ramsay et al. | Jun 2010 | A1 |
20100164894 | Kim et al. | Jul 2010 | A1 |
20100188422 | Shingai et al. | Jul 2010 | A1 |
20100265197 | Purdy et al. | Oct 2010 | A1 |
20100328229 | Weber et al. | Dec 2010 | A1 |
20110007023 | Abrahamsson et al. | Jan 2011 | A1 |
20110053577 | Lee et al. | Mar 2011 | A1 |
20110107958 | Pance et al. | May 2011 | A1 |
20110121765 | Anderson et al. | May 2011 | A1 |
20110128239 | Polyakov et al. | Jun 2011 | A1 |
20110148608 | Grant et al. | Jun 2011 | A1 |
20110156539 | Park et al. | Jun 2011 | A1 |
20110157052 | Lee et al. | Jun 2011 | A1 |
20110163985 | Bae et al. | Jul 2011 | A1 |
20110216013 | Siotis | Sep 2011 | A1 |
20110248948 | Griffin et al. | Oct 2011 | A1 |
20110260988 | Colgate et al. | Oct 2011 | A1 |
20110263200 | Thornton et al. | Oct 2011 | A1 |
20110291950 | Tong | Dec 2011 | A1 |
20110304559 | Pasquero | Dec 2011 | A1 |
20120092263 | Peterson et al. | Apr 2012 | A1 |
20120126959 | Zarrabi et al. | May 2012 | A1 |
20120133494 | Cruz-Hernandez et al. | May 2012 | A1 |
20120206248 | Biggs | Aug 2012 | A1 |
20120256848 | Madabusi Srinivasan | Oct 2012 | A1 |
20120274578 | Snow et al. | Nov 2012 | A1 |
20120280927 | Ludwig | Nov 2012 | A1 |
20120319987 | Woo | Dec 2012 | A1 |
20120327006 | Israr et al. | Dec 2012 | A1 |
20130027345 | Binzel | Jan 2013 | A1 |
20130033967 | Chuang et al. | Feb 2013 | A1 |
20130043987 | Kasama et al. | Feb 2013 | A1 |
20130058816 | Kim | Mar 2013 | A1 |
20130106699 | Babatunde | May 2013 | A1 |
20130191741 | Dickinson et al. | Jul 2013 | A1 |
20130207793 | Weaber et al. | Aug 2013 | A1 |
20130217491 | Hilbert et al. | Aug 2013 | A1 |
20130257776 | Tissot | Oct 2013 | A1 |
20130261811 | Yagi et al. | Oct 2013 | A1 |
20130300590 | Dietz et al. | Nov 2013 | A1 |
20140082490 | Jung et al. | Mar 2014 | A1 |
20140085065 | Biggs et al. | Mar 2014 | A1 |
20140132528 | Catton | May 2014 | A1 |
20140168153 | Deichmann et al. | Jun 2014 | A1 |
20140197936 | Biggs et al. | Jul 2014 | A1 |
20140267076 | Birnbaum et al. | Sep 2014 | A1 |
20150005039 | Liu et al. | Jan 2015 | A1 |
20150040005 | Faaborg et al. | Feb 2015 | A1 |
20150098309 | Adams et al. | Apr 2015 | A1 |
20150169059 | Behles et al. | Jun 2015 | A1 |
20150194165 | Faaborg et al. | Jul 2015 | A1 |
20150205355 | Yairi | Jul 2015 | A1 |
20150205417 | Yairi et al. | Jul 2015 | A1 |
20150296480 | Kinsey et al. | Oct 2015 | A1 |
20160103544 | Filiz et al. | Apr 2016 | A1 |
20160241119 | Keeler | Aug 2016 | A1 |
20170153703 | Yun et al. | Jun 2017 | A1 |
20170311282 | Miller et al. | Oct 2017 | A1 |
20170357325 | Yang et al. | Dec 2017 | A1 |
20170364158 | Wen et al. | Dec 2017 | A1 |
20180060941 | Yang et al. | Mar 2018 | A1 |
20180081441 | Pedder et al. | Mar 2018 | A1 |
20180090253 | Songatikamas et al. | Mar 2018 | A1 |
20180302881 | Miller et al. | Oct 2018 | A1 |
20200004337 | Hendren et al. | Jan 2020 | A1 |
20200103968 | Amin-Shahidi et al. | Apr 2020 | A1 |
20200233495 | Bushnell et al. | Jul 2020 | A1 |
20210090773 | Amin-Shahidi et al. | Mar 2021 | A1 |
20210312771 | Hill | Oct 2021 | A1 |
20220291746 | Tarelli et al. | Sep 2022 | A1 |
20220336132 | Amin-Shahidi et al. | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
2015100710 | Jul 2015 | AU |
2016100399 | May 2016 | AU |
2355434 | Feb 2002 | CA |
1324030 | Nov 2001 | CN |
1692371 | Nov 2005 | CN |
1817321 | Aug 2006 | CN |
101120290 | Feb 2008 | CN |
101409164 | Apr 2009 | CN |
101763192 | Jun 2010 | CN |
101903848 | Dec 2010 | CN |
101938207 | Jan 2011 | CN |
102025257 | Apr 2011 | CN |
102057656 | May 2011 | CN |
201829004 | May 2011 | CN |
102163076 | Aug 2011 | CN |
102246122 | Nov 2011 | CN |
102315747 | Jan 2012 | CN |
102591512 | Jul 2012 | CN |
102667681 | Sep 2012 | CN |
102713805 | Oct 2012 | CN |
102754054 | Oct 2012 | CN |
102768593 | Nov 2012 | CN |
102844972 | Dec 2012 | CN |
102915111 | Feb 2013 | CN |
103019569 | Apr 2013 | CN |
103154867 | Jun 2013 | CN |
103155410 | Jun 2013 | CN |
103181090 | Jun 2013 | CN |
103218104 | Jul 2013 | CN |
103278173 | Sep 2013 | CN |
103416043 | Nov 2013 | CN |
103440076 | Dec 2013 | CN |
103567135 | Feb 2014 | CN |
103970339 | Aug 2014 | CN |
104049746 | Sep 2014 | CN |
104220963 | Dec 2014 | CN |
104917885 | Sep 2015 | CN |
104956244 | Sep 2015 | CN |
105556268 | May 2016 | CN |
208013890 | Oct 2018 | CN |
19517630 | Nov 1996 | DE |
10330024 | Jan 2005 | DE |
102008027720 | Dec 2009 | DE |
102009038103 | Feb 2011 | DE |
102011115762 | Apr 2013 | DE |
0483955 | May 1992 | EP |
1047258 | Oct 2000 | EP |
1686776 | Aug 2006 | EP |
2060967 | May 2009 | EP |
2073099 | Jun 2009 | EP |
2194444 | Jun 2010 | EP |
2207080 | Jul 2010 | EP |
2264562 | Dec 2010 | EP |
2315186 | Apr 2011 | EP |
2374430 | Oct 2011 | EP |
2395414 | Dec 2011 | EP |
2461228 | Jun 2012 | EP |
2631746 | Aug 2013 | EP |
2434555 | Oct 2013 | EP |
2148339 | Jul 2015 | EP |
H05301342 | Nov 1993 | JP |
2001095290 | Apr 2001 | JP |
2002102799 | Apr 2002 | JP |
2002199689 | Jul 2002 | JP |
200362525 | Mar 2003 | JP |
2003527046 | Sep 2003 | JP |
200494389 | Mar 2004 | JP |
2004236202 | Aug 2004 | JP |
2006150865 | Jun 2006 | JP |
3831410 | Oct 2006 | JP |
2007519099 | Jul 2007 | JP |
2008018928 | Jan 2008 | JP |
2010536040 | Nov 2010 | JP |
2010272903 | Dec 2010 | JP |
2011523840 | Aug 2011 | JP |
2012135755 | Jul 2012 | JP |
2013149124 | Aug 2013 | JP |
2014002729 | Jan 2014 | JP |
2014509028 | Apr 2014 | JP |
2014235133 | Dec 2014 | JP |
2014239323 | Dec 2014 | JP |
2015153406 | Aug 2015 | JP |
2015228214 | Dec 2015 | JP |
2016095552 | May 2016 | JP |
20050033909 | Apr 2005 | KR |
1020100046602 | May 2010 | KR |
1020110101516 | Sep 2011 | KR |
20130024420 | Mar 2013 | KR |
200518000 | Jun 2005 | TW |
200951944 | Dec 2009 | TW |
201145336 | Dec 2011 | TW |
201218039 | May 2012 | TW |
201425180 | Jul 2014 | TW |
97016932 | May 1997 | WO |
00051190 | Aug 2000 | WO |
01059558 | Aug 2001 | WO |
01089003 | Nov 2001 | WO |
02073587 | Sep 2002 | WO |
03038800 | May 2003 | WO |
03100550 | Dec 2003 | WO |
06057770 | Jun 2006 | WO |
07114631 | Oct 2007 | WO |
08075082 | Jun 2008 | WO |
09038862 | Mar 2009 | WO |
09068986 | Jun 2009 | WO |
09097866 | Aug 2009 | WO |
09122331 | Oct 2009 | WO |
09150287 | Dec 2009 | WO |
10085575 | Jul 2010 | WO |
10087925 | Aug 2010 | WO |
11007263 | Jan 2011 | WO |
12052635 | Apr 2012 | WO |
12129247 | Sep 2012 | WO |
13069148 | May 2013 | WO |
13150667 | Oct 2013 | WO |
13169299 | Nov 2013 | WO |
13169302 | Nov 2013 | WO |
13173838 | Nov 2013 | WO |
13186846 | Dec 2013 | WO |
13186847 | Dec 2013 | WO |
14018086 | Jan 2014 | WO |
14098077 | Jun 2014 | WO |
15023670 | Feb 2015 | WO |
16141482 | Sep 2016 | WO |
17027792 | Feb 2017 | WO |
Entry |
---|
Actuator definition downloaded from http://www.thefreedictionary.com/actuator on May 3, 2018, 2 pages. |
Astronomer’s Toolbox, “The Electromagnetic Spectrum,” http://imagine.gsfc.nasa.gov/science/toolbox/emspectrum1.html, updated Mar. 2013, 4 pages. |
Hasser et al., “Preliminary Evaluation of a Shape-Memory Alloy Tactile Feedback Display,” Advances in Robotics, Mechantronics, and Haptic Interfaces, ASME, DSC-Vol. 49, pp. 73-80, 1993. |
Hill et al., “Real-time Estimation of Human Impedance for Haptic Interfaces,” Stanford Telerobotics Laboratory, Department of Mechanical Engineering, Stanford University, Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, Utah, Mar. 18-20, 2009, pp. 440-445. |
Kim et al., “Tactile Rendering of 3D Features on Touch Surfaces,” UIST ’13, Oct. 8-11, 2013, St. Andrews, United Kingdom, 8 pages. |
Lee et al, “Haptic Pen: Tactile Feedback Stylus for Touch Screens,” Mitsubishi Electric Research Laboratories, http://wwwlmerl.com, 6 pages, Oct. 2004. |
Nakamura, “A Torso Haptic Display Based on Shape Memory Alloy Actuators,” Massachusetts Institute of Technology, 2003, pp. 1-123. |
PuntoCellulare, “LG-GD910 3G Watch Phone,” YouTube (http://www.youtube.com/watch?v+HcCl87KIELM), Jan. 8, 2009, 9 pages. |
Sullivan, Mark, “This Android Wear Update Turns Your Device into The Dick Tracy Watch,” Fast Company (https://www.fastcompany.com/3056319/this-android-wear-update-turns-your-device-into-the-dick-tracy-watch), Feb. 4, 2016, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20230094873 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
63246432 | Sep 2021 | US |