Field of the Invention
The present invention relates to a remanufacturing method of a developer accommodating unit for refilling developer.
An image forming apparatus forms an image on a recording medium using an electrophotographic image forming process. Examples of image forming apparatuses include electrophotographic copying machines, electrophotographic printers (for example, laser beam printers and light emitting diode (LED) printers), facsimile apparatuses, and word processors.
A developing device includes developer, and a developing roller as a developer bearing member for developing an electrostatic latent image formed on a photosensitive drum as an image bearing member. The developing device is detachably attached to an image forming apparatus or a photosensitive drum unit including a photosensitive drum.
A cartridge (process cartridge) integrally includes a photosensitive drum and a developing roller, and is detachably attached to an image forming apparatus.
Description of the Related Art
Japanese Patent No. 3320403 discloses a remanufacturing method of a cartridge having a developing device, more specifically, a remanufacturing method of a cartridge for refilling, using a funnel, toner into a storage container for storing toner, after removing a developing roller and a developing blade.
The present invention is directed to a remanufacturing method of a developer accommodating unit including a flexible container.
According to an aspect of the present invention, a remanufacturing method of a developer accommodating unit including a flexible container provided with an opening and configured to accommodate developer, and a frame member configured to accommodate the flexible container, includes refilling the developer into the frame member.
Further features of the present invention will become apparent from the following description of embodiments with reference to the attached drawings.
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. However, sizes, materials, shapes, and relative positions of elements described in the embodiments are not limited thereto, and can be appropriately modified depending on the configuration of an apparatus according to the present invention and other various conditions. Unless otherwise specifically described, the scope of the present invention is not limited to the embodiments described below. Elements in subsequent embodiments that are identical to those in preceding embodiments are assigned the same reference numerals, and descriptions in the preceding embodiments will be incorporated by reference.
In the following descriptions, a developer accommodating unit includes at least a frame member and a flexible container. A developing device includes at least a developer bearing member. Further, a process cartridge includes at least an image bearing member. In the embodiments, a developer accommodating unit has the same concept as a developing device. In the embodiments, a developing unit may be independently configured as a developing device.
These cartridges P have an approximately similar configuration expect for different toner colors. The first cartridge PY accommodates yellow developer, the second cartridge PM accommodates magenta developer, the third cartridge PC accommodates cyan developer, and the fourth cartridge PK accommodates black developer. The image forming apparatus 1 performs color image formation on a recording material S. The image forming apparatus 1 is a cartridge type image forming apparatus in which the cartridges P are detachably attached to the apparatus body 2 and a color image is formed on the recording material S.
A mechanism inside the cartridge P is driven by a rotational driving force received from a drive output unit (not illustrated) of the apparatus body 2. Internal devices in the cartridge P is supplied with bias voltages (a charging bias voltage, a developing bias voltage, etc.) from the apparatus body 2.
An exposure device 200 is disposed above the plurality of cartridges P. The exposure device 200 is a laser scanner unit for irradiating a photosensitive drum 4 with laser light LS based on information transmitted from a controller 50 in the apparatus body 2. This laser light LS passes through an exposure window portion 10 (refer to
An intermediate transfer belt unit 11 is disposed below the plurality of cartridges P. The intermediate transfer belt unit 11 includes a transfer belt 12, and a drive roller 13 and tension rollers 14 and 15 for stretching the transfer belt 12. The transfer belt 12 is made of a flexible material.
The bottom surface of the photosensitive drum 4 inside the cartridge P contacts the upper surface of the transfer belt 12. The relevant contact portion is a primary transfer portion. Inside the transfer belt 12, primary transfer rollers 16 are disposed to surface respective photosensitive drums 4. A secondary transfer roller 17 is disposed at a position facing the tension roller 14 via the transfer belt 12. The contact portion between the secondary transfer roller 17 and the transfer belt 12 is a secondary transfer portion.
A feed unit 18 is disposed below the intermediate transfer belt unit 11. The feed unit 18 includes a tray 19 on which recording materials S are stacked, and a feed roller 20. A fixing unit 21 and a discharge unit 22 are disposed at the upper left position of the cartridge P. A discharge tray 23 is formed on the upper surface of the apparatus body 2. The recording material S is fixed by the fixing unit 21 and then discharged onto the discharge tray 23.
The developing unit 9 includes a developing roller 6 as a “developer bearing member”, a supply roller 61, and an agitating member 74. The developing roller 6 develops an electrostatic image on the surface of the photosensitive drum 4 using toner. The supply roller 61 supplies developer to the developing roller 6. The agitating member 74 agitates the developer inside the developing unit 9.
Operations of the image forming apparatus 1 will be described below with reference to above-described
Meanwhile, the recording materials S stacked on the tray 19 are separated and fed one by one at a predetermined control timing. Each of the recording materials S is conveyed to the secondary transfer portion between the secondary transfer roller 17 and the transfer belt 12. At the secondary transfer portion, the developer image on the surface of the transfer belt 12 is secondarily transferred onto the recording material S.
The developing unit 9 includes a sealing member 253 for sealing openings 251h (251h1 to 251h5) and exposing the openings 251h1 to 251h5 when being moved, and an unsealing member 254 attached to the sealing member 253, for moving the sealing member 253. The developing unit 9 further includes a fixing portion 29b for fixing a flexible container 251 to the frame member 29.
One end side of the photosensitive drum 4 in the longitudinal direction is provided with a coupling member 4a for transmitting a driving force to the photosensitive drum 4. When the coupling member 4a is engaged with a drum drive output unit of the apparatus body 2, the driving force of the drive motor (not illustrated) of the apparatus body 2 is transmitted to the photosensitive drum 4. The charging roller 5 is supported by the cleaning container 26 so that the charging roller 5 can be rotatably driven with being in contact with the photosensitive drum 4. The cleaning member 7 is supported by the cleaning container 26 so that the cleaning member 7 contacts the circumferential surface of the photosensitive drum 4 at a predetermined pressure.
Residual developer removed from the circumferential surface of the photosensitive drum 4 by the cleaning member 7 is stored in the cleaning container 26. Holes 24a and 25a for rotatably supporting the developing unit 9 are formed on the covers 24 and 25, respectively.
As illustrated in
The sealing member 253 is coupled to the unsealing member 254. The unsealing member 254 is supported so as to be rotatable in the direction indicated by an arrow J by receiving a driving force from the apparatus body 2. When the new cartridge P is used, the cartridge P is attached to the apparatus body 2. Then, the unsealing member 254 receives a driving force from the apparatus body 2 to rotate.
At this timing, the sealing member 253 is detached from the flexible container 251 and is rolled up by the unsealing member 254. Thus, the openings 251h (251h1 to 251h5) of the flexible container 251 are exposed, enabling the developer in the flexible container 251 to be discharged into the frame member 29.
The developing blade 31 for regulating the layer thickness of the developer on the circumferential surface of the developing roller 6 is fixed to the frame member 29. The bearings 45 and 46 illustrated in
The gear 69 is set to rotate when the gear 68 rotates. The bearing 45 is provided with the gears 68, 69, and 70. The cover 32 is fixed to the outside of the gears 68, 69, and 70. End seals 62 are disposed at both ends of the shaft of the supply roller 61 to seal between the supply roller 61 and the frame member 29.
As illustrated in
[Photosensitive Unit and Developing Unit Assembling Process]
As illustrated in
As illustrated in
Referring to
A pressing force of the above-described pressure spring 95 (refer to
With the cartridge P being attached to the inside of the apparatus body 2, image formation is performed while consuming the developer inside the developing unit 9. The remanufacturing method of the cartridge P of refilling the developer into the developing unit 9 after consuming the developer inside the developing unit 9 will be sequentially described below.
[Unit Separation Process]
A unit separation process for separating the photosensitive unit 8 and the developing unit 9 of the cartridge P will be described below. As illustrated in
[Developing Unit Disassembling Process]
A process for disassembling the developing unit 9 will be described below with reference to
Then, on the drive side of the developing unit 9, the gears 68, 69, and 70 disposed inside the cover 32 in the longitudinal direction are separated from the developing unit 9. The gear 68 is slidably supported by the cover 32 and the bearing 45, and the gear 69 is fitted into an end of the shaft of the developing roller 6. The gear 70 is fitted into the shaft of the supply roller 61. Therefore, the gears 68, 69, and 70, the developing roller 6, and the supply roller 61 can be easily separated from the developing unit 9.
Then, the bearings 45 and 46 and the developing roller 6 are separated from the developing unit 9. When the bearing 45 is fixed to the frame member 29 with a screw, the screw is removed and then the bearing 45 is separated from the frame member 29. In the present embodiment, the bearing 45 and the cover 32 are fixed together to the frame member 29 with the screw 93. Since the screw 93 has been removed when the cover 32 is separated from the frame member 29, the bearing 45 can be easily separated from the frame member 29. Likewise, when the bearing 46 is fixed to the frame member 29 with a screw, the bearing 46 can be separated from the frame member 29 after the screw is removed.
As described above, the developing roller 6 is slidably supported on the frame member 29 by the bearings 45 and 46. Therefore, in a state where the bearings 45 and 46 are separated from the frame member 29, the developing roller 6 can be easily separated from the frame member 29. Although, in the above descriptions, a process for separating both the bearings 45 and 46 from the frame member 29 is performed to separate the developing roller 6 from the frame member 29, the method is not limited thereto. For example, after only the bearing 46 is separated from the frame member 29, the developing roller 6 may be pulled out toward the non-drive side to separate the developing roller 6 from the frame member 29.
Then, the developing blade 31 is separated from the frame member 29. When the developing blade 31 is fixed to the frame member 29 with screw 91 and 92, the screws 91 and 92 are removed and then the developing blade 31 is separated from the frame member 29.
The attachment and detachment area 500 has two different portions on the downstream side in the detachment direction: parallel portions 80b parallel to the axis direction of the developing roller 6, and mountain-shaped portions 80c having a mountain shape toward the downstream side in the detachment direction. The attachment and detachment area 500 further includes a detachment start portion 80a parallel to the axis direction of the developing roller 6, at the upstream side in the detachment direction. The sealing member 253 is pulled in the direction indicated by an arrow O1 and the direction indicated by the arrow O2 to be detached in states illustrated in
(Flexible Container Compression Process)
When air is injected into the funnel 101 in the direction indicated by an arrow M, the injected air advances in the directions indicated by arrows A (A1 to A3) inside the frame member 29. Then, the pressure of the injected air compresses the flexible container 251 in the directions indicated by arrows B (B1 to B3) to reduce the capacity of the flexible container 251. Injecting air into the frame member 29 in this way enlarges a refilling space 255, which is provided inside the frame member 29 and outside the flexible container 251. Hereinafter this space will be referred to as the refilling space 255.
The above-described procedures are summarized as follows. The remanufacturing method of the developing unit 9 includes a compression process. In the compression process, the capacity of the flexible container 251 is reduced by injecting air into the refilling space 255. In the compression process, the flexible container 251 is folded by pressing the flexible container 251 with a pressing member. Thus, the remanufacturing method of the developing unit 9 includes a compression process for compressing the flexible container 251 inside the frame member 29 to make the capacity of the flexible container 251 smaller than the capacity of the flexible container 251 filled with the developer T. The compression process enlarges the refilling space 255.
(Developer Refilling Process)
Although, in the present embodiment, the funnel 101 is inserted into the opening 29a of the frame member 29, the flexible container 251 is compressed, and the developer T is refilled, the method is not limited thereto. More specifically, the above-described compression process and refilling process may be performed after a hole is formed on the frame member 29 and then the tip portion of the funnel 101 is inserted into the frame member 29.
Although, in the present embodiment, the flexible container 251 is compressed using air in the compression process so as to efficiently compress the flexible container 251, the method is not limited thereto. More specifically, in the developer refilling process, the flexible container 251 may be compressed using the developer T injected from the funnel 101 and the developer T may be filled into the frame member 29.
[Developing Unit Assembling Process]
As described above, the developer is refilled into the frame member 29 and then the cartridge P is reassembled. The cartridge P can be reassembled by performing the above-described separation process in reverse order. The reassembling method of the developing unit 9 will be described below with reference to
First of all, the supply roller 61 is fitted into the frame member 29. The gap between the shaft of the supply roller 61 and the frame member 29 is sealed by the end seals 62. The developing blade 31 is fixed to the frame member 29 with the screws 91 and 92. Then, the developing roller 6 is placed in the frame member 29, and the bearings 45 and 46 are attached to the frame member 29 from both ends in the longitudinal direction.
Then, the gear 68 is fitted into the bearing 45, the gear 69 is fitted into an end of the developing roller 6, and the gear 70 is fitted into an end of the supply roller 61. Then, the cover 32 is fixed to the outside of the frame member 29 or the bearing 45 in the longitudinal direction with the screw 93 so as to cover the gears 68 and 69. Upon completion of the above-described procedure, the assembling process of the developing unit 9 is completed.
[Unit Combining Process]
A unit combining process for combining the photosensitive unit 8 and the developing unit 9 will be described below with reference to
Upon completion of the above-described procedure, the assembly of the cartridge P is completed as illustrated in
The second embodiment differs from the first embodiment in the flexible container compression process, out of the cartridge disassembling process, the flexible container compression process, the developer refilling process, and the cartridge assembling process. The flexible container compression process will be described below.
(Compression Process)
As illustrated in
The flaring member 256 is a flexible sheet made of polyethylene terephthalate with a 200-μm thickness. The material of the flaring member 256 may be other flexible materials. The flaring member 256 may be left inside the frame member 29 after being inserted therein, or may be taken out through the opening 29a to the outside of the frame member 29 afterwards.
Although, in the present embodiment, the flaring member 256 is inserted through the opening 29a of the frame member 29, the flexible container 251 is compressed, and the developer T is refilled, the method is not limited thereto. More specifically, the refilling process may be performed after a hole is formed on the frame member 29 and the flaring member 256 is inserted into the frame member 29.
Although the user may perform the removing process of both of the respective end seals 62 on the drive side and the non-drive side, the method is not limited thereto. For example, after performing the removing process only for the end seal 62 on the non-drive side, the supply roller 61 may be pulled out toward the non-drive side to separate it from the frame member 29.
Although, in the above descriptions, the supply roller 61 is fitted into the frame member 29, the supply roller 61 may be fixed to the frame member 29 via a fixing member 63 of the supply roller 61 (refer to
Although the user may perform the process for separating the fixing member 63 of the supply roller 61 from the frame member 29 on both of the non-drive side and the drive side, the user may perform the removing process only on either one of the non-drive side and the drive side. For example, when the removing process of the fixing member 63 of the supply roller 61 is performed only on the non-drive side, the supply roller 61 can be separated from the frame member 29 by pulling out the supply roller 61 toward the non-drive side.
[Sealing Member and Unsealing Member Separation Process]
On the non-drive side, the shaft 254a of the unsealing member 254 is fitted into the hole 29c formed inside the frame member 29. In a state where the unsealing gear 67 on the drive side has been taken out from the unsealing member 254, the shaft 254a can be easily pulled out from the hole 29c. As illustrated in
Then, the unsealing gear 67 once removed is reattached to the frame member 29. Although the unsealing gear 67 is reattached to the frame member 29 in the present embodiment, the hole on the frame member 29 in which the unsealing gear 67 had been inserted may be blocked by a sealing member. In the above-described separation process, the sealing member 253 and the unsealing member 254 are separated from the frame member 29.
[Flexible Container Compression Process]
As illustrated in
Although, in this compression process, the flexible container 251 is compressed by injecting air into the frame member 29, it is also possible to directly flare the flexible container 251 using a flaring member (not illustrated) to compress the flexible container 251.
[Developer Refilling Process]
According to the above-described method, since the unsealing member 254 is separated from the frame member 29, the injection of the developer T is not disturbed by the unsealing member 254. Further, the injection of the developer T is not blocked by the sealing member 253. Therefore, the developer T can be efficiently injected. Using a fixed-rate feeding device having an auger instead of the funnel 101 enables efficient injection of the developer T into the frame member 29.
Although, in the present embodiment, air is used in the compression process to efficiently compress the flexible container 251, the method is not limited thereto. More specifically, in the developer refilling process, the developer T injected from the funnel 101 may be used to compress the flexible container 251 and the developer T may be filled into the frame member 29.
[Developing Unit Reassembling Process] and [Unit Combining Process]
Subsequently, a reassembling process of the developing unit 9 and a unit combining process of the photosensitive unit 8 and the developing unit 9 are performed. Upon completion of the above-described procedure, the assembly process of the cartridge P is completed as illustrated in
The unsealing member 254 is manually rotated so that a free end 253a of the sealing member 253 is positioned at the opening 29a. A portion of the sealing member 253 excluding an engaged portion 253b engaged with the unsealing member 254 is cut off in the longitudinal direction using a cutter. As illustrated in
In the present embodiment, the sealing member 253 excluding the engaged portion 253b engaged with the unsealing member 254 is cut off. However, in the case of welding or adhesion in which the engaged portion 253b and the unsealing member 254 are easy to be detached, the sealing member 253 may be detached including the engaged portion 253b. In other words, in this separation process, the engaged portion 253b engaged with the unsealing member 254 is disengaged, and the sealing member 253 is thereby separated from the frame member 29 of the developing unit 9.
[Flexible Container Separation Process]
Although, in the present embodiment, the fixing portion 29b is unfixed and then the flexible container 251 is taken out from the frame member 29, the flexible container 251 may be detached from the frame member 29 by cutting off a portion excluding the fixing portion 29b. After the flexible container 251 is detached from the frame member 29 in this way, the flexible container 251 is pulled out and separated through the opening 29a. According to the above-described method, in the developer refilling process, the developer T is efficiently injected into the frame member 29 without the opening 29a being blocked by the sealing member 253.
Although, in the fourth embodiment, only the sealing member 253 is separated from the unsealing member 254 and the flexible container 251 is thereby separated from the frame member 29, the method is not limited thereto. More specifically, similar to the third embodiment, the sealing member 253 may be separated from the frame member 29 together with the unsealing member 254 and the flexible container 251 may be thereby separated from the frame member 29 in the method according to the fourth embodiment.
Although, in the third embodiment, the sealing member 253 is separated from the frame member 29 together with the unsealing member 254, the method is not limited thereto. More specifically, similar to the fourth embodiment, only the sealing member 253 may be separated from the unsealing member 254 and the flexible container 251 may be thereby separated from the frame member 29 in the method according to the third embodiment.
In the fifth embodiment, the remanufacturing method of the developing unit 9 includes a communication hole processing process for processing a first communication hole 109 for refilling the developer T into the frame member 29, and a communication hole sealing process for sealing the first communication hole 109 to seal the developer T filled in the frame member 29. The remanufacturing method will be described in detail below.
[Communication Portion Processing Process]
[Developer Refilling Process]
Although, in the present embodiment, the funnel 101 is used for refilling the developer T, the device used for refilling the developer T is not limited thereto. For example, a fixed-rate feeding device having an auger may be used instead of the funnel 101. Using a fixed-rate feeding device having an auger enables efficient injection of the developer T into the frame member 29.
[Communication Portion Sealing Process]
The resealing member 103 may have any shape as long as it covers the first communication hole 109 to prevent leakage of the developer T from the frame member 29. Further, the resealing member 103 may be attached by using an adhesive instead of a two-sided tape. Further, the resealing member 103 may not necessarily be a member to be attached using the two-sided tape 104 or an adhesive, and may be a member to be fitted into the first communication hole 109, such as a cap. In the above-described processes, the developing unit 9 refilled with the developer T has been remanufactured.
[Unit Combining Process]
Subsequently, the user performs the unit combining process for combining the photosensitive unit 8 and the developing unit 9.
Although, in the sixth embodiment, compression using air is performed as a compression process, the compression method is not limited thereto. For example, the flexible container 251 may be compressed using a pushing-in member 105 having higher rigidity than the flexible container 251, as illustrated in
Performing the above-described compression process after the communication portion processing process and before the developer refilling process enables more stable execution of the developer refilling process even when the flexible container 251 has high elasticity. Further, reducing the capacity of the flexible container 251 enables refilling of larger amount of developer T.
In the seventh embodiment, since the unit separation process included in the fifth embodiment is not performed, the communication portion processing process and subsequent processes will be described below. In the seventh embodiment, the remanufacturing method of the developing unit 9 includes a communication hole processing process for processing a second communication hole 110 for refilling the developer T into the frame member 29, and a communication hole sealing process for sealing the second communication hole 110 to seal the developer T filled in the frame member 29. The remanufacturing method will be described in detail below.
[Communication Portion Processing Process]
[Compression Process]
[Developer Refilling Process]
[Communication Portion Sealing Process]
The resealing member 103 may have any shape as long as it covers the second communication hole 110 to prevent leakage of the developer T from the frame member 29. Further, the resealing member 103 may be attached by using an adhesive instead of a two-sided tape. Further, the resealing member 103 may not necessarily be a member to be attached using a two-sided tape or an adhesive, and may be a member to be fitted into the second communication hole 110, such as a cap. The above-described process enables achievement of a simplified remanufacturing method of the cartridge P, as illustrated in
According to the configurations of the first to the seventh embodiments, the remanufacturing method of the developing unit 9 becomes simplified as compared with the conventional technique. The configurations or processes according to the first to the seventh embodiments can be suitably combined.
Although, in the first to the seventh embodiments, the description has been given of the cartridge P including the developing unit 9 and the photosensitive unit 8, the configuration is not limited thereto as long as the cartridge P includes the developing unit 9. In other words, the first to the seventh embodiments are also applicable to a developing device, a cartridge, and an image forming apparatus as long as these include the developing unit 9.
According to an embodiment of the present invention, it is possible to provide a remanufacturing method of a developer accommodating unit including a flexible container.
While the present invention has been described with reference to embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2014-218518, filed Oct. 27, 2014, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2014-218518 | Oct 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3599682 | Altmann | Aug 1971 | A |
5761584 | Tsuda | Jun 1998 | A |
5960238 | Ohgami | Sep 1999 | A |
6009289 | Sekine et al. | Dec 1999 | A |
20010021325 | Katsuyama et al. | Sep 2001 | A1 |
20010052526 | Kasahara | Dec 2001 | A1 |
20030123900 | Higeta et al. | Jul 2003 | A1 |
20030235436 | Kasahara et al. | Dec 2003 | A1 |
20050226655 | Katsuyama et al. | Oct 2005 | A1 |
20070116494 | Uno et al. | May 2007 | A1 |
20080175628 | Kita et al. | Jul 2008 | A1 |
20080193168 | Moon | Aug 2008 | A1 |
20090016777 | Miyamoto et al. | Jan 2009 | A1 |
20100021325 | Kisse et al. | Jan 2010 | A1 |
20140072346 | Furutani et al. | Mar 2014 | A1 |
20150139684 | Nakazawa | May 2015 | A1 |
20150234319 | Matsumura | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
1403736 | Mar 2004 | EP |
1542088 | Jun 2005 | EP |
2600206 | Jun 2013 | EP |
0171281 | Jul 1996 | JP |
3320403 | Sep 2002 | JP |
2003208003 | Jul 2003 | JP |
2006267679 | Oct 2006 | JP |
2008122825 | May 2008 | JP |
2009-282259 | Dec 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20160116861 A1 | Apr 2016 | US |