The present disclosure relates to remote access appliances used in modern day data centers, and more particularly to a remote access appliance having an autosensing subsystem that is able to detect whether a serial connection or an Ethernet connection has been made to a communication port thereof, and in one embodiment whether the serial connection involves a first predetermined pinout configuration or a second predetermined pinout configuration.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
A remote access appliance (hereinafter “appliance”) has often been used in modern day data centers to interface with and establish communications links with a plurality of servers or other serial or Ethernet type devices. Traditionally this has required separate interfaces on the appliance, typically one for Ethernet and one for serial. The Ethernet protocol interface is typically required for communicating with a server's Service Processor Manager (SPM), while the serial interface is required for communicating with the serial console port on the server. It would be a significant advance to be able to interface the appliance to either a serial port or an Ethernet port via a single connector port on the appliance itself, and to further have the appliance automatically sense which protocol (i.e., serial or Ethernet) is communicating information to its single port at any given time.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Referring to
As will be appreciated then, the appliance 10 may need to communicate using either Ethernet protocol signals or serial protocol signals via its RJ-45 port 12, depending on what type of device is communicating with the appliance. The appliance 10 provides the significant advantage of being able to automatically sense whether Ethernet protocol signals or serial protocol signals are being received at its RJ-45 port without any intervention from a data center individual. This is accomplished by the autosensing subsystem 28 and the control logic subsystem 30 working in combination with the main processor 32. The autosensing subsystem 28 effectively monitors the signals received on the RJ-45 port 12 and, in connection with the control logic subsystem 30 and the main processor 32, automatically internally configures various electronic components so that communications can be appropriately routed and handled within the appliance 10.
One significant benefit of the above-described autosensing feature is a reduction in the number of ports that need to be included on the appliance. The user does not have to be concerned with how many ports of each type the appliance has because each auto-sensing port supports all of the possible interfaces. If the equipment in a rack being managed by the appliance changes, ports can be changed accordingly.
Referring now to
As will be explained in greater detail in the following paragraphs, it is also a significant benefit that the autosensing subsystem 28 is able to automatically detect whether the ACS pinout or the Alt pinout is being used with the RJ-45 plug (and thus with the external serial device) that is connected to the RJ-45 port 12. This feature will also be described in greater detail in the following paragraphs. The ACS and Alt pinouts are shown in the table of
Referring further to
Referring further to
If an unknown device is physically connected to the jack that forms the RJ-45 port 12 but there is no Ethernet activity detected to be occurring on the RJ-45 port 12, the main processor 32 will send an “autosense” command to the control logic subsystem 30. This causes the control logic subsystem 30 to turn off DRIP 20 power by deactivating switches 38 and 40 and thus their switched current paths, as well as to power down both RS-232 transceivers 46 and 48. The first relay 34 will be left as shown in
If the control logic subsystem 30 detects the presence of a valid RS-232 voltage level signal on the RS-232 transceiver 46, which means a valid RS-232 level signal on pin 6 of the RJ-45 port 12 is present, this indicates that a connection has just occurred with a serial device having an ACS pinout. The control logic subsystem 30 then enables (powers up) the RS-232 (ACS) transceiver 46 and switches the relay 34 to serial mode, as indicated in phantom in
If the status signal from the RS-232 (Alt) transceiver 48 indicates that a valid RS-232 level voltage signal has been received on its RXD input via pin 3 of the RJ-45 port 12, then the control logic subsystem 30 powers up the RS-232 (Alt) transceiver 48 and switches the relay 34 to the serial mode, which is shown in phantom in
If both RS-232 transceivers 46 and 48 generate status signal outputs to the control logic subsystem 30 that indicates that valid RS-232 level voltage signals are being received on their inputs, then it is understood that an invalid serial pinout is being used on the RJ-45 plug that has been coupled to the RJ-45 port 12. In this instance both RS-232 transceivers 46 and 48 will be left powered down by the control logic subsystem 30.
If neither RS-232 transceiver 46 or 48 generates a status signal output to the main processor indicating a valid RS-232 level voltage at its input, then the control logic subsystem 30 switches relay 36 back to Ethernet mode (shown in solid lines in
If one or the other of the RS-232 transceivers 46 or 48 is operating but then the RS-232 level signals are lost, such as if the RJ-45 plug is removed from the RJ-45 port 12, then the control logic subsystem 30 notifies the main processor 32, which may optionally command the control logic subsystem 30 to restart the “autosense” operation as described above.
It is important to note that the appliance 10 is able to distinguish between ACS and Alt serial pinouts because there are no RJ-45 pins that are inputs in both pin-out configurations. So only one of the two RS-232 transceivers 46 or 48 will detect valid RS-232 signal input levels when one or the other of the ACS or Alt pinouts is used.
If an Ethernet device is connected to the RJ-45 port 12, it will not be detected as a serial device, and the above described operational sequence will reach the implementation of the 5 second delay time. This delay time allows the Ethernet MAC/PHY interface subsystem 52 time to establish a link. When the main processor 32 sees an Ethernet link, it will tell the control logic subsystem 30 to stop autosensing and stay in Ethernet mode. At any point during the above described operations, the main processor 32 may query the control logic subsystem 30 to determine the state of the RJ-45 port 12 or to force it into a particular mode.
The autosensing feature of the appliance 10 thus provides a significant and highly advantageous means for monitoring and immediately detecting the presence of an Ethernet device or a serial device that has been connected to its RJ-45 port. An even further advantage is that the appliance of the present disclosure is able to automatically sense the specific pinout (i.e., either an ACS or Alt pinout) of a serial device that has been connected to its RJ-45 port, and to accommodate the sensed pinout without the need for the data center individual to set any configuration switches on the appliance 10 or to otherwise take any other action. The ability of the appliance 10 to communicate both Ethernet and serial protocol signals over a single port can provide significant flexibility to the user in the event cabling coupled to a given one of the autosensing ports on the appliance 10 needs to be uncoupled from one type of port on a remote device (e.g., an Ethernet port) and re-coupled to a different type of port (e.g., a USB port).
While various embodiments have been described, those skilled in the art will recognize modifications or variations which might be made without departing from the present disclosure. The examples illustrate the various embodiments and are not intended to limit the present disclosure. Therefore, the description and claims should be interpreted liberally with only such limitation as is necessary in view of the pertinent prior art.
This application is a U.S. national phase of PCT/US2011/054035 filed on Sep. 29, 2011 and published in English as WO/2012/047719 on Apr. 12, 2012. This application claims the benefit of U.S. Provisional Application No. 61/389,616 filed on Oct. 4, 2010 and U.S. Provisional Application No. 61/487,433 filed on May 18, 2011. The disclosures of the above applications are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/054035 | 9/29/2011 | WO | 00 | 5/7/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/047719 | 4/12/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4403111 | Kelly | Sep 1983 | A |
5247522 | Reiff | Sep 1993 | A |
5260612 | Lehmann et al. | Nov 1993 | A |
5568525 | de Nijs et al. | Oct 1996 | A |
5574722 | Slykhouse et al. | Nov 1996 | A |
5634074 | Devon et al. | May 1997 | A |
5737364 | Cohen | Apr 1998 | A |
5754552 | Allmond et al. | May 1998 | A |
6088754 | Chapman | Jul 2000 | A |
6189052 | Nilsson et al. | Feb 2001 | B1 |
6601124 | Blair | Jul 2003 | B1 |
7069369 | Chou et al. | Jun 2006 | B2 |
7269670 | Sterrantino et al. | Sep 2007 | B2 |
7401162 | Baker | Jul 2008 | B2 |
7496671 | Engel et al. | Feb 2009 | B2 |
7716400 | Raines | May 2010 | B2 |
7743174 | Remaker et al. | Jun 2010 | B2 |
8208387 | Stueve | Jun 2012 | B2 |
8601173 | Sung et al. | Dec 2013 | B2 |
20040066790 | Valavi et al. | Apr 2004 | A1 |
20090130910 | Inha et al. | May 2009 | A1 |
20110149994 | Zimmermann et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
201130374 | Oct 2008 | CN |
10 2008 002861 | Dec 2009 | DE |
WO-9427223 | Nov 1994 | WO |
Entry |
---|
Cisco Systems Male RJ45 to RS232 Adapter Cable sales offer dated Septemder 4, 1973. |
International Search Report and Written Opinion for PCT/US2011/054035, mailed Mar. 7, 2012; ISA/EP. |
State Intellectual Property Office (SIPO) 1st Office Action issued on May 20, 2015 in corresponding Chinese Patent Application for Invention No. 201180053665.3, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20130227185 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61389616 | Oct 2010 | US | |
61487433 | May 2011 | US |