The present disclosure generally relates to the field of electronics. More particularly, an embodiment relates to techniques for remote configuration and/or pre-setup for mobile devices.
Today, if a consumer buys a mobile device, the consumer (or another entity such as the seller) may need to upload or synchronize data from the old device or from some other source before the consumer can start using the new device. However, as mobile devices become more common-place, the user experience associated with initializing such devices for an end-user becomes of utmost importance.
The detailed description is provided with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items.
FIGS. 1 and 7-9 illustrate block diagrams of embodiments of computing systems, which may be utilized to implement various embodiments discussed herein.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of various embodiments. However, various embodiments may be practiced without the specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to obscure the particular embodiments. Further, various aspects of embodiments may be performed using various means, such as integrated semiconductor circuits (“hardware”), computer-readable instructions organized into one or more programs (“software”), or some combination of hardware and software. For the purposes of this disclosure reference to “logic” shall mean either hardware, software, firmware, or some combination thereof.
Some embodiments provide techniques for remote configuration and/or pre-setup for mobile devices (including, for example, limited input wearable devices) to provide a personalized out-of-the box experience. For example, an embodiment provides a streamlined out-of-box experience for mobile devices such that when a consumer purchases a device over the web (or at a store), or receives the device as a gift, the device is personalized and ready to use when the user unboxes the mobile device and turns the device on. Furthermore, device configuration may be done through a web application/portal and cellular network to enhance ease of use for limited input devices. Hence, such techniques allow for a better user experience where potentially a cellular mobile device is available and/or when a device has limited user input facilities.
In one embodiment, part of a mobile SOC (System On Chip) DRAM (Dynamic Random Access Memory) may be augmented with or replaced by a Non-Volatile Memory (NVM), such as resistive random access memory, Phase Change Memory (PCM), Spin Torque Transfer Random Access Memory (STTRAM), 3D (3-Dimensional) Cross Point Memory, etc.) and a wireless interface is then used to program the NVM during a purchasing transaction, while the device is still inside the sales box. The data stored/transferred to the NVM may include any type of data, e.g., ranging from as simple as a user's name (e.g., displayed during first power-on after unboxing) to all or a portion of a user selected data (e.g., via a web service such as discussed herein) to transfer to the new device.
Some embodiments may be applied in computing systems that include one or more processors (e.g., with one or more processor cores), such as those discussed with reference to
In an embodiment, the processor 102-1 may include one or more processor cores 106-1 through 106-M (referred to herein as “cores 106,” or “core 106”), a cache 108, and/or a router 110. The processor cores 106 may be implemented on a single integrated circuit (IC) chip. Moreover, the chip may include one or more shared and/or private caches (such as cache 108), buses or interconnections (such as a bus or interconnection 112), graphics and/or memory controllers (such as those discussed with reference to
In one embodiment, the router 110 may be used to communicate between various components of the processor 102-1 and/or system 100. Moreover, the processor 102-1 may include more than one router 110. Furthermore, the multitude of routers 110 may be in communication to enable data routing between various components inside or outside of the processor 102-1.
The cache 108 may store data (e.g., including instructions) that are utilized by one or more components of the processor 102-1, such as the cores 106. For example, the cache 108 may locally cache data stored in a memory 114 for faster access by the components of the processor 102 (e.g., faster access by cores 106). As shown in
As shown in
Also, NVM 170 may provide a storage device to store various types of data, e.g., to provide a personalized out-of-the box experience. NVM 170 may include any type of non-volatile or flash memory including, for example, resistive random access memory, Phase Change Memory (PCM), Spin Torque Transfer Random Access Memory (STTRAM), 3D (3-Dimensional) Cross Point Memory, etc. Furthermore, system 100 may include or have access to a network interface device capable of wireless communication (such as device 730 of
More particularly,
Referring to
Referring to
Accordingly, in some embodiments, a user may purchase a new device (e.g., through a web site), and while doing so a new account is created. The purchase kicks off a behind-the-scenes process that connects unique device information (from fulfillment and manufacturing) to the newly created user account. When the user receives the device, either in store or via mail, the device “calls home” (to the portal 208) over a wireless connection (such as a cellular network) with unique device information. In response to the “call home”, a personalized user experience is presented to the user, and, after authentication the device automatically acquires the user's configuration settings from a web service (i.e., portal 208) based on the previously created account. This approach provides a highly personalized and automated setup process to increase ease of use and emotional connection. In addition, some embodiments allow for giving devices as gifts.
By contrast, some implementations may need the user to manually enter many configuration settings after they have already purchased/acquired the device, download mobile phone companion applications from application stores, and/or input information using limited input functions (e.g., tiny keyboards or button schemes). Also, wearable devices are often paired with a phone via Bluetooth™ (or connecting with WiFi (Wireless Fidelity)) which can be frustrating and non-uniform depending on the device's operation system and version.
More specifically, the sequence flow of
Referring to
Currently, devices require an additional step after unboxing to upload/synchronize the user desired data to the new device. This data can already be in a cloud and requires only a device registration with that account and syncing the content. Hence, some embodiments allow skipping the above step altogether, i.e., the device would be ready to use right after unboxing, e.g., already containing all the data user needs and wants. At a minimum, the device could show a welcome notice with user's name during first power-on, providing a magical ‘how this was done’ moment during un-boxing.
Also, use of non-volatile memory 170 (such as PCM) for value adding for end users is currently not done either. More specifically, most of the platform solutions available currently do not have any non-volatile memory available to enable such use cases. Coupled with a wireless interface to program the NVM provides a solution for a whole new array of use cases, such as unique and personalized unboxing or out-of-the-box experience.
Further, some embodiments are scalable from very simple implementation such as displaying user's name in ‘Hello XYZ’ type of notification (e.g., during first power-on requiring a very small amount of non-volatile memory) all the way to ensuring all user selected data is transferred prior to unboxing the mobile device. Also, wireless flashing and/or the customer services (a way for customer to select and upload data to be preserved from old device and for retailer to fetch that data and flash it into the new device), e.g., via the application 506, provide a combination that would provide a much enhanced experience for end users. Also, in order to flash the device wirelessly while inside the box might require some charge in the device's battery, and in case the battery is empty the flashing might fail. Hence, it is envisioned that a manufacturer ship the device with some amount of battery charge.
Moreover, the processors 702 may have a single or multiple core design. The processors 702 with a multiple core design may integrate different types of processor cores on the same integrated circuit (IC) die. Also, the processors 702 with a multiple core design may be implemented as symmetrical or asymmetrical multiprocessors. In an embodiment, one or more of the processors 702 may be the same or similar to the processors 102 of
A chipset 706 may also communicate with the interconnection network 704. The chipset 706 may include a graphics memory control hub (GMCH) 708, which may be located in various components of system 700 (such as those shown in
The GMCH 708 may also include a graphics interface 714 that communicates with a display device 716. In one embodiment, the graphics interface 714 may communicate with the display device 716 via an accelerated graphics port (AGP) or Peripheral Component Interconnect (PCI) (or PCI express (PCIe) interface). In an embodiment, the display 716 (such as a flat panel display) may communicate with the graphics interface 714 through, for example, a signal converter that translates a digital representation of an image stored in a storage device such as video memory or system memory into display signals that are interpreted and displayed by the display 716. The display signals produced by the display device may pass through various control devices before being interpreted by and subsequently displayed on the display 716.
A hub interface 718 may allow the GMCH 708 and an input/output control hub (ICH) 720 to communicate. The ICH 720 may provide an interface to I/O device(s) that communicate with the computing system 700. The ICH 720 may communicate with a bus 722 through a peripheral bridge (or controller) 724, such as a peripheral component interconnect (PCI) bridge, a universal serial bus (USB) controller, or other types of peripheral bridges or controllers. The bridge 724 may provide a data path between the CPU 702 and peripheral devices. Other types of topologies may be utilized. Also, multiple buses may communicate with the ICH 720, e.g., through multiple bridges or controllers. Moreover, other peripherals in communication with the ICH 720 may include, in various embodiments, integrated drive electronics (IDE) or small computer system interface (SCSI) hard drive(s), USB port(s), a keyboard, a mouse, parallel port(s), serial port(s), floppy disk drive(s), digital output support (e.g., digital video interface (DVI)), or other devices.
The bus 722 may communicate with an audio device 726, one or more disk drive(s) 728, and a network interface device 730 (which is in communication with the computer network 703). As shown, the network interface device 730 may be coupled to an antenna 731 to wirelessly (e.g., via an Institute of Electrical and Electronics Engineers (IEEE) 802.11 interface (including IEEE 802.11a/b/g/n, etc.), cellular interface, 3G, 5G, LTE (Long Term Evolution), etc.) communicate with the network 703. Other devices may communicate via the bus 722. Also, various components (such as the network interface device 730) may communicate with the GMCH 708 in some embodiments. In addition, the processor 702 and the GMCH 708 may be combined to form a single chip. Furthermore, a graphics accelerator may be included within the GMCH 708 in other embodiments.
Furthermore, the computing system 700 may include volatile and/or nonvolatile memory (or storage). For example, nonvolatile memory may include one or more of the following: read-only memory (ROM), programmable ROM (PROM), erasable PROM (EPROM), electrically EPROM (EEPROM), a disk drive (e.g., 728), a floppy disk, a compact disk ROM (CD-ROM), a digital versatile disk (DVD), flash memory, a magneto-optical disk, or other types of nonvolatile machine-readable media that are capable of storing electronic data (e.g., including instructions).
As illustrated in
In an embodiment, the processors 802 and 804 may be one of the processors 702 discussed with reference to
At least one embodiment may be provided within the processors 802 and 804. For example, one or more components of system 800 may include one or more of logic 160 and/or NVM 170 of
The chipset 820 may communicate with a bus 840 using a PtP interface circuit 841. The bus 840 may communicate with one or more devices, such as a bus bridge 842 and I/O devices 843. Via a bus 844, the bus bridge 842 may communicate with other devices such as a keyboard/mouse 845, communication devices 846 (such as modems, network interface devices, or other communication devices that may communicate with the computer network 703), audio I/O device 847, and/or a data storage device 848. The data storage device 848 may store code 849 that may be executed by the processors 802 and/or 804.
In some embodiments, one or more of the components discussed herein can be embodied as a System On Chip (SOC) device.
As illustrated in
The I/O interface 940 may be coupled to one or more I/O devices 970, e.g., via an interconnect and/or bus such as discussed herein with reference to other figures. I/O device(s) 970 may include one or more of a keyboard, a mouse, a touchpad, a display, an image/video capture device (such as a camera or camcorder/video recorder), a touch screen, a speaker, or the like. Furthermore, SOC package 902 may include/integrate the logic 160 and/or NVM 170 in an embodiment. Alternatively, the logic 160 and/or NVM 170 may be provided outside of the SOC package 902 (i.e., as a discrete components/logic).
The following examples pertain to further embodiments. Example 1 includes an apparatus comprising: logic, the logic at least partially comprising hardware logic, to cause receipt of user information at a device, which includes the logic, from a web portal in response to powering up the device, wherein the logic is to cause creation of an account at the web portal for an end user in response to receipt of the user information and a code from the web portal at the logic, wherein the logic is to cause display of the code to the end user to cause the device to become associated with the account in response to receipt of the code from the end user at the web portal. Example 2 includes the apparatus of example 1, further comprising a wireless network interface device to provide a communication channel between the device and the web portal. Example 3 includes the apparatus of example 2, wherein the wireless network interface device is to comprise a cellular interface. Example 4 includes the apparatus of example 1, wherein the device is to exchange authentication information with the web portal before granting normal operational access to the end user to use the device. Example 5 includes the apparatus of example 1, wherein the device is to comprise a mobile computing device. Example 6 includes the apparatus of example 5, wherein the mobile computing device is to comprise one of: a smartphone, a tablet, a UMPC (Ultra-Mobile Personal Computer), a laptop computer, an Ultrabook™ computing device, a smart watch, smart glasses, or a wearable device with limited input capability. Example 7 includes the apparatus of example 1, wherein the user information is personalized user information associated with the end user to provide an out of box personalized user experience. Example 8 includes the apparatus of example 1, further comprising memory to store one or more of: the user information and the code. Example 9 includes the apparatus of example 1, wherein one or more of the logic, memory, or a processor, having one or more processor cores, are on a single integrated circuit die.
Example 10 includes an apparatus comprising: non-volatile memory to store user data that is selected via a web application to be transferred from a first device to a second device, wherein the second device is to include the non-volatile memory; and logic, the logic at least partially comprising hardware logic, to cause storage of the user data in the non-volatile memory in response to an indication that the second device has been purchased. Example 11 includes the apparatus of example 10, wherein the logic is to cause storage of the user data in the non-volatile memory prior to unboxing the second device. Example 12 includes the apparatus of example 10, further comprising a wireless network interface device to provide a communication channel between the second device and the web application. Example 13 includes the apparatus of example 10, wherein one or more of the logic, memory, or a processor, having one or more processor cores, are on a single integrated circuit die. Example 14 includes the apparatus of example 10, wherein the non-volatile memory is to comprise one or more of resistive random access memory, Phase Change Memory (PCM), Spin Torque Transfer Random Access Memory (STTRAM), or 3D (3-Dimensional) Cross Point Memory. Example 15 includes the apparatus of example 10, further comprising a battery to power the device.
Example 16 includes a computer-readable medium comprising one or more instructions that when executed on a processor configure the processor to perform one or more operations to: cause receipt of user information at a device from a web portal in response to powering up the device, wherein an account is created at the web portal for an end user in response to receipt of the user information and a code from the web portal at the device, wherein the device causes display of the code to the end user to cause the device to become associated with the account in response to receipt of the code from the end user at the web portal. Example 17 includes the computer-readable medium of example 16, further comprising one or more instructions that when executed on the processor configure the processor to perform one or more operations to provide a wireless communication channel between the device and the web portal. Example 18 includes the computer-readable medium of example 16, further comprising one or more instructions that when executed on the processor configure the processor to perform one or more operations to cause the device to exchange authentication information with the web portal before granting normal operational access to the end user to use the device. Example 19 includes the computer-readable medium of example 16, wherein the device is to comprise a mobile computing device. Example 20 includes the computer-readable medium of example 19, wherein the mobile computing device is to comprise one of: a smartphone, a tablet, a UMPC (Ultra-Mobile Personal Computer), a laptop computer, an Ultrabook™ computing device, a smart watch, smart glasses, or a wearable device with limited input capability. Example 21 includes the computer-readable medium of example 16, wherein the user information is personalized user information associated with the end user to provide an out of box personalized user experience.
Example 22 includes a computer-readable medium comprising one or more instructions that when executed on a processor configure the processor to perform one or more operations to: store user data in non-volatile memory, the user data to be selected via a web application to be transferred from a first device to a second device, wherein the second device includes the non-volatile memory; and cause storage of the user data in the non-volatile memory in response to an indication that the second device has been purchased. Example 23 includes the computer-readable medium of example 22, further comprising one or more instructions that when executed on the processor configure the processor to perform one or more operations to cause storage of the user data in the non-volatile memory prior to unboxing the second device. Example 24 includes the computer-readable medium of example 22, further comprising one or more instructions that when executed on the processor configure the processor to perform one or more operations to provide a communication channel between the second device and the web application. Example 25 includes the computer-readable medium of example 22, wherein the non-volatile memory is to comprise one or more of resistive random access memory, Phase Change Memory (PCM), Spin Torque Transfer Random Access Memory (STTRAM), or 3D (3-Dimensional) Cross Point Memory.
Example 26 includes a method comprising: causing receipt of user information at a device from a web portal in response to powering up the device, wherein an account is created at the web portal for an end user in response to receipt of the user information and a code from the web portal at the device, wherein the device causes display of the code to the end user to cause the device to become associated with the account in response to receipt of the code from the end user at the web portal. Example 27 includes the method of example 26, further comprising one or more instructions that when executed on the processor configure the processor to perform one or more operations to provide a wireless communication channel between the device and the web portal. Example 28 includes the method of example 26, further comprising one or more instructions that when executed on the processor configure the processor to perform one or more operations to cause the device to exchange authentication information with the web portal before granting normal operational access to the end user to use the device. Example 29 includes the method of example 26, wherein the device is to comprise a mobile computing device. Example 30 includes the method of example 29, wherein the mobile computing device is to comprise one of: a smartphone, a tablet, a UMPC (Ultra-Mobile Personal Computer), a laptop computer, an Ultrabook™ computing device, a smart watch, smart glasses, or a wearable device with limited input capability. Example 31 includes the method of example 26, wherein the user information is personalized user information associated with the end user to provide an out of box personalized user experience.
Example 32 includes a method comprising: storing user data in non-volatile memory, the user data to be selected via a web application to be transferred from a first device to a second device, wherein the second device includes the non-volatile memory; and cause storage of the user data in the non-volatile memory in response to an indication that the second device has been purchased. Example 33 includes the method of example 32, further comprising one or more instructions that when executed on the processor configure the processor to perform one or more operations to cause storage of the user data in the non-volatile memory prior to unboxing the second device. Example 34 includes the method of example 32, further comprising one or more instructions that when executed on the processor configure the processor to perform one or more operations to provide a communication channel between the second device and the web application. Example 35 includes the method of example 32, wherein the non-volatile memory is to comprise one or more of resistive random access memory, Phase Change Memory (PCM), Spin Torque Transfer Random Access Memory (STTRAM), or 3D (3-Dimensional) Cross Point Memory.
Example 36 includes an apparatus comprising means to perform a method as set forth in any preceding example.
Example 37 includes a machine-readable storage including machine-readable instructions, when executed, to implement a method or realize an apparatus as set forth in any preceding example.
Example 38 includes a computer-readable medium comprising one or more instructions that when executed on a processor configure the processor to perform one or more operations of any of examples 26 to 35.
Example 39 includes an apparatus comprising means to perform a method as set forth in any of examples 26 to 35.
In various embodiments, the operations discussed herein, e.g., with reference to
Additionally, such computer-readable media may be downloaded as a computer program product, wherein the program may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals provided in a carrier wave or other propagation medium via a communication link (e.g., a bus, a modem, or a network connection).
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, and/or characteristic described in connection with the embodiment may be included in at least an implementation. The appearances of the phrase “in one embodiment” in various places in the specification may or may not be all referring to the same embodiment.
Also, in the description and claims, the terms “coupled” and “connected,” along with their derivatives, may be used. In some embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements may not be in direct contact with each other, but may still cooperate or interact with each other.
Thus, although embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that claimed subject matter may not be limited to the specific features or acts described. Rather, the specific features and acts are disclosed as sample forms of implementing the claimed subject matter.