Information
-
Patent Grant
-
6686848
-
Patent Number
6,686,848
-
Date Filed
Thursday, January 27, 200025 years ago
-
Date Issued
Tuesday, February 3, 200421 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Zimmerman; Brian
- Yang; Clara
Agents
- Armstrong, Kratz, Quintos, Hanson & Brooks, LLP
-
CPC
-
US Classifications
Field of Search
US
- 340 82522
- 340 825
- 340 82537
- 340 82598
- 340 82524
- 340 82569
- 340 31001
- 340 341
- 370 282
- 370 429
- 370 360
- 709 237
- 709 208
- 348 211
- 368 9
- 368 1
- 368 47
-
International Classifications
- G05B1902
- H04M1104
- G04F800
- G04C1102
-
Abstract
A remote control apparatus includes various operation keys and is connected to a plurality of electronic appliances through buses. If a timepiece reset mode is set on a side of the remote control apparatus and then a desired electronic appliance is selected, a protocol is established between the remote control apparatus and the desired electronic appliance. A command key for reset command input is activated after establishing a protocol. If a command key is operated, a reset command for the timepiece is transmitted to the desired electronic appliance to thereby reset a timepiece circuit provided in the desired electronic appliance. Because the protocol has been established at a time that the command key is operated, the timepiece circuit is reset immediately after operating the command key.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a remote control apparatus and electronic appliance controllable by the same and, more particularly, to a remote control apparatus applicable to a monitor camera system to be used in casinos or buildings and an electronic appliance controllable by the same.
2. Description of the Prior Art
In the conventional remote control apparatuses of this kind, a protocol has to be first established for an electronic appliance in order to output commands to the electronic appliance. Due to this, it takes a time of approximately 500 milliseconds, from an input of a command by an operator, to actually input a command to the electronic appliance.
Such delay poses a problem particularly when adjusting a timepiece built in the electronic appliance. That is, where for example a timepiece of 3 minutes too fast is reset at noon (12:00:00) of day, the timepiece thus reset will be too late by 0.5 second with respect to the actual time.
SUMMARY OF THE INVENTION
It is therefore a primary object of the present invention to provide a remote control apparatus that eliminates a deviation between a time that a reset command is inputted to a timepiece and an actually reset time of the timepiece.
Another object of the invention is to provide an electronic appliance that eliminates a deviation between a time that reset command is inputted to a timepiece and an actually reset time of the timepiece.
In accordance with the present invention, a remote control apparatus to remotely control an electronic appliance having a timepiece, comprises: a first instruction key for instructing to establish a state of connection to the electronic appliance; a second instruction key for instructing to reset the timepiece; an establisher for establishing the state of connection to the electronic appliance in response to an instruction by the first instruction key; an activator for activating the second instruction key after establishing the state of connection; and a first transmitter for transmitting a reset command to the electronic appliance in response to an instruction by the second instruction key.
If operating the first instruction key for instructing to establish a state of connection to an electronic appliance, the establisher establishes a state of connection to an electronic appliance. The second key for instructing timepiece reset is activated by the activator after establishing a connection state. If the second instruction key is operated, the first transmitter transmits a reset command to the electronic appliance. In this manner, the reset command is transmitted to the electronic appliance in response to an operation of the second instruction key activated after establishing the connection state. Consequently, the timepiece provided on the electronic appliance is immediately reset in response to the reset command. As a result, it is possible to eliminate a deviation between a time of inputting a timepiece reset command and a time of actually resetting the timepiece.
In one embodiment of the invention, the electronic appliance exists in plurality of number, and the first instruction key includes a select key and a connection state establishing key. If the select key is selected, a desired electronic appliance is selected from among a plurality of electronic appliance. If the connection state establishing key is operated, the desired electronic appliance is instructed to establish the connection state.
In another embodiment of the invention, maintaining commands for maintaining the state of connection are repeatedly transmitted to the electronic appliance. Preferably, the electronic appliance cancels the state of connection when a state of not given a command continues for a predetermined time period, and the second transmitter transmitting the maintaining commands at a shorter interval than the predetermined time period.
In accordance with the present invention, an electronic appliance to be remotely controlled by a controller and having a timepiece, comprises: a first receiver for receiving an instruction to establish a state of connection to the controller; a counter for starting count of a time in response to the establishing instruction; an establisher for establishing the state of connection in response to the establishing instruction; a second receiver for receiving a reset command for the timepiece after establishing the state of connection; a resetter for resetting the timepiece in response to the reset command; and a corrector for correcting by a count value of the counter a time of the timepiece reset by the resetter.
If the first receiver receives an instruction to establish a state of connection to the controller, the counter starts to count a time and the establisher establishes a state of connection to the controller. The second receiver after establishing a connection state receives a command to reset the timepiece. The resetter resets the timepiece in response to the reset command, while the corrector corrects by a counter count value a time of the timepiece reset by the resetter. The time required to establish a connection state is measured by the counter so that the time of the timepiece can be corrected by the counter count value. Therefore, it is possible to eliminate a deviation of between a time a timepiece reset command is inputted and a time that the timepiece is actually reset.
In one embodiment of the invention, the corrector includes a detector to detect a count value of the counter and an adder to add the count value detected by the detector to the time.
The above described objects and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a block diagram showing one embodiment of the present invention;
FIG. 2
is an illustrative view showing an operation panel of a remote control apparatus to be applied to the
FIG. 1
embodiment;
FIG. 3
is an illustrative view showing characters displayed on an LCD of the
FIG. 2
embodiment;
FIG. 4
is a flowchart showing a part of operation of a remote control apparatus applied to the
FIG. 1
embodiment;
FIG. 5
is a flowchart showing another part of the operation of the remote control apparatus applied to the
FIG. 1
embodiment;
FIG. 6
is a flowchart showing another part of the operation of the remote control apparatus applied to the
FIG. 1
embodiment;
FIG. 7
is a flowchart showing another part of the operation of the remote control apparatus applied to the
FIG. 1
embodiment;
FIG. 8
is a flowchart showing part of operation of each electronic appliance applied to the
FIG. 1
embodiment;
FIG. 9
is an illustrative view showing a communication protocol;
FIG. 10
is a block diagram showing another embodiment of the present invention;
FIG. 11
is an illustrative view showing an operation panel of a remote control apparatus applied to the
FIG. 10
embodiment;
FIG. 12
is a flowchart showing part of operation of the remote control apparatus applied to the
FIG. 10
embodiment;
FIG. 13
is a flowchart showing another part of the operation of the remote control apparatus applied to the
FIG. 10
embodiment;
FIG. 14
is a flowchart showing part of operation of each electronic appliance applied to the
FIG. 10
embodiment;
FIG. 15
is a flowchart showing another part of the operation of the electronic appliance applied to the
FIG. 10
embodiment;
FIG. 16
is an illustrative view showing connectors provided on a back face of each electronic appliance;
FIG.
17
(A) is an illustrative view showing a state that electronic appliances are connected through straight-type cables RJ-11; and
FIG.
17
(B) is an illustrative view showing a state that electronic appliances are connected through cross type cables RJ-11.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to
FIG. 1
, a monitor camera system
10
of this embodiment includes a remote control apparatus (controller)
12
. The controller
12
is connected with a plurality of cameras
16
a
-
16
m
, multiplexers
18
a
-
18
c
and time lapse VCRs
20
a
-
20
c
through buses
14
for enabling balanced transmission according to the RS-485 rating. These cameras
16
a
-
16
m
, multiplexers
18
a
-
18
c
and time lapse VCRs
20
a
-
20
c
are controlled by the controller
12
.
The cameras
16
a
-
16
m
have respective timepiece circuits
161
a
-
161
m
, the multiplexers
18
a
-
18
c
have respective time circuits
181
a
-
181
c
, and the time lapse VCRs
20
a
-
20
c
have respective timepiece circuits
201
a
-
201
c.
The cameras
16
a
,
16
d
,
16
g
and
16
j
output respective video signals to be inputted to the multiplexer
18
a
where the video signals are subjected to time-division multiplex by the multiplexer
18
a
. The time-division-multiplexed video signal is then recorded on a not-shown video tape by the time lapse VCR
20
a
. The cameras
16
b
,
16
e
and
16
h
have respective outputs to be time-division multiplexed by the multiplexer
18
b
. The multiplexer
18
b
has an output to be recorded on a video tape by the time lapse VCR
20
b
. The cameras
16
c
,
16
f
,
16
i
,
16
k
and
16
m
have respective outputs to be time-division multiplexed by the multiplexer
18
c
. The multiplexer
18
c
has an output to be recorded on a video tape.
In this maner, the video signals due to shooting by the cameras
16
a
-
16
m
are recorded by a predetermined time lapse VCR in an intermittent fashion.
The cameras
16
a
-
16
m
are assigned with respective 8-bit data “00000000”-“00001011” representing addresses “000”-“011”. The multiplexers
18
a
-
18
c
are assigned with respective 8-bit data “00000000”-“00000010” representing addresses “000”-“002”. The VCRs
20
a
-
20
c
are assigned with respective 8-bit data “00000000”-“00000010” representing addresses “000”-“002”. Meanwhile, the cameras
16
a
-
16
m
are assigned with a shared category code “0100”, the multiplexers
18
a
-
18
c
are assigned with a shared category code “0010”, and VCRs
20
a
-
20
c
are assigned with a shared category code “0011”. The controller
12
is also assigned with 8-bit data “00000000” representing an address “
000
” as well as a category code “0001”.
Referring to
FIG. 2
, the controller
12
has thereon various keys
12
a
-
12
j
as well as an LCD
12
k
. If an operator presses a TRANSMIT MODE key
12
a
, a normal transmission mode is set. At this time, “CAM:” as shown in
FIG. 3
is displayed on the LCD
12
k
. The category on display can be changed in the order of “CAM”→“MPX”→“VCR”→“CAM” each time a category key
12
c
is pressed. The operation of a ten key
12
i
provides address display at an address input block. For example, if an address “005” is inputted in a state that a category “CAM” is being displayed, “CAM: 005” will be displayed on the LCD
12
k
. In a state that a desired category and address are being displayed on the LCD
12
k
, the pressing of a SET key
12
j
establishes a transmission destination. In the example of
FIG. 3
, the camera
16
f
is established as an appliance of a transmission destination.
After establishing a destination appliance, if any of the command keys
12
e
-
12
h
is operated, a protocol is established between the controller
12
and the destination appliance, followed by transmitting a desired command. For example, if the command key
12
e
is pressed when the camera
16
f
is a destination appliance, a camera mode
1
(e.g. a night-time taking mode) is set in the camera
16
f
through a protocol establishing process for the camera
16
f
. Also, if the command key
12
g
is operated when the VCR
20
b
is a destination appliance, a record command is given to the VCR
20
b
through a similar protocol establishing process. Thus, the VCR
20
b
will start to record video signals in response to a record command.
On the other hand, if a TIMEPIECE RESET MODE key
12
b
is pressed, a timepiece reset mode is set up. In also the timepiece reset mode, a destination appliance is established through a similar key operation to the above way. That is, a destination appliance can be established by designating a desired category by the CATEGORY key
12
c
and a desired address by the ten key
12
i
and then pressing the SET key
12
j
. In the timepiece reset mode, however, a protocol establishment process for an established appliance is started in response to operation of the SET key
12
j
. The RESET COMMAND key
12
d
is activated after establishing a protocol. The operation of RESET COMMAND key
12
d
provides a reset command to the established appliance. The timepiece circuit is reset in response to the reset command.
When a normal transmission mode is selected, the controller
12
processes a flowchart shown in FIG.
4
and
FIG. 5
in response to operation of any one of the command keys
12
e
-
12
h.
The controller
12
first determines in step Si whether the bus
14
is released open or not. If “YES”, in steps S
3
and S
5
outputted are a transmission-source category code and address data. Because the controller
12
has a category code “0001” and an address “000”, in step S
3
a category code “0001” is outputted and in step S
5
corresponding 8-bit data “00000000” to the address “000” is outputted.
The output category code and address data are returned to the controller
12
. The controller
12
in step S
7
determines whether the address assigned thereto agrees with the address indicated by the input data or not. If the both addresses not in agreement with each other, occurrence of error is determined. Accordingly, an error flag
12
m
set process is made in step S
25
, and the process returns to the not-sown main routine. On the other hand, if the both addresses agree with each other, in step S
7
is determined “YES” or no abnormality, and then in steps S
9
and S
11
outputted are a destination category code and address data. For example, where the transmission destination is the camera
16
g
, in step S
9
a category code “0100” is outputted followed by outputting in step S
11
address data “00000110”.
In step S
13
it is determined whether a reception confirmation code has been inputted from the transmission destination or not. If a reception confirmation code has not been inputted in a predetermined time, “NO” is determined in step S
13
and the process advances to step S
25
. On the other hand, if a reception confirmation code has been inputted in a predetermined time, in step S
13
“YES” is determined and in step S
15
a transmission start code is outputted to the transmission destination. In step S
17
it is determined whether “ACK” has been inputted from the transmission destination or not. If “ACK” has not been inputted in a predetermined time, “NO” is also determined herein. If “ACK” has been inputted in a predetermined time, “YES” is determined. When “NO”, the process advances to step S
25
while if “YES” a command is outputted in step S
19
.
In step S
21
is determined whether “ACK” has been inputted again or not. If “NO” here, in step S
25
an error flag
12
12
m
is set up and the process returns to the main routine. However, If “YES”, it is determined in step S
23
whether command transmission has been ended or not. If “NO”, the process returns to step S
19
while if “YES” the process returns to the main routine. In this manner, a desired apparatus is controlled in an independent fashion.
If a timepiece reset mode is selected, the controller
12
processes a flowchart shown in FIG.
6
and
FIG. 7
in response to operation of the SET key
12
j
. Note that in steps S
31
-S
45
is performed a similar process to the steps S
1
-S
15
and duplicated explanations are herein omitted.
Subsequent to step S
45
, the controller
12
determines in step S
47
whether “ACK” has been inputted from a transmission destination or not. If no “ACK” has been inputted in a predetermined time, the process proceeds from step S
47
to step S
63
where an error flag
12
m
set process is made then returning to the main routine. On the other hand, if “ACK” has inputted in the predetermined time, the controller
12
advances to step S
49
to output a bus maintaining command to the transmission destination. In the succeeding step S
51
, it is determined whether “ACK” has been inputted from the transmission destination or not. If “NO” here, it is determined in step S
53
whether a predetermined time has elapsed or not. However, if “YES”, it is determined in step S
55
whether the RESET COMMAND key
12
d
has pressed or not. If “NO” in step S
53
, the process returns to step S
51
while if “YES” the process advances to step S
63
. On the other hand, if “NO” in step S
55
, the process returns to step S
49
while if “YES” the process advances to step S
57
.
Consequently, if “ACK” has not been sent back in a predetermined time from outputting a bus maintaining command, the process returns to the main routine through executing the error flag
12
m
set process. On the other hand, if “ACK” has been sent back in a predetermined time, determination is made on the presence or absence of an operation of the RESET COMMAND key
12
d
. If there is no operation, a bus maintaining command is again outputted. That is, bus maintaining commands are repeatedly outputted until operating the command key
12
d
, as long as no error occurs. If each appliance has not been inputted with a command over a predetermined time period, it cancels the protocol established state. In the timepiece reset transmission mode, bus maintaining commands are repeatedly outputted. Accordingly, the protocol established state is maintained between the controller
12
and the destination appliance even where the command key
12
d
is not operated.
If the command key
12
d
is operated, the controller
12
in step S
57
outputs a reset command to the destination appliance and then in steps S
59
and S
61
performs a similar process to steps S
51
and S
53
. That is, the process of step S
59
is repeated before elapsing a predetermined time. If “ACK” is not sent back in the predetermined time, an error flag
12
m
set process is carried out in step S
63
and the process returns to the main routine. On the other hand, if “ACK” is sent back in the predetermined time, “YES” is determined in step S
59
and the process returns directly to the main routine.
Each of the cameras
16
a
-
16
m
, MPXs
18
a
-
18
c
and VCRs
20
a
-
20
c
processes a flowchart shown in FIG.
8
. First, it is determined in step S
101
whether a category code and address data have been inputted or not. If “YES”, it is determined in step S
103
whether the input category code agrees with an own category code or not. If “NO” here, the process is ended. However, if “YES”, it is determined in step S
105
whether the input address data agrees with an own address or not. If “NO” here, the process is ended similarly to the above. However, if “YES”, it is determined that a protocol establishing instruction has been given, and in step S
107
a reception confirmation code is outputted to the controller
12
.
Subsequently, it is determined in step S
109
whether a transmission start code has been inputted from the controller
12
or not. In step S
111
is determined whether a predetermined time has elapsed or not. If no transmission start code has inputted in a predetermined time, the process is ended through executing an error process of step S
123
. On the other hand, if a transmission start code has inputted in a predetermined time, then in step S
113
“ACK” is outputted to the controller
12
, and it is determined in step S
115
whether a command has received or not.
If receiving a command, in step S
117
“ACK” is outputted to the controller
12
and in step S
119
a reception command is processed. If the reception command is a timepiece reset command, a built-in timepiece circuit is reset. Meanwhile, if the received command is a bus maintaining command, the protocol established state is maintained. In the succeeding step S
121
, it is determined whether a predetermined time has elapsed or not. If “NO”, the process returns to step S
115
while if “YES” the process is ended. Due to this, as long as the commands are inputted with a shorter period than the predetermined time, the process of steps S
115
-S
121
is repeated without ending the process. Incidentally, when “NO” is determined in step S
115
, the process proceeds to step S
121
without executing the steps S
117
and S
119
.
As can be understood from
FIG. 9
, before establishing a protocol, transmissions and receptions are made by a transmission source category code, transmission destination address data, transmission destination category code, transmission destination address data, reception confirmation code, transmission start code and “ACK”. Due to this, it takes a time of approximately 500 milliseconds at maximum to establish a protocol. Because the command is first outputted after establishing a protocol, a time deviation of 500 milliseconds at maximum would occur between a time of inputting a command by an operator and a time of processing the command by the destination appliance. Accordingly, if the timepiece circuit is to be reset utilizing a normal transmission mode, a time delay of about 0.5 second will occur due to the above time flag.
In order to resolve such a problem, this embodiment is provided with a timepiece reset transmission mode. When this mode is selected, a protocol is established before activating a command key
12
d
operation wherein a protocol established state is maintained until operating the command key
12
d
. Due to this, the command key
12
d
is impossible to operate before establishing a protocol. However, once a protocol is established, a reset command is promptly outputted to the destination appliance in response to operation of the command key
12
d
. Consequently, the timepiece circuit is reset almost at the same time as an operation of the command key
12
d.
Referring to
FIG. 10
, a monitor camera system
10
of another embodiment includes cameras
16
a
-
16
m
, MPXs
18
a
-
18
c
and VCRs
20
a
-
20
c
as well as counters
162
a
-
162
m
,
182
a
-
182
c
and
202
a
-
202
c
respectively provided therein. Meanwhile, the timepiece reset mode key
12
b
is omitted from the various keys
12
a
-
12
j
, as will be understood from FIG.
11
. Furthermore, when the normal transmission mode is selected, the controller
12
processes a flowchart shown in FIG.
12
and
FIG. 13
in response to operation of any one of the command keys
12
d
-
12
h
. Each of the cameras
16
a
-
16
m
, MPXs
18
a
-
18
c
and VCRs
20
a
-
20
c
processes a flowchart shown in FIG.
14
and FIG.
15
.
As stated above, no time reset mode key
12
b
is provided in this embodiment so that the controller
12
makes processing even for a time piece reset command, according to flowchart shown in FIG.
12
and FIG.
13
. It however is noted that, because the flowchart of FIG.
12
and
FIG. 13
has no difference from the flowchart of FIG.
4
and
FIG. 5
, it is impossible to eliminate a time deviation caused between a time of inputting a reset command and a time of resetting a timepiece by a same process in a destination appliance as that of the
FIG. 1
embodiment. For this reason, this embodiment implements a different process from
FIG. 8
(FIG.
14
and
FIG. 15
) in a destination appliance.
Specifically, when it is determined that addresses agree with each other, (a protocol establishing instruction is determined given) in step S
105
, the built-in counter in step S
106
is reset and started. That is, the counter starts counting prior to a process of establishing a protocol. Note that
FIG. 13
is same as the
FIG. 8
flowchart except for a process of step S
106
.
In step S
119
, a subroutine shown in
FIG. 15
is processed. First, it is determined in step S
201
whether a command given from the controller
12
is a reset command or not. If “NO” here, another process is performed in step S
207
while if “YES” the timepiece circuit is reset in step S
203
and in step S
205
a current count value is added to a reset time. The counter value represents a time required to establish a protocol. The addition of this value to the reset time provides correction of a time presented by the timepiece circuit to an actual time. After ending the process of step S
205
or S
207
, the process returns to the routine of FIG.
13
.
According to this embodiment, measurement is made on a time period of from a start of a protocol establishing process to a reset command processing. Time correction is made by a measurement value. It is therefore possible to prevent, after resetting, a time presented by the timepiece circuit from being too late with respect to an actual time.
Although
FIG. 1
illustrated connections between the electronic appliances in a simple way, each electronic appliance has two connectors A and B (RJ-11) provided on a back face thereof as shown in FIG.
16
. The bus
14
uses a cable RJ-11 having, at respective ends, RJ-11-schemed 6-pin plugs. The connectors A and B are fitted with such 6-pin plugs. The connectors A and B also are 6-pin connectors each assigned with first to sixth pins in an order of from left. It should be noted that, in balanced transmission according to the RS-485 rating, two signal lines and two pins connected to the two signal lines only are used for transmission and reception.
The pins actually used in balanced transmission are the third and fourth pins. Though the connector A third pin is inputted/outputted a signal, a same signal as which is inputted/outputted through the connector B fourth pin. Through the connector fourth pin is inputted/outputted a signal, a same signal as which is inputted/outputted through the connector B third pin. That is, the connector-A third pin and the connector-B fourth pin are used for transmission with the same signal while the connector-A fourth pin and the connector-B third pin are for transmission with the same signal.
The cables RJ-11 include two kinds, i.e. a straight type and a cross type. Where using a straight type cable in connection between two appliances, the first, second, third, fourth, fifth and sixth pins provided on one appliance are respectively connected to the first, second, third, fourth, fifth and sixth pins on the other appliance. In contrast to this, where a cross type table is employed in connection between two appliances, the first, second, third, fourth, fifth and sixth pins on one appliance respectively connected to the sixth, fifth, fourth, third, second and first pins on the other appliance.
Consequently, where straight type tables only are available when actually setting up a monitor camera
10
of this embodiment, connections between the appliances may be made through connectors A or connectors B as shown in FIG.
17
(A). By doing so, the third and fourth pins of a connector A provided on a certain appliance are connected to the third and fourth pins of a connector A on another appliance. Similarly, the third and fourth pins of a connector B on a certain appliance are also connected to the third and fourth pins of a connector B on another appliance. Thus, the appliances are put in proper connection.
On the contrary, when cross type cables only are available, connections between the appliances may made through connectors A and B as shown in FIG.
17
(B). By doing so, the third and fourth pins of a connector A provided on a certain appliance are respectively connected to the fourth and third pins of a connector B on another appliance. The third and fourth pins of a connector B on a certain appliance are also connected to the fourth and third pins of a connector A on another appliance. In also this case, the appliances are put in proper connection.
In this manner, a same signal is assigned to a connector-A third pin and a connector-B fourth pin while a same signal is assigned to a connector-A fourth pin and a connector-B third pin. Due to this, the appliances can be properly connected through either one of the straight type and the cross type cables.
Incidentally, because the controller of the above embodiment controls the electronic appliances on a separate basis, the timepiece circuit reset process is implemented for each of the appliances. Alternatively, the timepiece circuit reset process may be carried out simultaneously by so-called broadcast transmission.
Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.
Claims
- 1. A remote control apparatus to remotely control a plurality of electronic appliances each of which has a timepiece circuit, comprising:a first acceptor for accepting a selection of a desired electronic appliance among said plurality of electronic appliances; a second acceptor for accepting a selection of a reset mode to perform a reset operation of the timepiece circuit; an establisher for establishing a protocol with said desired electronic appliance in response to the selection of the reset mode; a reset command transmitter for transmitting a reset command to said desired electronic appliance in response to the reset operation so as to request a reset of the timepiece circuit included in said desired electronic appliance; and a maintaining command transmitter for repeatedly transmitting a maintaining command to said desired electronic appliance so as to request a maintaining of the protocol for a time period from the establishing of the protocol to the reset operation.
- 2. A remote control apparatus according to claim 1, wherein said desired electronic appliance resets a time of the timepiece circuit in response to the reset command.
- 3. A remote control apparatus according to 1, wherein said electronic appliance cancels the protocol when a state of not given a command continues for a predetermined time period, andsaid maintaining command transmitter transmitting the maintaining command at a shorter interval than the predetermined time period and finishing a transmitting operation of the maintaining command in response to the reset operation.
- 4. A remote control method to remotely control a plurality of electronic appliances each of which has a timepiece circuit, comprising the steps of:(a) accepting a selection of a desired electronic appliance from among said plurality of electronic appliances; (b) accepting a selection of a reset mode to perform a reset operation of the timepiece circuit; (c) establishing a protocol with said desired electronic appliance in response to the selection of the reset mode; (d) transmitting a reset command to said desired electronic appliance in response to the reset operation so as to request a reset of the timepiece circuit included in said desired electronic appliance; and (e) repeatedly transmitting maintaining command to said desired electronic appliance so as to request a maintaining of the protocol for a time period from the establishing of the protocol to the reset operation.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-017509 |
Jan 1999 |
JP |
|
US Referenced Citations (11)
Foreign Referenced Citations (4)
Number |
Date |
Country |
04-334216 |
Nov 1992 |
JP |
04-334217 |
Nov 1992 |
JP |
05-314030 |
Nov 1993 |
JP |
06-252983 |
Sep 1994 |
JP |