1. Field of the Invention
The present invention relates to wireless remote control of appliances such as, for example, garage door openers.
2. Background Art
Home appliances, such as garage door openers, security gates, home alarms, lighting, and the like, may conveniently be operated from a remote control. Typically, the remote control is purchased together with the appliance. The remote control transmits a radio frequency activation signal which is recognized by a receiver associated with the appliance. Aftermarket remote controls are gaining in popularity as such devices can offer functionality different from the original equipment remote control. Such functionality includes decreased size, multiple appliance interoperability, increased performance, and the like. Aftermarket controllers are also purchased to replace lost or damaged controllers or to simply provide another remote control for accessing the appliance.
An example application for aftermarket remote controls are remote garage door openers integrated into an automotive vehicle. These integrated remote controls provide customer convenience, appliance interoperability, increased safety, and enhanced vehicle value. Present in-vehicle integrated remote controls provide a “universal” or programmable garage door opener which learns characteristics of an existing transmitter by receiving an activation signal from the transmitter. Then, when prompted by a user, the programmable garage door opener generates an activation signal having the same characteristics. One problem with such devices is the difficulty experienced by users attempting to program the garage door opener. Another problem occurs if the user has lost all existing transmitters.
What is needed is a universal remote controller that is easier to program. This remote controller should be easily integrated into an automotive vehicle using simple electronic circuits.
The present invention provides a universal remote control that automatically learns characteristics necessary to generate an appliance activation signal.
A method for remotely activating an appliance is provided. The appliance responds to an activation signal conforming to one of a plurality of radio frequency activation schemes. A sensor is positioned proximate to the appliance. A sequence of different activation signals is automatically transmitted. Each activation signal conforms to one of the radio frequency activation schemes. At least one signal is received from the sensor indicating appliance activation. A determination as to which of the radio frequency activation schemes resulted in transmitting an activation signal that activated the appliance is made based on the received sensor signal. Data representing the determined activation scheme is associated with an activation input for a programmable remote control transmitter.
In an embodiment of the present invention, at least one of the radio frequency activation schemes is a fixed code scheme. The sequence of activation signals includes an activation signal having each possible fixed code value.
In another embodiment of the present invention, the sequence of activation signals transmits each rolling code activation signal before any fixed code activation signals.
In still another embodiment of the present invention, appliance activation is indicated by receiving a radio frequency signal from a remote sensor.
In yet another embodiment of the present invention, the programmable remote control transmitter is installed in a motor vehicle. The sensor signal indicating appliance activation is received from a vehicle-mounted sensor.
In a further embodiment of the present invention, the sensor generates a first signal and a second signal. The second signal confirms appliance activation by one of the radio frequency activation schemes. This may be accomplished by rapidly transmitting the sequence of activation signals prior to receiving the first sensor signal and slowly transmitting at least a portion of the rapidly transmitted sequence prior to receiving the second signal.
In yet a further embodiment of the present invention, at least a portion of the sequence of activation signals has an order established by priority of radio frequency activation schemes. This reduces an average time for receiving the sensor signal indicating activation.
Appliance activation may be detected by one or more of a variety of parameters including sensing motion of a mechanical barrier, sensing position of a mechanical barrier, sensing light emitted by the appliance, sensing vibration emitted by the appliance, sensing current drawn by the appliance, and the like.
A system for operating a remotely controlled appliance is also provided. The system includes a sensor for generating a sensor signal in response to the appliance. A transmitter sends radio frequency activation signals. Control logic causes the transmission of a sequence of different activation signals, each based on one of a plurality of activation schemes. In response to receiving a signal from the sensor, the control logic stores data into memory indicating which activation scheme activated the appliance.
A programmable appliance remote control is also provided. A controller operates in a learn mode and an operate mode. In learn mode, the controller generates transmitter control signals for transmitting each of a sequence of different activation signals. Each activation signal is based on one of a plurality of activation schemes. The controller stores data representing one of the activation schemes based on receiving a sensor signal. In operate mode, the controller generates transmitter control signals based on the stored data in response to receiving an activation input signal. One or more of the controller, transmitter, sensor and user interface may be built into an automotive vehicle.
The above features, and other features and advantages of the present invention are readily apparent from the following detailed descriptions thereof when taken in connection with the accompanying drawings.
A remotely controlled system, shown generally by 20, controls access to a garage, shown generally by 22. Garage 22 includes garage door 24 which can be opened and closed by garage door opener 26. Garage door opener 26 includes drive 28 for moving garage door 24, lamp 30 which turns on when garage door opener 26 is activated, and receiver 32 receiving radio frequency activation signal 34 for activating garage door opener 26. Garage door opener 26 receives electrical power through power cable 36 plugged into outlet 38 on the ceiling of garage 22.
Vehicle 40 includes programmable remote control 42 which generates a sequence of activation signals, shown generally by 44. Each activation signal in sequence of activation signals 44 has characteristics defined by one of a plurality of possible activation schemes. One of these schemes corresponds with activation signal 34 operating garage door opener 26. Selecting the proper activation signal 34 from sequence of activation signals 44 is based on sensing activation of garage door opener 26. A wide variety of sensing techniques are possible.
Remote sensor 46 may be placed within garage 22 to detect activation of garage door opener 26. For example, remote sensor 46 may respond to light from garage door opener lamp 30. Remote sensor 46 may also respond to vibration, including sound, produced by garage door opener 26 when drive 28 is in operation. Remote sensor 46 may also be magnetically or mechanically attached to garage door 24 for detecting motion and/or position of garage door 24. This may be accomplished, for example, by including in remote sensor 46 and accelerometer, inclinometer, or the like. Remote sensor 46 may also be mechanically or magnetically affixed to rail 50 upon which travels garage door 24. Remote sensor 46 may then include a velocimeter, accelerometer, microphone, or other vibration sensing transducer.
Remote sensor 46 may also operate together with appropriately positioned vehicle 40 for detecting activation of garage door opener 26. For example, a light sensitive transducer in remote sensor 46 may be positioned facing garage door 24. Vehicle 40 is then positioned on the opposite side of garage door 24 with headlamps 48 turned on. Closing garage door 24 interrupts light from headlamps 48 from otherwise striking remote sensor 46. The change in light level detected by remote sensor 46 indicates the activation of garage door opener 26.
Remote sensor 46 transmits the activation state of garage door opener 26, or a change in the activation state, to programmable remote control 42. Programmable remote control 42 uses the signal received from remote sensor 46 to determine which activation signal in sequence of activation signals 44 corresponds to activation signal 34 operating garage door opener 26. Information defining activation signal 34 is stored in association with a control input for programmable controller 42.
As an alternative to, or in addition with, remote sensor 46, system 20 may use a sensor mounted on vehicle 40. This may be a sensor placed in vehicle 40 specifically for the purpose of detecting activation of garage door opener 26. However, system 20 may also utilize a sensor placed on vehicle 40 for another purpose. One example of such a sensor is a light sensor for controlling the operation of headlamps 48. Automatic headlamp systems switch between high beam and low beam or between low beam and daylight operation based on a detected ambient light level. If this light sensor is mounted near the front of vehicle 40, and vehicle 40 is parked near door 24, the presence or absence of light from headlamps 48 reflected from door 24 may be used to indicate whether door 24 is open or closed.
Another in-vehicle sensing mechanism that may be used for detecting appliance activation is associated with a collision avoidance system. Radar or ultrasound signals are transmitted from the front and/or rear of vehicle 48. Proximity of objects is detected when the transmitted signals reflect off the object and return to vehicle 40. Once again, by parking vehicle 40 near door 24, collision avoidance detection signals may be used to detect whether garage door 24 is opened or closed.
Vehicle 40 may also include one or more light sensors capable of distinguishing whether garage door opener lamp 30 is on or off. These light sensors are used in a variety of options including control of headlamps 48, automatic wiper control, automatic defrost or defog control, and the like. Parking vehicle 40 within garage 22 allows one or more of these light sensors to determine when garage door opener 26 is activated.
Still another in-vehicle sensor that may be used to implement system 20 is a microphone mounted within the passenger compartment of vehicle 40. Microphones are increasingly used for on-board telematics and voice-controlled options. Lowering a window or opening a door on vehicle 40 would allow these microphones to detect sound vibrations generated by garage door opener drive 28 when garage door opener 26 is activated.
The present invention has been generally descried with regard to a garage door opener. However, the present invention may be applied to controlling a wide variety of appliances such as other mechanical barriers, lighting systems, alarm systems, temperature control systems, and the like. Further, the remote control has been described as an in-vehicle remote control. The present invention also applies to remote controls that may be hand held, wall mounted, included in a key fob, and the like.
Referring now to
Several types of codes 66 are possible. One type of code is a fixed code, wherein each transmission from a given remote control transmitter contains the same code 66. In contrast, variable code schemes change the bit pattern of code 66 with each activation. The most common variable code scheme, known as rolling code, generates code 66 by encrypting a counter value. After each activation, the counter is incremented. The encryption technique is such that a sequence of encrypted counter values appears to be random numbers.
Data word 60 is converted to a baseband stream, shown generally by 70, which is an analog signal typically transitioning between a high voltage level and a low voltage level. Various baseband encoding or modulation schemes are possible, including polar signaling, on-off signaling, bipolar signaling, duobinary signaling, Manchester signaling, and the like. Baseband stream 70 has a baseband power spectral density, shown generally by 72, centered around a frequency of zero.
Baseband stream 70 is converted to a radio frequency signal through a modulation process shown generally by 80. Baseband stream 70 is used to modulate one or more characteristics of carrier 82 to produce a broadband signal, shown generally by 84. Modulation process 80, mathematically illustrated in
Referring now to
A rolling code receiver is trained to a compatible transmitter prior to operation. The receiver is placed into a learn mode. Upon reception of an activation signal, the receiver extracts transmitter identifier 62. The receiver then uses key generation algorithm 102 with manufacturing key 104 and received transmitter identifier 62 to generate crypt key 100 identical to the crypt key used by the transmitter. Newly generated crypt key 100 is used by decrypt algorithm 112 to decrypt rolling code 110, producing counter 114 equal to counter 106. The receiver then saves counter 114 and crypt key 100 associated with transmitter identifier 62. As is known in the encryption art, encrypt algorithm 108 and decrypt algorithm 112 may be the same algorithm.
In normal operation, when the receiver receives an activation signal, the receiver first extracts transmitter identifier 62 and compares transmitter identifier 62 with all learned transmitter identifiers. If no match is found, the receiver rejects the activation signal. If a match is found, the receiver retrieves crypt key 100 associated with received transmitter identifier 62 and decrypts rolling code 110 from the received activation signal to produce counter 114. If received counter 106 matches counter 114 associated with transmitter identifier 62, activation proceeds. Received counter 106 may also exceed stored counter 114 by a preset amount for successful activation.
Another rolling code scheme generates crypt key 100 based on manufacturing key 104 and a “seed” or random number. An existing transmitter sends this seed to an appliance receiver when the receiver is placed in learn mode. The transmitter typically has a special mode for transmitting the seed entered, for example, by pushing a particular combination of buttons. The receiver uses the “seed” to generate crypt key 100. As will be recognized by one of ordinary skill in the art, the present invention applies to the use of a “seed” for generating a crypt key as well as to any other variable code scheme.
Referring now to
Programmable remote control 42 includes sensor 128 for detecting one or more parameters 126 when sensor 128 is positioned proximate to appliance 120. Sensor 128 generates sensor signal 130 sent to control logic 132. Sensor signal 130 may represent a continuous variable or may be a binary variable indicating parameter 126 has crossed some threshold value. Sensor 128 may be hard wired to control logic 132. Sensor signal 130 may also travel along a bus interconnecting sensor 128 and control logic 132. Sensor signal 130 may also be transmitted using a radio link established between sensor 128 and control logic 132.
Programmable remote control 42 includes transmitter 134. An exemplary transmitter 134 includes variable oscillator 136, modulator 138, variable gain amplifier 140 and transmitter antenna 142. Transmitter 134 generates each activation signal in sequence of activation signals 44 by setting variable oscillator 136 to the carrier frequency. Modulator 138, represented here as a switch, modulates the carrier produced by variable oscillator 136 in response to data supplied by control logic 132. Variable gain amplifier 140 amplifies the modulated carrier to produce an activation signal transmitted from antenna 142.
When operating in a learn mode, control logic 132 generates sequence of activation signals 44 containing activation signal 34 implementing an activation scheme recognized by appliance receiver 122. In response to at least one sensor signal 130, control logic 132 determines which activation signal 34 activated appliance 120. Control logic 132 stores data representing activation signal 34 associated with a particular user input channel. In operate mode, when control logic 132 receives a user activation input for this channel, control logic 132 retrieves the stored data and generates activation signal 34.
Programmable remote control 42 includes non-volatile memory, such as flash memory 144, that can be written to and read from by control logic 132. Flash memory 144 holds information used by control logic 132 for generating sequence of activation signals 44. Flash memory 144 also stores data indicating which activation signal 34 was successfully automatically programmed to activate appliance 120.
Programmable remote control 42 includes user interface 146 in communication with control logic 132. User interface 146 receives user input 148 and generates user output 150. For simple systems, user input 148 is typically provided by up to three pushbuttons. User output 150 may be provided by illuminating one or more display lamps. User input 148 and user output 150 may also be provided through a wide variety of control and display devices such as touch activated display screens, speech generators, tone generators, voice recognition systems, telematic systems, and the like.
Control logic 132 is preferably implemented with a microcontroller executing code held in a non-volatile memory such as flash memory 144. Control logic 132 may also be implemented using any combination of analog or digital discreet components, programmable logic, computers, and the like. In addition, elements of control logic 132, transmitter 134, flash memory 144 and/or user interface 146 may be implemented on a single integrated circuit chip for decreased cost in mass production.
Referring now to
Microcontroller 170 watches for significant changes in the peak level of sensed current. In the case of a garage door opener, a sharp increase in current corresponds with activating drive 28. By watching for a significant change in current draw, microcontroller 170 can ignore any low level current draw necessary to support electronics in garage door opener 26. When a change in current draw is detected, microcontroller 170 signals voltage controller oscillator 172 to transmit sensor signal 130 from antenna 174.
Programmable remote control 42 includes antenna 176 receiving radio frequency sensor signal 130. Receiver 178 detects radio frequency sensor signal 130 and signals control logic 132 that sensor 128 has detected a change in the activation state of appliance 120.
Sensor 128 may be battery powered. Alternatively transformer 180, inserted in line between receptacle 160 and plug 162, and power supply 182 provide regulated voltage for buffer amplifier 166, microcontroller 170 and voltage controlled oscillator 172.
Referring now to
Channel table 192 includes a channel entry, one of which is indicated by 198, for each channel supported by programmable remote control 42. Typically, each channel corresponds to a user input. In the example illustrated in
Search table 194 contains a sequence of scheme addresses 200 corresponding to the order of activation signals generated for sequence of activation signals 44. Addresses 200 may be arranged to generate a variety of sequences 44. For example, first sequence 204 may contain addresses 200 pointing to rolling code schemes and second sequence 206 may contain addresses 200 pointing to fixed code schemes. This will result in activation signals for all rolling code schemes being sent in sequence 44 prior to sending any activation signal for a fixed code scheme.
In another embodiment, at least some of addresses 200 are arranged based on popularity of activation schemes. In particular, activation schemes generating activation signals for appliances with greater market penetration are listed before schemes generating activation signals for less popular appliances. In this manner, the average latency before generating activation signal 34 for a given appliance is reduced.
Scheme table 196 holds characteristics and other information necessary for generating each activation signal in sequence of activation signals 44. Scheme table 196 includes a plurality of rolling code entries, one of which is indicated by 210, and a plurality of fixed code entries, one of which is indicated by 212. Each rolling code entry 210 includes transmitter identifier 62, counter 106, crypt key 100, carrier frequency 214, and subroutine address 226. Subroutine address 226 points to code executable by control logic 132 for generating an activation signal. Additional characteristics may be embedded within this code. Each fixed code entry 212 includes carrier frequency 214 and subroutine address 216.
Referring now to
The amount of time required to transmit an entire sequence of activation signals 44 depends on the number and types of activation signals transmitted. As an example, consider a family of appliances which may be activated using one of 25 different schemes, ten of which are rolling code schemes and fifteen of which are fixed code schemes. Assume further that each fixed code scheme uses a ten bit fixed code, resulting in 15,360 different fixed code activation signals. For simplicity, each fixed code transmission may be considered a separate activation scheme. Further, assume that each activation signal requires 50 msec to transmit and a further 50 msec in between each scheme transmission. Using these assumptions, all possible schemes can be transmitted within 26 minutes.
If most appliances are activated by either one of a rolling code type or one of only a few fixed code types, the average time until transmission of a successful activation signal can be decreased by transmitting activation signals corresponding to these types first.
With specific reference now to
A check is made to determine if the present scheme is fixed, as in block 226. This may be accomplished based on the pointer value, based on information in scheme table 196, or the like. If not, a rolling code data word is formed, as in block 228. For example, crypt key 100 may be used to generate a rolling code value from counter 106. The rolling code value and transmitter identifier 162 are concatenated to form the data word. The data word is transmitted, as in block 230. A check is made to determine if the system is in sense mode, as in block 232. Sense mode is entered after receiving a sensor signal indicating the first Successful appliance activation. If not in sense mode, flow continues at block 234. If in sense mode, a delay is introduced, as in block 236. This delay must be sufficient to allow the appliance to respond. In the example described, a delay of four seconds is used. Flow then continues with block 234.
Returning to now to block 226, if a fixed code activation signal is to be transmitted, the fixed code is initialized, as in block 240. A loop is then entered for transmitting an activation signal for each fixed code value or scheme. A fixed code data word is formed, as in block 242. The fixed code value and any other necessary information such as, for example, transmitter identifier or function code are concatenated to form the data word. The data word is transmitted, as in block 244. A check is made to determine if the system is operating in sense mode, as in block 246. If so, a delay is introduced, as in block 248, and the fixed code is decremented, as in block 250. If not, the fixed code is incremented, as in block 252. A check is made to determine if an activation signal for each fixed code has been generated, as in block 254. If not, the fixed code loop is repeated. If so, flow continues at block 234.
In block 234, a check is made to determine if the system is in sense mode. If so, the scheme pointer is decreased, as in block 256. If not, the scheme pointer is advanced, as in block 258. A check is again made to determine if any schemes remain, as in block 222.
Returning again to block 222, if no schemes remain, a delay is introduced and the pointer is decreased to point to the last scheme, as in block 260. A check is made to determine if the system is in sense mode, as in block 262. If so, characteristics of the next scheme are loaded and activation signals are transmitted in reverse order. If not, programming is completed. A check is made to determine if success was indicated, as in block 264. If not, the user is notified of failure, as in block 266. If successful, the user is so notified, as in block 268. User notification of failure or success may be accomplished by flashing different patterns in one or more indicator lamps.
The search technique illustrated in
Referring now to
Returning again to block 284, if the pass check indicates a second pass through the routine, parameters are stored, as in block 290. The current pointer value is stored as scheme address and, if a fixed code activation signal was sent, the fixed code is saved as fixed code 202 in the appropriate locations in channel table 192. The scheme and fix code are set to terminate, as in block 292. The pointer is set to the last value and, if necessary, the fixed code is set to the last possible fixed code value. This results in terminating the background loop illustrated in
Referring now to
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1522241 | Hennessey | Jan 1925 | A |
3098212 | Creamer, Jr. | Jul 1963 | A |
3300867 | Sampson | Jan 1967 | A |
3337992 | Tolson | Aug 1967 | A |
3456387 | Tolson | Jul 1969 | A |
3680951 | Jordan et al. | Aug 1972 | A |
4074200 | Buchta | Feb 1978 | A |
4167833 | Farina et al. | Sep 1979 | A |
4178549 | Ledenbach et al. | Dec 1979 | A |
4219812 | Rittenbach | Aug 1980 | A |
4241870 | Marcus | Dec 1980 | A |
4247850 | Marcus | Jan 1981 | A |
4425717 | Marcus | Jan 1984 | A |
4447808 | Marcus | May 1984 | A |
4453161 | Lemelson | Jun 1984 | A |
4482947 | Zato et al. | Nov 1984 | A |
4529980 | Liotine et al. | Jul 1985 | A |
4535333 | Twardowski | Aug 1985 | A |
4581827 | Higashi | Apr 1986 | A |
4595228 | Chu | Jun 1986 | A |
4598287 | Osakabe et al. | Jul 1986 | A |
4623887 | Welles, II | Nov 1986 | A |
4631708 | Wood et al. | Dec 1986 | A |
4635033 | Inukai et al. | Jan 1987 | A |
4638433 | Schindler | Jan 1987 | A |
4665397 | Pinnow | May 1987 | A |
4676601 | Itoh et al. | Jun 1987 | A |
4700327 | Hilton | Oct 1987 | A |
4706299 | Jorgensen | Nov 1987 | A |
4707788 | Tashiro et al. | Nov 1987 | A |
RE32576 | Pastore | Jan 1988 | E |
4727302 | Mizuta et al. | Feb 1988 | A |
4743905 | Wiegand | May 1988 | A |
4747159 | Kato | May 1988 | A |
4750118 | Heitschel et al. | Jun 1988 | A |
4754255 | Sanders et al. | Jun 1988 | A |
4771283 | Imoto | Sep 1988 | A |
4793690 | Gahan et al. | Dec 1988 | A |
4799189 | Grover | Jan 1989 | A |
4806930 | Wojciak, Jr. | Feb 1989 | A |
4825200 | Evans et al. | Apr 1989 | A |
4881148 | Lambropoulos et al. | Nov 1989 | A |
4882565 | Gallmeyer | Nov 1989 | A |
4886960 | Molyneux et al. | Dec 1989 | A |
4890108 | Drori et al. | Dec 1989 | A |
4896030 | Miyaji | Jan 1990 | A |
4905279 | Nishio | Feb 1990 | A |
4912463 | Li | Mar 1990 | A |
4917477 | Bechtel et al. | Apr 1990 | A |
4953305 | Van Lente et al. | Sep 1990 | A |
4978944 | Andros et al. | Dec 1990 | A |
4988992 | Heitschel et al. | Jan 1991 | A |
5016996 | Ueno | May 1991 | A |
5064274 | Alten | Nov 1991 | A |
5085062 | Capdevila | Feb 1992 | A |
5103221 | Memmola | Apr 1992 | A |
5109222 | Welty | Apr 1992 | A |
5113821 | Fukui et al. | May 1992 | A |
5122647 | Lynam et al. | Jun 1992 | A |
5123008 | Beesley | Jun 1992 | A |
5126686 | Tam | Jun 1992 | A |
5146215 | Drori | Sep 1992 | A |
5154617 | Suman et al. | Oct 1992 | A |
5181423 | Philipps et al. | Jan 1993 | A |
5191610 | Hill et al. | Mar 1993 | A |
5193210 | Nicholas et al. | Mar 1993 | A |
5201067 | Grube et al. | Apr 1993 | A |
5225847 | Roberts et al. | Jul 1993 | A |
5243322 | Thompson et al. | Sep 1993 | A |
5252960 | Duhame | Oct 1993 | A |
5252977 | Lueker et al. | Oct 1993 | A |
5266945 | Peek et al. | Nov 1993 | A |
5278547 | Suman et al. | Jan 1994 | A |
5369706 | Latka | Nov 1994 | A |
5379453 | Tigwell | Jan 1995 | A |
5402105 | Doyle et al. | Mar 1995 | A |
5408698 | Serizawa et al. | Apr 1995 | A |
5412379 | Waraksa et al. | May 1995 | A |
5420925 | Michaels | May 1995 | A |
5442340 | Dykema | Aug 1995 | A |
5455716 | Suman et al. | Oct 1995 | A |
5463374 | Mendez et al. | Oct 1995 | A |
5471668 | Soenen et al. | Nov 1995 | A |
5473317 | Inomata et al. | Dec 1995 | A |
5475366 | Van Lente et al. | Dec 1995 | A |
5479155 | Zeinstra et al. | Dec 1995 | A |
5517187 | Bruwer et al. | May 1996 | A |
5528230 | Kim | Jun 1996 | A |
5554977 | Jablonski et al. | Sep 1996 | A |
RE35364 | Heitschel et al. | Oct 1996 | E |
5564101 | Eisfeld et al. | Oct 1996 | A |
5583485 | Van Lente et al. | Dec 1996 | A |
5594429 | Nakahara | Jan 1997 | A |
5596316 | Honeck | Jan 1997 | A |
5598475 | Soenen et al. | Jan 1997 | A |
5613732 | Demick | Mar 1997 | A |
5614885 | Van Lente et al. | Mar 1997 | A |
5614891 | Zeinstra et al. | Mar 1997 | A |
5619190 | Duckworth et al. | Apr 1997 | A |
5627529 | Duckworth et al. | May 1997 | A |
5645308 | Fink | Jul 1997 | A |
5646701 | Duckworth et al. | Jul 1997 | A |
5661455 | Van Lente et al. | Aug 1997 | A |
5661651 | Geschke et al. | Aug 1997 | A |
5661804 | Dykema et al. | Aug 1997 | A |
5680131 | Utz | Oct 1997 | A |
5680134 | Tsui | Oct 1997 | A |
5686903 | Duckworth et al. | Nov 1997 | A |
5686904 | Bruwer | Nov 1997 | A |
5691848 | Van Lente et al. | Nov 1997 | A |
5699044 | Van Lente et al. | Dec 1997 | A |
5699054 | Duckworth | Dec 1997 | A |
5699055 | Dykema et al. | Dec 1997 | A |
5708415 | Van Lente et al. | Jan 1998 | A |
5715020 | Kuroiwa et al. | Feb 1998 | A |
5731756 | Roddy | Mar 1998 | A |
5751224 | Fitzgibbon | May 1998 | A |
5793300 | Suman et al. | Aug 1998 | A |
5812097 | Maldonado | Sep 1998 | A |
5831548 | Fitzgibbon | Nov 1998 | A |
5838255 | Di Croce | Nov 1998 | A |
5841253 | Fitzgibbon et al. | Nov 1998 | A |
5841390 | Tsui | Nov 1998 | A |
5841813 | Van Nee | Nov 1998 | A |
5845593 | Birkestrand | Dec 1998 | A |
5854593 | Dykema et al. | Dec 1998 | A |
5872513 | Fitzgibbon et al. | Feb 1999 | A |
5903226 | Suman et al. | May 1999 | A |
5926087 | Busch et al. | Jul 1999 | A |
5926106 | Beran et al. | Jul 1999 | A |
5940000 | Dykema | Aug 1999 | A |
5940007 | Brinkmeyer | Aug 1999 | A |
5940120 | Frankhouse et al. | Aug 1999 | A |
5949349 | Farris et al. | Sep 1999 | A |
6002332 | King | Dec 1999 | A |
6005508 | Tsui | Dec 1999 | A |
6008735 | Chiloyan et al. | Dec 1999 | A |
6009355 | Obradovich et al. | Dec 1999 | A |
6021319 | Tigwell | Feb 2000 | A |
6025785 | Farris et al. | Feb 2000 | A |
6031465 | Burgess | Feb 2000 | A |
6043753 | Okayasu et al. | Mar 2000 | A |
6049289 | Waggamon et al. | Apr 2000 | A |
6055508 | Naor et al. | Apr 2000 | A |
RE36703 | Heitschel et al. | May 2000 | E |
6072436 | Marougi | Jun 2000 | A |
6078271 | Roddy et al. | Jun 2000 | A |
6081203 | Fitzgibbon | Jun 2000 | A |
6091343 | Dykema et al. | Jul 2000 | A |
6104101 | Miller et al. | Aug 2000 | A |
6127740 | Roddy et al. | Oct 2000 | A |
6130625 | Harvey | Oct 2000 | A |
6131019 | King | Oct 2000 | A |
6137421 | Dykema | Oct 2000 | A |
6154544 | Farris et al. | Nov 2000 | A |
6166650 | Bruwer | Dec 2000 | A |
6175312 | Bruwer et al. | Jan 2001 | B1 |
6181255 | Crimmins et al. | Jan 2001 | B1 |
6191701 | Bruwer | Feb 2001 | B1 |
6243000 | Tsui | Jun 2001 | B1 |
6249673 | Tsui | Jun 2001 | B1 |
6271765 | King et al. | Aug 2001 | B1 |
6282152 | Kurple | Aug 2001 | B1 |
6308083 | King | Oct 2001 | B1 |
6320514 | Flick | Nov 2001 | B1 |
6333698 | Roddy | Dec 2001 | B1 |
6344817 | Verzulli | Feb 2002 | B1 |
6359558 | Tsui | Mar 2002 | B1 |
6362771 | Schofield et al. | Mar 2002 | B1 |
6397058 | Thibert et al. | May 2002 | B1 |
6414587 | Fitzgibbon | Jul 2002 | B1 |
6441719 | Tsui | Aug 2002 | B1 |
6486795 | Sobel et al. | Nov 2002 | B1 |
RE37986 | Heitschel et al. | Feb 2003 | E |
6525645 | King et al. | Feb 2003 | B1 |
6542076 | Joao | Apr 2003 | B1 |
6556681 | King | Apr 2003 | B1 |
6556813 | Tsui | Apr 2003 | B1 |
6559775 | King | May 2003 | B1 |
6597291 | Tsui | Jul 2003 | B1 |
6634408 | Mays | Oct 2003 | B1 |
6661350 | Rohrberg et al. | Dec 2003 | B1 |
6690796 | Farris et al. | Feb 2004 | B1 |
6703941 | Blaker | Mar 2004 | B1 |
6759350 | Tsai | Jul 2004 | B1 |
6791467 | Ben Ze'ev | Sep 2004 | B1 |
6810123 | Farris et al. | Oct 2004 | B1 |
6822603 | Crimmins et al. | Nov 2004 | B1 |
6903650 | Murray | Jun 2005 | B1 |
6956460 | Tsui | Oct 2005 | B1 |
6963267 | Murray | Nov 2005 | B1 |
6975203 | Brookbank et al. | Dec 2005 | B1 |
20020034303 | Farris et al. | Mar 2002 | A1 |
20020067826 | King | Jun 2002 | A1 |
20020075133 | Flick | Jun 2002 | A1 |
20020126037 | Fitzgibbon | Sep 2002 | A1 |
20020137479 | Tsui | Sep 2002 | A1 |
20020140569 | van Ee et al. | Oct 2002 | A1 |
20020163440 | Tsui | Nov 2002 | A1 |
20020190872 | Suman et al. | Dec 2002 | A1 |
20020191794 | Farris et al. | Dec 2002 | A1 |
20020197955 | Witkowski et al. | Dec 2002 | A1 |
20030016119 | Teich | Jan 2003 | A1 |
20030016139 | Teich | Jan 2003 | A1 |
20030033540 | Fitzgibbon | Feb 2003 | A1 |
20030067394 | Tsui | Apr 2003 | A1 |
20030076235 | Tsui | Apr 2003 | A1 |
20030085798 | Esteban | May 2003 | A1 |
20030118187 | Fitzgibbon | Jun 2003 | A1 |
20030189530 | Tsui | Oct 2003 | A1 |
20030197594 | Olson et al. | Oct 2003 | A1 |
20030197595 | Olson et al. | Oct 2003 | A1 |
20030216139 | Olson et al. | Nov 2003 | A1 |
20030228879 | Witkowski et al. | Dec 2003 | A1 |
20040048622 | Witkowski et al. | Mar 2004 | A1 |
20040061591 | Teich | Apr 2004 | A1 |
20040066936 | Farris et al. | Apr 2004 | A1 |
20040110472 | Witkowski et al. | Jun 2004 | A1 |
20040243813 | Farris et al. | Dec 2004 | A1 |
20050024184 | Chuey | Feb 2005 | A1 |
20050024185 | Chuey | Feb 2005 | A1 |
20050024229 | Chuey | Feb 2005 | A1 |
20050024230 | Chuey | Feb 2005 | A1 |
20050024254 | Chuey | Feb 2005 | A1 |
20050024255 | Chuey | Feb 2005 | A1 |
20050026601 | Chuey | Feb 2005 | A1 |
20050026602 | Chuey et al. | Feb 2005 | A1 |
20050026605 | Guthrie et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
0 670 402 | Sep 1995 | EP |
2171545 | Aug 1986 | GB |
2 182 790 | Oct 1986 | GB |
2 302 751 | Jun 1996 | GB |
2 336 433 | Apr 1999 | GB |
2335773 | Sep 1999 | GB |
2 366 433 | May 2000 | GB |
WO 9402920 | Jul 1993 | WO |
WO 0029699 | May 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050024185 A1 | Feb 2005 | US |