The present disclosure relates generally to a remote control device, and more particularly to a remote control device including a holder and a removable control unit.
Automated systems for the home, such as gates, shutters, blinds, awnings, and access doors, have become widespread. These automated systems typically are equipped with remote control devices that control operation of the automated systems by electromagnetic radiation, such as infrared radiation or radio waves. Sometimes a user may wish to change the aesthetics, ergonomics, or functionality of a remote control device, such as the shape or user interface of the remote control device, without replacing the entire remote control device.
Embodiments of the disclosure may include a remote control device for operating an electronic device. In some embodiments, the remote control device may include a control unit, a holder, or a combination of a control unit and a holder. The holder may define a cavity that opens through a surface of the holder. The control unit may be seated in the cavity through the opening in the surface of the holder and may be recessed relative to the surface of the holder, such as to protect the control unit from inadvertent or undesired contact.
The holder may define an access feature in the surface of the holder that facilitates removal of the control unit from the holder. The access feature may be a recessed area that extends at least partially around a periphery of the control unit. The recessed area may include a notch that extends around a portion of the periphery of the control unit. The control unit may include an engagement feature arranged along an outer portion of a user interface of the control unit, and the engagement feature may be aligned with the notch to facilitate removal of the control unit from the holder. The engagement feature may at least partially define a recess aligned with the notch to facilitate removal of the control unit from the holder. The recessed area may be defined by a recessed surface that extends around the entire periphery of the control unit. The holder may define a rim extending around the control unit, and the recessed surface may extend rearwardly from the rim towards a rear surface of the holder. The recessed surface may extend inwardly from the rim towards a side wall of the control unit. The notch may be defined in the recessed surface.
The control unit and the holder may include corresponding retention features for retaining the control unit in the cavity of the holder. The control unit may include either multiple ribs or multiple grooves formed in a side wall of the control unit, and the either multiple ribs or multiple grooves may extend lengthwise along a longitudinal axis of the control unit. The holder may include the other of the either multiple ribs or multiple grooves, and the other of the either multiple ribs or multiple grooves may be formed in a side wall of the holder that defines the cavity, and extend lengthwise along a longitudinal axis of the cavity. The multiple ribs may have a narrower width than the multiple grooves.
The remote control device may include a wall mount that is removably attachable to the holder. The wall mount may include a body and a pair of ears projecting radially outwardly from the body. The holder may define a pair of channels for receiving the pair of ears. The holder may include an inner wall that defines a bottom of the cavity. The holder may include an inner wall formed as a rim that defines a bottom seat for the control unit.
In some embodiments, the remote control device may include a holder defining a cavity opening through a surface of the holder for receiving a control unit of the remote control device, the holder further defining an access feature in the surface of the holder that facilitates removal of the control unit from the holder. The access feature may be a recessed area that extends at least partially around a periphery of the cavity. The recessed area may include a notch that extends around a portion of the periphery of the cavity. The recessed area may be defined by a recessed surface that extends around the entire periphery of the cavity. The holder may define a rim extending around the cavity, and the recessed surface may extend rearwardly from the rim towards a rear surface of the holder. The recessed surface may extend inwardly from the rim towards a side wall of the holder that at least partially defines the cavity. The notch may be defined in the recessed surface. The holder may define multiple grooves formed in a side wall of the holder that at least partially defines the cavity, and the multiple grooves may extend lengthwise along a longitudinal axis of the cavity. The holder may include an inner wall that defines a bottom of the cavity. The holder may include an inner wall formed as a rim that defines a bottom seat for the control unit.
Embodiments of the disclosure may include a method of assembling a remote control device. In some embodiments, the method includes positioning a control unit forwardly of a cavity that opens through a surface of a holder; aligning a longitudinal axis of the control unit with a longitudinal axis of the cavity; aligning multiple retention features of the control unit with multiple corresponding retention features of the holder, the multiple retention features of the control unit extending lengthwise along the longitudinal axis of the control unit, and the multiple corresponding retention features of the holder extending lengthwise along the longitudinal axis of the holder; and inserting the control unit into the cavity by moving the control unit toward the holder along the longitudinal axis of the holder such that the multiple retention features of the control unit engage the multiple corresponding retention features of the holder.
Inserting the control unit into the cavity may include inserting the control unit into the cavity until the control unit is recessed relative to the surface of the holder. The method may include aligning an engagement feature of the control unit with a notch formed in the holder prior to inserting the control unit into the cavity. The multiple retention features of the control unit may be ribs projecting outwardly from a side wall of the control unit and spaced apart from one another around the side wall. The corresponding retention features of the holder may be grooves formed in a side wall defining the cavity and spaced apart from one another around the side wall. The method may include attaching the holder to a wall mount. Attaching the holder to the wall mount may include aligning a pair of channels defined in the holder with a pair of ears projecting radially outwardly from a body of the wall mount, inserting the pair of ears through the pair of channels, and rotating the holder relative to the wall mount. The method may include abutting the control unit against an inner wall of the holder.
Embodiments of the disclosure may include a method of orienting a remote control device. The method may include placing a single, unitary holder face up on a support surface so that a rear surface of the holder contacts the support surface and a control unit received in the holder is accessible through a front surface of the holder. The method may further include orienting the holder face down on the support surface so that a front surface of the holder contacts the support surface and the control unit is spaced apart from the support surface and does not contact the support surface. The control unit may be removably received in the holder through an opening formed in the front surface of the holder.
Embodiments of the disclosure may include a method of interchanging the mounting of a remote control device. The method may include placing a control unit of the remote control device in one of a plurality of holders, removing the control unit from the one of the plurality of holders, and placing the control unit in another of a plurality of holders. The plurality of holders may include a first holder configured for mounting on a first support surface, and a second holder configured for being supported by, without being attached to, a second support surface. The second holder may have a cavity opening through a front face thereof for receiving the control unit, and the cavity depth may be set so that a front face of the control unit is recessed relative to the front face of the holder so that upon resting the front face of the second holder on the second support surface, the front face of the control unit is spaced above and out of contact with the second support surface.
This summary of the disclosure is given to aid understanding, and one of skill in the art will understand that each of the various aspects and features of the disclosure may advantageously be used separately in some instances, or in combination with other aspects and features of the disclosure in other instances. Accordingly, while the disclosure is presented in terms of embodiments, it should be appreciated that individual aspects of any embodiment can be claimed separately or in combination with aspects and features of that embodiment or any other embodiment.
The present disclosure is set forth in various levels of detail in this application and no limitation as to the scope of the claimed subject matter is intended by either the inclusion or non-inclusion of elements, components, or the like in this summary. In certain instances, details that are not necessary for an understanding of the disclosure or that render other details difficult to perceive may have been omitted. It should be understood that the claimed subject matter is not necessarily limited to the particular embodiments or arrangements illustrated herein.
The accompanying drawings, which are incorporated into and constitute a part of the specification, illustrate embodiments of the disclosure and, together with the general description given above and the detailed description given below, serve to explain the principles of these embodiments.
The present disclosure generally provides a remote control device including a control unit and one or more holders for the control unit. The control unit may form a stand-alone electronic module or unit that incorporates all of the functions and components needed to operate or control the operation of an electronic device. In some embodiments, the control unit includes a power supply (such as one or more batteries), a communication circuit (such as a receiving circuit, a transmission circuit, or both) for communicating with the electronic device (such as by radio waves, infrared, or other suitable transmission methods), a user interface (such as an electronic display, one or more depressible buttons, or both), and a body for housing at least some of the components of the control unit.
The control unit and the one or more holders may be separate, distinct components. The control unit may be interchangeably seated in various different holders. The holders may differ from one another in various aspects, such as aesthetics and/or function. In some embodiments, one or more holders are configured to support the control unit on a substantially horizontal support surface, such as a countertop, a tabletop, a floor, or the like. In some embodiments, one or more holders are configured to attach or secure the control unit to a substantially vertical support surface, such as a wall. A single control unit may be removably received within an assortment of different holders.
The holders may each include a body defining a cavity or recess that opens through a surface of the body. The body may include one or more internal side walls and an internal end wall defining the cavity. In some embodiments, the internal end wall projects inwardly from the one or more internal side walls and defines a closed bottom of the cavity such that the cavity includes a closed end associated with a rear side of the holder and an open end associated with a front side of the holder. In some embodiments, the internal end wall projects inwardly from the one or more internal side walls and defines an open bottom of the cavity. In these embodiments, the cavity is formed as a through-hole extending through the holder, and the internal end wall functions as an abutment wall for the control unit.
When seated in a holder, the control unit may be recessed into the holder to protect the control unit, particularly the front face of the control unit, from damage or inadvertent activation regardless of the orientation of the holder. For example, a user may place the holder upside down to conceal the control unit from view without damaging or activating the control unit. The holder may surround the side surfaces of the control unit such that the control unit is concealed when viewing the remote control device from the side. In some embodiments, the holder also encloses a rear surface of the control unit such that only a front surface of the control unit is accessible when the control unit is seated in the holder. In some embodiments, the holder is configured to be supported face down to hide the working surface of the control unit, and the remote control device may blend into its environment and appear to be an ornamental object, rather than a remote control device.
The recessed nature of the control unit may make it difficult to remove the control unit from the holder. The control unit, the holder, or both may include one or more access, removal, or surface features to facilitate removal of the control unit from the holder. In some embodiments, the holder includes a recessed area that extends at least partially along a perimeter or other portion of the control unit to enable a user to engage the control unit and remove the control unit from the holder. In some embodiments, the control unit may include a surface feature, such as a protrusion or recess, associated with a perimeter of the control unit to assist in removing the control unit from the holder. The surface feature of the control unit may be accessible via the recessed area of the holder when the control unit is seated in the holder.
The recessed area of the holder may surround the cavity defined in the holder. The recessed area may include a first portion that surrounds the control unit and a second portion formed in the first portion. The first portion may be formed by a chamfered or other suitable surface surrounding the cavity of the holder. The second portion may extend rearwardly from the first portion toward the internal end wall of the holder to provide additional access to a portion of the control unit, such as a side wall of the control unit. When the control unit is seated in the holder, the surface feature of the control unit may correspond to the second portion of the recessed area of the holder to facilitate removal of the control unit from the holder.
Referring to
Recessing the control unit 102 relative to the holder 104 may provide a user with many aesthetic options. For example, when the remote control device 100 is oriented upside-down, the holder 104 may conceal the control unit 102 from view such that the control unit 102 does not detract from the aesthetics or décor of the associated room. In this upside-down orientation, the exterior shape or configuration of the holder 104 is visible to the user, and different holders may be formed in different exterior shapes or configurations to suit the aesthetic preferences of the user. In some embodiments, the front surface 108 of the holder 104 defines a rim 112 that extends forwardly of the user interface 110 of the control unit 102. When the holder 104 is positioned upside down, the rim 112 may abut against a support surface, thereby offsetting the user interface 110 from the support surface to protect the user interface 110 from damage, inadvertent activation, or both.
The holder 104 may be formed in various configurations to provide the user with many aesthetic options. In some embodiments, an assortment of holders 104 are provided with various shapes, such as a triangular shape with rounded edges, a cylindrical or ring shape, or other asymmetrical or symmetrical shapes, to provide the user with many aesthetic options. In some embodiments, an assortment of holders 104 are provided that are constructed from various materials, including metallic and/or non-metallic materials, which may be man-made or natural. In some embodiments, an assortment of holders 104 are formed of a polymeric material, such as acrylonitrile butadiene styrene (ABS) or Surlyn (a copolymer of ethylene and methacrylic acid), some of which may be plated (e.g., with a vacuum metallized nickel plating). In some embodiments, an assortment of holders 104 are provided with different finishes, such as a MT-11005 surface texture, a brushed texture (e.g., a concentric hairline brush), a polish (e.g., a 6000-grit ultra-fine polish), a coating (e.g., a matte spray coating), or other suitable textures for aesthetic and/or functional purposes. In some embodiments, an assortment of holders 104 are provided with different colors, such as black, white, gray, silver, blue, red, yellow, or other colors to provide the user with many aesthetic options.
Although primarily ornamental, the exterior shape of the holder 104 may provide an ergonomic benefit. In some embodiments, the exterior shape of the holder 104 may facilitate single-handed use of the remote control device 100 by a user, and/or enhance the aesthetic aspect of the holder 104 when not in use. Referring to
The triangularly-shaped holder 104 may comfortably fit in the palm of the user's hand for either right-handed or left-handed use, thereby facilitating one-handed use of the remote control device 100. For instance, with reference to
The optional recessed nature of the control unit 102 within the holder 104 may increase the difficulty of removing the control unit 102 from the holder 104. With reference to
With reference to
Referring to
In some embodiments, an engagement feature 136 is positioned between terminal ends of the curved segment of interactive features 134. The engagement feature 136 may be formed as a curved segment defined by the same or substantially the same radius as the curved segment of interactive features 134, and may be substantially indistinguishable in appearance from the curved segment of interactive features 134. In some embodiments, the engagement feature 136 is fixedly attached to a housing 138 of the control unit 102 such that the engagement feature 136 is not movable relative to the housing 138. In some embodiments, the engagement feature 136 is inoperable to control an electronic device and is not associated with any electronic circuitry housed within the control unit 102. In some embodiments, the engagement feature 136 is formed as a dummy, inoperable, or non-functional button that is fixed to the housing 138.
Referring to
Referring to
Referring still to
Referring to
With reference to
With reference to
Referring to
With continued reference to
The outer layer 160 of the control unit 102 may contact the side wall 122 and an inner wall 166 (defining a bottom of the cavity 106) of the holder 104 to provide shock protection for the control unit 102 when it is seated in the holder 104. Referring to
Referring to
Referring to
To assemble the remote control device 100, the control unit 102 may be positioned forwardly of the cavity 106 adjacent the front surface 108 of the holder 104. The control unit 102 may be moved laterally into alignment with the cavity 106 such that the longitudinal axis 148 of the control unit 102 is coaxially aligned with the longitudinal axis 150 of the cavity 106. The control unit 102 may be rotated about its longitudinal axis 148 to align the corresponding retention features 146, if provided, of the control unit 102 and the holder 104. The control unit 102 then may be inserted into the cavity 106 by moving the control unit 102 towards the holder 104 along the longitudinal axis 150 of the holder 104 such that the corresponding retention features 146 of the control unit 102 and the holder 104 engage one another to retain the control unit 102 within the cavity 106 of the holder 104. The retention features 146 of the control unit 102 may be formed as ribs 152 projecting outwardly from the side wall 124 of the control unit 102. The ribs 152 may be spaced apart from one another around the side wall 124. The retention features 146 of the holder 104 may be formed as grooves 154 defined in the side wall 122. The grooves 154 may be spaced apart from one another around the side wall 122 at corresponding locations to the ribs 152. The ribs 152 and grooves 154 may be spaced regularly or irregularly around the respective side walls 124, 122 to control alignment of the control unit 102 and the holder 104 and ensure the engagement feature 136 corresponds to the notch 126.
The control unit 102 may be inserted into the cavity 106 until the control unit 102 is recessed relative to the front surface 108 of the holder 104. Upon full insertion of the control unit 102 in to the holder 104, a rim 170 of resilient material formed along a rear side of the control unit 102 may contact a bottom of the cavity 106, formed by the inner wall 166. In some embodiments, only the ribs 152 and the rim 170 of the control unit 102 are in contact with the holder 104 when the control unit 102 is fully seated in the holder 104. The side wall 124 of the control unit 102 may be spaced radially inwardly from the side wall 122 of the holder 104, and the rear cover 172 of the control unit 102 may be spaced forwardly of the inner wall 166.
Prior to inserting the control unit 102 into the cavity 106, the optional engagement feature 136, such as a non-operative button, of the control unit 102 may be aligned with a corresponding optional notch 126 formed circumferentially adjacent the cavity 106 of the holder 104. To remove the control unit 102 from the cavity 106 of the holder 104, the user may place one or more of their finger nails or a suitable tool in the recessed area 116, grip or otherwise engage the side wall 124 or the underside of the engagement feature 136 of the control unit 102, and pull or pry the control unit 102 from the cavity 106. The user may use a pry tool (such as a file, screwdriver, or other object with an elongate, slender tip) to pry the control unit 102 from the cavity 106 in the same or similar manner, such as by positioning the tip of the tool through the notch 126 in the holder 104 and into the gap 139, and then applying a forwardly-directed force to the engagement feature 136 to unseat the control unit 102 from the holder 104. In some embodiments, the user may position an end of the tool in the notch 126, press the tool end against the side wall 124 or the engagement feature 136 of the control unit 102, and subsequently apply a rearwardly-directed force to a free end of the tool to pry the control unit 102 from the cavity 106 in a forwardly direction.
Referring to
With continued reference to
When seated in the holder 204, the control unit 102 may be recessed relative to the front surface 208 of the holder 204, similar to when the control unit 102 is seated in the holder 104 (see
Referring to
With continued reference to
Referring still to
The holder 204 may attach the control unit 102 to a support surface such as a substantially vertical support surface, for example a vertical wall. In some embodiments, the holder 204 is removably attached to the wall mount 176, and the control unit 102 optionally is removably attached to the holder 204. As previously discussed, the wall mount 176 may be securely fastened to a support surface. In the mounted configuration, the ears 182 may be offset from the support surface. To attach the holder 204 to the wall mount 176, the holder 204 may be positioned in front of the wall mount 176. The holder 204 may be rotated about its longitudinal axis until the channels 280 are aligned with the ears 182 of the wall mount 176, and the holder 204 may be moved axially towards the wall mount 176. Upon the ears 182 passing through the channels 280, the holder 204 may be rotated about its longitudinal axis to slide the ears 182 along the sloped surfaces 286 and into the seats 284. The ears 182 may contact the stops 288 to indicate the holder 204 is secured to the wall mount 176. In this secured configuration, the seats 284 may be positioned between the ears 182 and the support surface.
To detach the holder 204 from the wall mount 176, the holder 204 may be rotated in an opposite direction about its longitudinal axis to align the channels 280 with the ears 182, and then the holder 204 may be moved axially away from the wall mount 176 to move the ears 182 through the channels 280 and free the holder 204 from the wall mount 176. The control unit 102 may be housed within the holder 204 during attachment and detachment of the holder 204 to and from the wall mount 176, or placed into the holder 204 after the holder 204 has been attached to the wall mount 176.
It will be appreciated that a remote control device formed in accordance with principles of the present disclosure such as described above may provide a user with multiple holders configured to receive a single control unit. The holders may be interchanged with one another to provide the user with different aesthetics, functionality, or both. The holders may be configured to attach the control unit to a support surface and/or to support, yet not attach, the control unit to a support surface. Additionally, or alternatively, the holders may be configured to conceal the control unit when supported by, yet not necessarily attached to, a support surface, such as a table. The holders may be formed to display the control unit to provide access thereto, such as when attached to a surface, which may be a vertical support surface such as a wall. The holders may be formed as independent, unitary structures.
In some embodiments, one or more holders enclose or surround the side surfaces of the control unit, leaving the front surface of the control unit exposed. The control unit, when mounted in the holder, may be recessed relative to the front surface of the holder, such as to protect the front surface of the control unit, for example when the holder is supported face-down on a support surface. A user may remove the control unit from the holder by applying a force to a rear surface of the control unit to push the control unit forwardly through the opening in the front surface of the holder, particularly if the rear surface of the control unit is not covered or otherwise rendered inaccessible (or not readily accessible) by the presence of the holder. The holder may be configured to facilitate removal of the control unit from the front face of the holder. To facilitate removal of the control unit from the front of the holder, the holder may include a recessed area disposed around a perimeter of the control unit. The control unit may include a dummy button or other engagement feature that is alignable with a deepened portion of the recessed area for engagement by a user and/or tool to facilitate removal of the control unit from the holder.
The foregoing description has broad application. While the provided embodiments include a substantially circular-cross-section, cylindrically-shaped control unit, it should be appreciated that the concepts disclosed herein may equally apply to many shapes of control units, for example shapes with elliptical or polygonal cross-sections. Additionally, or alternatively, while the provided embodiments generally include a control unit with depressible buttons, it should be appreciated that the control unit may include an electronic user interface with non-depressible buttons. Additionally, or alternatively, the remote control device may be applicable in controlling many different types of electronic equipment, including coverings for an architectural opening. Accordingly, the discussion of any embodiment is meant only to be explanatory and is not intended to suggest that the scope of the disclosure, including the claims, is limited to these embodiments. In other words, while illustrative embodiments of the disclosure have been described in detail herein, it is to be understood that the inventive concepts may be otherwise variously embodied and employed, and that the appended claims are intended to be construed to include such variations, except as limited by the prior art.
The foregoing discussion has been presented for purposes of illustration and description and is not intended to limit the disclosure to the form or forms disclosed herein. For example, various features of the disclosure are grouped together in one or more aspects, embodiments, or configurations for the purpose of streamlining the disclosure. However, it should be understood that various features of the certain aspects, embodiments, or configurations of the disclosure may be combined in alternate aspects, embodiments, or configurations. Moreover, the following claims are hereby incorporated into this Detailed Description by this reference, with each claim standing on its own as a separate embodiment of the present disclosure.
The phrases “at least one”, “one or more”, and “and/or”, as used herein, are open-ended expressions that are both conjunctive and disjunctive in operation.
The term “a” or “an” entity, as used herein, refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein.
All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, longitudinal, front, back, top, bottom, above, below, vertical, horizontal, radial, axial, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present disclosure, and do not create limitations, particularly as to the position, orientation, or use of this disclosure. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other. Identification references (e.g., primary, secondary, first, second, third, fourth, etc.) are not intended to connote importance or priority, but are used to distinguish one feature from another. The drawings are for purposes of illustration only and the dimensions, positions, order, and relative sizes reflected in the drawings attached hereto may vary.
This application is a continuation of co-pending U.S. patent application Ser. No. 15/016,881, filed Feb. 5, 2016, entitled “Remote Control Device”, which application claims the benefit under 35 U.S.C. § 119(e) of the filing date of U.S. provisional patent application No. 62/115,947, filed Feb. 13, 2015, and entitled “Remote Control Device,” which applications are hereby incorporated herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
D197466 | Spilman | Feb 1964 | S |
D219028 | Miller et al. | Oct 1970 | S |
D253786 | Montague | Dec 1979 | S |
D268601 | Lee | Apr 1983 | S |
5388692 | Withrow et al. | Feb 1995 | A |
5458311 | Holbrook | Oct 1995 | A |
D369606 | Marks | May 1996 | S |
D371792 | Patton | Jul 1996 | S |
D375909 | Dziersk et al. | Nov 1996 | S |
D379456 | Osiecki | May 1997 | S |
D410232 | Yang | May 1999 | S |
6478316 | Wagner | Nov 2002 | B1 |
D478571 | Solland | Aug 2003 | S |
D487454 | Wang et al. | Mar 2004 | S |
D488994 | Hansen | Apr 2004 | S |
D490787 | Aisenberg | Jun 2004 | S |
D497098 | Magnusson | Oct 2004 | S |
D505417 | Wang et al. | May 2005 | S |
D506120 | Straka, Jr. et al. | Jun 2005 | S |
D510208 | Klimas | Oct 2005 | S |
D518030 | Lin | Mar 2006 | S |
D519823 | Pickar et al. | May 2006 | S |
D526966 | Chen | Aug 2006 | S |
D526973 | Gates et al. | Aug 2006 | S |
D531484 | Downing | Nov 2006 | S |
D533513 | Marchetto et al. | Dec 2006 | S |
D536665 | Solland | Feb 2007 | S |
D537321 | Paige et al. | Feb 2007 | S |
D542234 | Shimizu | May 2007 | S |
D546165 | Paige et al. | Jul 2007 | S |
D550633 | Gupta | Sep 2007 | S |
7298311 | Horie et al. | Nov 2007 | B2 |
D556538 | Weinerman et al. | Dec 2007 | S |
D561113 | Samhammer et al. | Feb 2008 | S |
D567061 | Paige et al. | Apr 2008 | S |
D575816 | Law et al. | Aug 2008 | S |
D578373 | Paige et al. | Oct 2008 | S |
D586331 | Francz et al. | Feb 2009 | S |
D595670 | Glassman et al. | Jul 2009 | S |
D602916 | Won et al. | Oct 2009 | S |
D604271 | Lewis et al. | Nov 2009 | S |
D612850 | Cabatic | Mar 2010 | S |
D619121 | Feldstein et al. | Jul 2010 | S |
D643412 | Brady et al. | Aug 2011 | S |
8138942 | Otsuka et al. | Mar 2012 | B2 |
8188842 | Otsuka et al. | May 2012 | B2 |
D670043 | Goldman | Oct 2012 | S |
8330638 | Altonen et al. | Dec 2012 | B2 |
8389857 | Petrillo | Mar 2013 | B2 |
8508148 | Carley et al. | Aug 2013 | B1 |
D693332 | Lee et al. | Nov 2013 | S |
D700904 | Miller et al. | Mar 2014 | S |
8695934 | Jensen | Apr 2014 | B2 |
D724060 | Ahn et al. | Mar 2015 | S |
9030833 | Charleux | May 2015 | B2 |
D738355 | Smith et al. | Sep 2015 | S |
D746266 | Kwon et al. | Dec 2015 | S |
D756953 | Zhang | May 2016 | S |
D758325 | Cook et al. | Jun 2016 | S |
D769227 | Kass et al. | Oct 2016 | S |
20050279661 | Hodges | Dec 2005 | A1 |
20070241929 | Marchetto | Oct 2007 | A1 |
20080247125 | Davenport et al. | Oct 2008 | A1 |
20090121905 | Griffin, Jr. et al. | May 2009 | A1 |
20090267897 | Ootsuka | Oct 2009 | A1 |
20100053464 | Otsuka | Mar 2010 | A1 |
20100123062 | Jones et al. | May 2010 | A1 |
20110221622 | West et al. | Sep 2011 | A1 |
20120056726 | Paul | Mar 2012 | A1 |
20140117871 | Swatsky et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
201515277 | May 2016 | AU |
3020150038217 | Sep 2016 | BR |
150730 | Feb 2014 | CA |
150731 | Feb 2014 | CA |
150732 | Feb 2014 | CA |
150733 | Feb 2014 | CA |
101843431 | Sep 2010 | CN |
203432031 | Feb 2014 | CN |
203686528 | Jul 2014 | CN |
ZL201530303413.2 | Apr 2016 | CN |
202004016716 | Feb 2005 | DE |
000047451-0002 | Jun 2003 | EM |
000047451-0004 | Jun 2003 | EM |
000053046-0005 | Jul 2003 | EM |
000359591-0001 | Aug 2005 | EM |
000359591-0002 | Aug 2005 | EM |
000359591-0003 | Aug 2005 | EM |
000359591-0004 | Aug 2005 | EM |
000359591-0005 | Aug 2005 | EM |
000359591-0006 | Aug 2005 | EM |
000359591-0007 | Aug 2005 | EM |
000359591-0008 | Aug 2005 | EM |
000359591-0009 | Aug 2005 | EM |
000359591-0010 | Aug 2005 | EM |
000359591-0011 | Aug 2005 | EM |
000359591-0012 | Aug 2005 | EM |
000359591-0013 | Aug 2005 | EM |
000359591-0014 | Aug 2005 | EM |
000359591-0015 | Aug 2005 | EM |
000359591-0016 | Aug 2005 | EM |
000359591-0017 | Aug 2005 | EM |
002190496-0001 | Mar 2013 | EM |
002745323-0001 | Jul 2015 | EM |
002745422-0001 | Jul 2015 | EM |
002743450-0001 | Jul 2017 | EM |
0458480 | Nov 1991 | EP |
1831905 | Jun 2011 | EP |
8102986 | Apr 1996 | JP |
2009152945 | Jul 2009 | JP |
201449917 | Mar 2014 | JP |
300848756-0001 | Apr 2016 | KR |
300848756-0002 | Apr 2016 | KR |
300848756-0003 | Jun 2016 | KR |
300848756-0004 | Jun 2016 | KR |
DM 058 062 | Sep 2001 | WO |
DM 073 527 | Apr 2010 | WO |
WO201095069 | Aug 2010 | WO |
DM 073 994 | Sep 2010 | WO |
DM 074 389 | Sep 2010 | WO |
Entry |
---|
Author Unknown, Belkin Conserve Switch—Energy Saving Surge With Remote (F7C01008q), Obtained at url: http://www.amazon.com/Belkin-Conserve-Switch-Energy-Saving-Protector/dp/B003P2UMNK on Oct. 30, 2014. pp. 1-6. |
Author Unknown, GROHE America, Inc. Rainshower® F-Series Digital Controller, Obtained at url: http://www.grohe.com/us/5751/showers/shower-heads-body-sprays/rainshower-fseries-head-side-showers/ on Oct. 15, 2014. pp. 1-2. |
Number | Date | Country | |
---|---|---|---|
20190094915 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62115947 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15016881 | Feb 2016 | US |
Child | 16199355 | US |