This application claims the benefit, under 35 U.S.C. §365 of International Application PCT/CN2012/086569, filed Dec. 13, 2012 which was published in accordance with PCT Article 21(2) on Jun. 19, 2014 in English.
The present invention relates to a control and communication system for a camera module. Specifically, the invention relates to the remote control of a camera module using a hand held device.
Modern digital cameras have the function of delayed timing picture taking. With this function, a photographer can prepare the background scene, set up the timer for 10, 15, or 20 seconds delay, place himself/herself or any other subject in the scene, and allow the timer to capture a picture or a shot of a scene automatically upon the expiration of the timer. However, this function requires the photographer to prepare the scene and setup the camera carefully beforehand. Once the timer is started, photographer cannot control the camera again for its parameter adjustment, for example, the focal length, the flash usage, and the like. To enable a photographer to more fully and more easily control a camera, various dedicated camera remote controllers have become available. With such a dedicated remote control, a photographer can activate the camera from a distance, place himself in the scene, and control the camera to take photographs. However, most camera remote controllers are designed for a single type of camera or several types of cameras from the same company. Also, these remote control units themselves are dedicated instruments which serve no purpose other than to act a dedicated remote controller for a camera.
The present invention addresses using a standard mobile device, such as a smart phone, to act as a remote control for a camera module. According to one aspect of the invention, a camera module can be used to recruit a mobile device as a remote control device by programming the mobile device to display a remote control view for the camera module. According to an aspect of the invention, a camera module establishes a peer-to-peer wireless interface association between the camera module and the mobile device. The camera module transmits a remote control file to the mobile device whereby the mobile device builds and displays a remote control view for the camera module. The camera module then generates real-time video frames upon receipt of an activation of remote control view on the mobile device and transmits the real-time video frames from the camera module to the mobile device for display on the mobile device. The mobile device can then function as a remote control device for the camera module via the peer-to-peer wireless interface.
Additional features and advantages of the invention will be made apparent from the following detailed description of illustrative embodiments which proceeds with reference to the accompanying figures.
The foregoing summary of the invention, as well as the following detailed description of illustrative embodiments, is better understood when read in conjunction with the accompanying drawings, which are included by way of example, and not by way of limitation with regard to the claimed invention.
In the following description of various illustrative embodiments, reference is made to the accompanying drawings, which form a part thereof, and in which is shown, by way of illustration, various embodiments in the invention may be practiced. It is to be understood that other example embodiments may be utilized and structural and functional modification may be made without departing from the scope of the present invention.
The present invention includes a camera module that functions to use a peer-to-peer (P2P) wireless interface to communicate with a mobile device. The camera module transmits a virtual remote control view manifest file to the mobile device. Upon receipt, the mobile device can build the virtual remote control view on its display. Actuation of controls present on the virtual remote control view displayed on the mobile device can control the camera module using the peer-to-peer interface.
This invention includes the concept of a camera module. A camera module may be either a full or partial camera device that provides the basic camera electronics to control and operate a camera optical system to produce either still pictures or video. As such, the camera module may include the camera optical system or not. A camera module may be used in a camera body that includes the camera optics system. A camera module may be present in a device which is not dedicated to be only a camera (non-camera dedicated device). Examples of camera modules in non-camera dedicated devices include a camera module in a cell phone (smart phone), a camera module in a personal computer, such as a laptop or desktop computer, and a camera module in any instrument or device having a peer-to-peer communication interface, such as a personal digital assistant (PDA). The current invention utilizes a camera module to allow a user photographer to use a mobile device as a remote control for the camera module. The advantage of the current invention over prior art remote controls for camera modules is that any smart mobile device can be used as the remote control even though the mobile device was not specifically constructed to perform as a camera module remote control.
In one aspect of the invention, the association agent 240 uses the wireless interface 230 to build a P2P wireless connection with the photographer's mobile device, such as a smart phone. The wireless interface implements a P2P interface transmission exchange between the camera module and the mobile device with any well known wireless communication technology, such as IEEE 802.11, Bluetooth, ultra-wideband (UWB), wireless optical, infra-red communication, and the like. The wireless communication technology adopted ideally provides sufficient bandwidth for a real-time compressed video stream to be transmitted from the camera module to the mobile device. With the P2P connection, a photographer's mobile device can associate with the camera using an authentication and authorization process.
After building the association between the camera module and the mobile device, the remote agent 250 sends an extensible markup language (XML) formatted remote control file to the mobile device. The XML file is a remote control manifest file. The XML manifest file specifies a virtual remote control view's layout, displayable on the mobile device. The resulting virtual remote control view on the mobile device's display contains the available adjustable control parameters and also includes other remote control buttons. The mobile device, such as a smart phone, uses the XML file information to form a virtual remote control view on its display, such as a touch screen display on a smart phone.
One example of the XML remote control manifest file is gives as follows.
The remote control XML file, when loaded and installed by the mobile device, enables the mobile device to display a remote control panel for the camera module on the display of the mobile device. One example of such a remote control view displayed on the mobile device display is the smart phone display of
At step 420, the camera enters a video recording mode upon activation of the remote control functionality now present in the mobile device. Activation can occur automatically upon execution of the XML remote control file by the mobile device, or upon a manual activation of the remote control view by a user of the mobile device. In either event, the camera module receives an activation indication from the mobile device and the camera module begins recording video to send to the mobile device. The video that is being captured or buffered (recorded) is video representing the image as viewed by the optics associated with the camera module. Such video represents the picture scene viewed by the camera module. In the embodiment of a smart phone as the mobile device, the user photographer presses the remote control button on the touch screen, as shown in
At step 425, the encoding and compression function may be used to encode real-time captured video from the camera module and stream the encoded real-time video to the mobile device via the P2P connection. Compression of video is applied if needed to transfer the encoded real-time video across the wireless P2P interface. As a result, of the streaming, the real-time video is displayed on the virtual remote view of the mobile device. This allows the user photographer to see on the mobile device virtual remote control view what the camera module is viewing. Here, the term “real-time video” essentially encompasses any delay in immediate processing and transmission and reception between the camera module and the mobile device.
At step 430, adjustments can be made at the virtual remote control view on the mobile device to alter the camera module photography parameters. Upon the adjustment of parameters, corresponding commands are transmitted from the mobile device to the camera module via the P2P wireless interface. As a result, at step 435, the camera module responds to the user photographer's commands received via the virtual remote control view of the mobile device by making the corresponding camera module adjustments. If the adjustments affect the displayed parameters or camera view, those changes are seen at the mobile device as the real-time video is changed. For example, if a user photographer changes the focus on the mobile device, the camera module would respond accordingly and the real-time video transmitted to the mobile device would indicate the change in focus on the subject matter within the camera module's field of view. In one aspect of the invention, real-time video is continuously sent to the mobile device, and as such, any changes made by the user photographer to change the camera module's view can be seen at the virtual remote control view of the mobile device. Steps 430 and 435 can be repeated in a loop 450 as needed for the user photographer to set up the camera module to view subject matter within the camera module's field of view.
At this point, the user photographer may wish to capture a specific scene or subject matter by capturing a single image or shot. At step 440 the user photographer can actuate a button on the virtual remote control view of the mobile device to send a command to the camera module to capture a shot. As a result, in step 445, the camera module responds to the shot command by capturing an image in the field of view of the camera module. In actuality, the camera module captures the shot image local to the camera module and stores the shot in camera-accessible memory as in any camera module. Stated another way, upon receiving the “shot” command, the camera module switches its mode into photographing mode, and uses the photographic parameters to capture a picture.
The processor 625 performs control functions for the mobile device as well as providing the computation resources for generation of a virtual remote control view via a P2P interface-received remote control manifest file. It is processor 625, in conjunction with the remote control file received from the camera module, which aids in transforming the mobile device into a remote control for the camera module. The processor 625 acts to execute a program, in software, firmware, or hardware, using the remote control manifest file, to create the remote control view for the camera module. Memory 650 works in conjunction with processor 625 to store program and file information.
Although specific architectures are shown for the implementation of a camera module as shown in
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2012/086569 | 12/13/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/089807 | 6/19/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8081226 | Yanagidate | Dec 2011 | B2 |
8583088 | Yoshikawa | Nov 2013 | B2 |
8675084 | Bolton | Mar 2014 | B2 |
8934045 | Karn | Jan 2015 | B2 |
8947543 | Battles | Feb 2015 | B2 |
8976253 | Winbush, III | Mar 2015 | B2 |
9189179 | Suzuki | Nov 2015 | B2 |
20050275729 | Billerbeck | Dec 2005 | A1 |
20060061663 | Park | Mar 2006 | A1 |
20060067654 | Herberger | Mar 2006 | A1 |
20070025711 | Marcus | Feb 2007 | A1 |
20070109417 | Hyttfors | May 2007 | A1 |
20070254640 | Bliss | Nov 2007 | A1 |
20080070623 | Ogawa | Mar 2008 | A1 |
20100079607 | Won et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
1705346 | Dec 2005 | CN |
101764933 | Jun 2010 | CN |
102694980 | Sep 2012 | CN |
102008026690 | Dec 2009 | DE |
2009267663 | Nov 2009 | JP |
621088 | Sep 2006 | KR |
797087 | Jan 2008 | KR |
Entry |
---|
Search Report. |
Number | Date | Country | |
---|---|---|---|
20150334285 A1 | Nov 2015 | US |