This invention relates to toys, and more particularly, to motorized toys such as cars, boat, planes, and action figures that are remotely controlled.
More particularly, the invention relates to a toy that enables a conventional aerosol can to be remotely operated.
Manually operated pre-pressurized aerosol cans are well known. A conventional aerosol can 10 is illustrated in
Pre-pressurized aerosol cans or other pre-pressurized cartridges that dispense polymer or other material in a stream are known. When the nozzle of such cans is depressed, the pressurized gas in the aerosol can causes a stream of polymer material to shoot out from the can through an opening in the neck 73 of the valve assembly 72 of the nozzle. After the polymer material is dispensed it can harden. For example, pre-pressurized canisters of polyurethane foam can be purchased at HOME DEPOT™ or other stores that sell construction material. After the polyurethane foam is dispensed from the pre-pressurized cannister, the foam hardens.
Another polymer or polymer-like material that is dispensed from a pre-pressurized canister is SILLY STRING™. SILLY STRING was first introduced to the gag-gift market over thirty-five years ago, in 1969 by Julius Samann, Ltd. SILLY STRING is non-toxic, non-flammable, and free of chlorofluorocarbons. Apparently only the manufacturer knows the exact ingredients of SILLY STRING.
One use of SILLY STRING comprises mounting a pressurized canister on a SPIDER MAN WEB BLASTER™ glove apparatus worn on the hand. The canister is, as is common with aerosol cans, manually actuated. Manual activation of the canister is accomplished by manually depressing a lever incorporated in the SPIDER MAN™ and SILLY STRING is dispensed from the canister when the user presses a lever that is positioned in the palm of the user. As is noted at the www.shopireland.ie/toys/detail web site, one disadvantage of the SPIDER MAN glove apparatus is that conventional aerosol cans of the type shown in
Accordingly, it would desirable to provide a improved toy that would not require, in conventional fashion, manual operation of an aerosol can, that could utilize conventional aerosol cans, that could operate an aerosol can at locations remote from the user, and that would not correlate the direction of discharge with the position of the user's hands and arms.
Therefore, it is a principal object of the invention to provide an improved toy.
Another object of the invention is to provide an improved toy that can utilize and discharge a conventional aerosol can at selected locations remote from a user.
A further object of the invention is to provide a toy for operating a conventional pre-pressurized aerosol can without requiring manual operation of the can valve.
These and other, further and more specific objects and advantages of the invention will be apparent to those of skill in the art from the following detailed description thereof, taken in conjunction with the drawings, in which:
Briefly, in accordance with the invention, I provide a stream dispensing remote control motorized toy vehicle. The vehicle includes a body (14); motor-driven wheels (13) mounted on the body (14); and, a self-contained pressurized aerosol cartridge (32) mounted within the body (14). The aerosol cartridge contains a propellant and containing a foam stream material that solidifies after exiting said cartridge; includes an outlet (36) for the stream material to exit the cartridge; and, includes a release member (33) operable to release the stream material. The vehicle also includes a muzzle (62); a nozzle (34) interconnecting the muzzle (62); and the outlet (36) such that stream of material exiting the pressurized aerosol cartridge through the outlet (36) passes through the nozzle (34) and the muzzle (62). The vehicle also includes a remote transmitter generating signals for controlling selectively the motor-driven wheels (13) and dispensing of the stream material from the pressurized cartridge; a receiver mounted on the toy which receives the signals; a motor-driven release mechanism (44) mounted in the body (14) for controlling the release of the stream material from the pressurized cartridge. The release mechanism and the receiver are in electrical communication whereby the release mechanism operates in accordance with the signals. The release mechanism pivots against the cartridge (32) to release stream material from the cartridge through the outlet (36), nozzle (34), and muzzle (62). The vehicle also includes a motor (40) mounted within the body (14) to pivot the release mechanism (44) against the cartridge (32) to release stream material from the cartridge through the outlet (36), nozzle (34), and muzzle (62). The vehicle also includes an action figure riding in the toy vehicle.
In another embodiment of the invention, I provide an improved stream material dispensing motorized toy vehicle. The vehicle comprises a body (14); motor-driven wheels (13) mounted on the body (14); and, a self-contained pressurized aerosol cartridge (32) of generally conventional construction and mounted within the body (14). The cartridge contains a propellant and containing a foam stream material that solidifies after exiting the cartridge; includes a valve assembly (72) with a hollow neck (73) for the stream material to exit the cartridge; and, includes a release member (33) operable to release the stream material. The vehicle also comprises a nozzle (63) contacting the neck (73) and including an opening (62A) such that stream of material exiting the pressurized aerosol cartridge through said neck (73) passes through said opening (62A); a remote transmitter generating signals for controlling selectively the motor-driven wheels (13) and dispensing of the stream material from the pressurized cartridge; a receiver mounted on the toy vehicle which receives said signals; a motor-driven release mechanism (44) mounted in the body (14) for controlling the release of the stream material from the pressurized cartridge, the release mechanism and the receiver being in electrical communication whereby the release mechanism operates in accordance with said signals, said release mechanism pivotable against the cartridge (32) to release stream material from the cartridge through said neck (73) and nozzle (63); and, a motor (40) mounted within the body (14) to pivot the release mechanism (44) against the nozzle (63) to press said nozzle (63) against said neck (73) and release stream material from said cartridge through said neck (73) and nozzle (63).
In a further embodiment of the invention, I provide and improved stream material dispensing motorized toy vehicle. The vehicle comprises a body (14); motor-driven wheels (13) mounted on the body (14); and, a self-contained pressurized aerosol cartridge (32) mounted within the body (14). The cartridge contains a propellant and containing a foam stream material that solidifies after exiting said cartridge; includes a hollow neck (73A) for the stream material to exit the cartridge, and depressible to release the stream material. The toy vehicle also comprises a nozzle (63); a muzzle (62) interconnecting the nozzle (63) and the neck (73A) such that the stream of material exiting the pressurized aerosol cartridge through the neck (73A) passes through the muzzle (62) and nozzle (63); a remote transmitter generating signals for controlling selectively the motor-driven wheels (13) and dispensing of the stream material from the pressurized cartridge; a receiver mounted on the toy which receives said signals; a motor-driven release mechanism (44) mounted in the body (14) for controlling the release of the stream material from the pressurized cartridge, the release mechanism and the receiver being in electrical communication whereby the release mechanism operates in accordance with said signals, said release mechanism pivotable to compress together the muzzle (62) and neck (73A) to depress the neck (73A) to release stream material from the cartridge through the neck (73A),muzzle (62), and nozzle (63); and, a motor (40) mounted within the body (14) to pivot the release mechanism (44) to compress together the muzzle (62) and neck (73A) to release stream material from the cartridge through the neck (73A), muzzle (62), and nozzle (73). The toy vehicle can also include a cartridge support (46A) having a foot (91). The cartridge can include a bottom (90); seat in support (46A) intermediate muzzle (62) and foot (91) with bottom (90) adjacent foot (91) and neck (73A) adjacent muzzle (62). The distance of muzzle (62) from foot (91) can be adjustable.
Turning now the drawings, which depict the presently preferred embodiments of the invention for the purpose of illustration thereof, and not by way of limitation of the invention, and in which like characters refer to corresponding elements throughout the several views, the toy vehicle 10 of
As used herein, the term “vehicle” means all forms of model cars, trucks, airplanes, boats, and the like. The term action figure means all forms of model figures, including human, animal, robot and the like, and includes transformable figures. Although the combination of an action figure and vehicle is a preferred embodiment of the invention, this combination is not necessary to practice the invention. A vehicle may utilized without an action figure, and visa versa. The vehicles in
In
Stream dispensing mechanism 30 is mounted on body 14 of vehicle 10 and is remotely operated with transmitter 51. Mechanism 30 includes nozzle 34. Nozzle 34 interconnects outlet 36 and muzzle 62 of gun 60. The shape and dimension and functioning of cartridge 32 and remote control device 51 can be varied as desired. Signals transmitted from transmitter 51 can comprise infrared or ultrasonic signals, can be via hard wire, etc. Cartridge 32 (and 32A) preferably comprises a conventional aerosol can of the type illustrated in
The embodiments of the invention illustrated in
In
Depressing button 55 causes transmitter 51 to send a signal 58 to antenna 24 and receiver 26. When receiver 26 receives the signal, receiver 26 generates signals to servo motor 40 that cause motor 40 to rotate arm 70 about pivot point 42 such that one end of arm 70 moves downwardly in the direction of arrow A and the other end of arm 70 moves upwardly in the direction or arrow B. The end of arm 70 moving upwardly in the direction of arrow B is pivotally attached by pin 31 to end 71 of L-shaped arm 73 such that end 71 pivots about pin 45 and also moves upwardly in the direction of arrow B. When end 71 moves upwardly in the direction of arrow B, forked arm 44 moves in the direction of arrow C (
In an alternate embodiment of the invention, when end 71 moves upwardly in the direction of arrow B, the distal end of forked arm 44 presses against lip 38 of member 39 (and does not press against end 33). When arm 44 presses against lip 38, arm 39—and therefore muzzle 62 and nozzle 34—is pressed in the direction of arrow D, depressing outlet 36 and end 33 to cause stream 11 to flow through outlet 36, nozzle 34, and muzzle 62.
Another embodiment of the invention is illustrated in
Nozzle 63B includes a cylindrical base or flange 63D that slidably seats in cylindrical opening 62C formed in first member 62B of the muzzle assembly. Nozzle 63B also includes internally threaded aperture 86 that receives externally threaded portion 88 of collar 85. Rotating nozzle 63B in the direction of arrow Y, or in the opposing direction, rotates flange 63D in opening 62C, engages the threads on portion 88 of collar 85, and moves collar 85 in the directions indicated by arrows X in
In
Having described the presently preferred embodiments and best mode of the invention in such terms as to enable those of skill in the art to understand and practice the invention,
This application is a continuation-in-part of co-pending application Ser. No. 10/839,552, filed May 5, 2004, which is a continuation-in-part of patent application Ser. No. 60/468,418, filed May 7, 2003.
Number | Date | Country | |
---|---|---|---|
60468418 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10839552 | May 2004 | US |
Child | 11485538 | Jul 2006 | US |