The present invention relates to RC controlled spherical robots, and more particularly, to a self-aligning magnetic stationary accessory for use atop a spherical RC controlled self-propelled device or the novel device includes a toy robot employing first and second pairs of magnets aligned with opposite polarities disposed in the stationary accessory and a spherical body, respectively, to simply yet precisely maintain the stationary accessory on the spherical body in a particular orientation for optimal RC controlled manipulation of the robot by a user.
There are several known robotic spheres with various drive mechanisms and remote control transmitters. Some of the robotic spheres include magnetic connections between members or parts of the toy, and there are also some known self-propelled devices, or robotic spheres, which include magnetically coupled accessories and magnetically propelled drive systems.
None of the known devices however, employ pairs of oppositely polarized magnets which self-orientate a stationary accessory on a spherical body for the advantageous operation of the robot, e.g. to maintain head and eye orientations on the robot body. Additionally, the stationary accessory may facilitate use to indicate the particular orientation of a drive mechanism during use for optimizing RC controlled manipulation of the robotic device by a user.
Additionally, none of the known robotic spheres teaches an arcuate support structure disposed within the spherical body and supporting a pair of magnets riding along an inner surface of the spherical body creating attractive forces that secure the stationary accessory in a self-oriented position.
Known mechanized balls and remote controlled movable balls are exemplified and disclosed in U.S. Pat. No. 4,601,675 issued Jul. 22, 1986 to Robinson and U.S. Pat. No. 5,533,921 issued Jul. 9, 1996 to Wilkinson, and whose teachings are herein incorporated into the present application by reference. Robinson teaches a mechanized ball with a hollow sphere having a removable hatch and powered by a driving unit placed within the sphere. The drive unit is a single powered driving wheel or self-contained four wheeled toy vehicle guided by a strut or spring device biasing the toy vehicle to the interior surface of the sphere. The toy vehicle or driving wheel climbingly engage the interior of the sphere propelling it forward.
Wilkinson teaches a remote controlled movable ball amusement device including a hollow sphere containing two propulsion mechanisms driven on separate tracks within the sphere. Each of the propulsion mechanism includes a drive unit and a receiver. A remote transmitter send signals to the receivers actuating a respective drive unit and operating each propulsion unit independently to permit a user to vary the movement of the sphere. Neither Robinson nor Wilkinson teach a self-aligning stationary accessory for a spherical RC controlled robot.
Known self-propelled device having a spherical housing and including an accessory component magnetically interacting with the spherical housing is exemplified and disclosed in US Patent Application Publication No. US 2014/0345957 published Nov. 27, 2014 to Bernstein et al. and whose teachings are herein incorporated into the present application by reference. Bernstein teaches a self-propelled device having a spherical housing and an internal drive system including one or more motors. The internal drive system includes wheels that drive along an interior surface of the spherical housing propelling the device. A biasing mechanism, including a spring, couples to the drive system at one end, and includes an opposite end that contacts the interior surface of the spherical housing. An accessory component including a fixed magnet is magnetically coupled to the housing at a point where the spring end contacts the housing interior surface. The magnet in the accessory component is attracted to the metal spring inside the housing and the accessory component is maintained in a stable position on the housing exterior at the spring end. Bernstein does not teach or disclose first and second magnet pairs with alternating polarities coupling a stationary accessory to a spherical housing in a self-aligning position for optimal RC controlled manipulation of the robot by a user.
A known robotic sphere having a holonomic drive maintained at a relative position with respect to a sphere is exemplified and disclosed in U.S. Pat. No. 8,269,447 issued Sep. 18, 2012 to Smoot et al. The holonomic drive is urged against the sphere by way of a magnetic interaction between an interior drive and an exterior drive such that motion of the sphere is controlled by controlling the position of the drives with respect to the sphere. Interior and exterior drives each include one or more multidirectional wheels in contact with a sphere wall. A magnetic interaction between interior and exterior drives urge the drives against the sphere wall, and alternating magnet polarities couple the drives together and sandwich the sphere wall between the drives. The magnetic interaction between the first and second drives produce an urging force against the sphere wall such that the drives will remain engaged with the sphere wall and move as a unit with respect to the sphere driving movement of the sphere along a surface. Smoot et al does not teach or disclose a stationary accessory magnetically coupled through alternating polarities to a spherical housing in a self-aligning position indicating the specific orientation of an internal drive mechanism during use for optimal RC controller operations of a robot.
Other known arrangements for magnetic interactions and movements of devices by magnetics include Wiggs et al. U.S. Pat. Nos. 6,824,441 and 6,056,619. Such known devices however, do not maintain use of a stationary accessory but to the contrary, such prior art represents use of magnetic interactions for affecting movement.
The present invention addresses shortcomings of the prior art to provide a self-aligning stationary accessory for an RC controlled robot secured to a spherical body in a self-orientated position indicating the specific orientation of an internal drive mechanism during use for optimal RC controller operations of the robot.
In one embodiment of the invention, a self-aligning stationary accessory for an RC controlled robot includes, a stationary accessory, a first pair of magnets disposed within the stationary accessory with each one of the first pair of magnets having a polarity orientation opposite each other, a spherical body having an external surface supporting the movable member and an inner surface. A drive mechanism is disposed within the spherical body and controlled by an RC controller for propelling the spherical body back and forth along a surface. A support member is further disposed within the spherical body, opposite the location of the drive mechanism, and a second pair of magnets is disposed on the support member within the spherical body disposing the second pair of magnets to ride along the inner surface of the spherical body. Each of the second pair of magnets has a polarity orientation opposite the other. The second pair of magnets attract the opposite polarities of the first pair of magnets within the stationary accessory creating attractive forces that maintain the stationary assembly to the spherical body in an aligned self-oriented position indicating the specific orientation of the internal drive mechanism during use for optimal RC controller operations of the robot.
The following description is provided to enable those skilled in the art to make and use the described embodiments set forth in the best modes contemplated for carrying out the invention. Various modifications, however, will remain readily apparent to those skilled in the art. Any and all such modifications, equivalents, and alternatives are intended to fall within the spirit and scope of the present invention.
A self-aligning stationary accessory for use atop a spherical RC controlled self-propelled device or robot 10, as shown in
The body of the device or robot 10 is generally spherical, as seen in
A drive mechanism 20, as seen in
An arcuate support member 24 is further disposed within the spherical body 12, opposite the location of the drive mechanism 20. A support post 26 is secured to the drive mechanism 20 providing a support element on which to couple the arcuate support structure at a hole or eccentric opening 34 therein where the arcuate support structure is pivotally attached. A first pair of magnets 28 disposed within the stationary accessory create attractive forces with a second pair of magnets 30 disposed within the arcuate support structure, as seen in
The arcuate support member 24 as seen in
As seen in
With reference to
From the foregoing, it can be seen that there has been provided features for an improved spherical robot apparatus, devices and methods with a disclosure for the method of the making the apparatus. While particular embodiments of the present invention have been shown and described in detail, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects. Therefore, the aim is to cover all such changes and modifications as fall within the true spirit and scope of the invention. The matters set forth in the foregoing description and accompanying drawings are offered by way of illustrations only and not as limitations. The actual scope of the invention is to be defined by the subsequent claims when viewed in their proper perspective based on the prior art.
This application claims priority pursuant to 35 U.S.C. 119(e) from U.S. Provisional Patent Application No. 62/184,177, filed on Jun. 24, 2015.
Number | Name | Date | Kind |
---|---|---|---|
561777 | Essberger et al. | Jun 1896 | A |
2702191 | Lemelson | Feb 1955 | A |
3696557 | Ruppel | Oct 1972 | A |
4541814 | Martin | Sep 1985 | A |
4589174 | Allen | May 1986 | A |
4601675 | Robinson | Jul 1986 | A |
5533921 | Wilkinson | Jul 1996 | A |
5676582 | Lin | Oct 1997 | A |
5692946 | Ku | Dec 1997 | A |
5865661 | Cyrus | Feb 1999 | A |
5913707 | Roman | Jun 1999 | A |
5984757 | Tsai | Nov 1999 | A |
6056619 | Wiggs et al. | May 2000 | A |
6824441 | Wiggs et al. | Nov 2004 | B1 |
7798050 | Sembtner | Sep 2010 | B2 |
8269447 | Smoot et al. | Sep 2012 | B2 |
9090214 | Bernstein | Jul 2015 | B2 |
9968864 | Clarke | May 2018 | B2 |
10399620 | Zhang | Sep 2019 | B2 |
10596477 | Whipple, Jr. | Mar 2020 | B1 |
20110014848 | Law | Jan 2011 | A1 |
20110248807 | Wang | Oct 2011 | A1 |
20110294397 | Tsai | Dec 2011 | A1 |
20140345957 | Bernstein et al. | Nov 2014 | A1 |
20150224941 | Bernstein | Aug 2015 | A1 |
20170010607 | Barlas | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
20122011 | Apr 2009 | CN |
201220111 | Apr 2009 | CN |
Entry |
---|
CN20122011Y_MT, machine translation of Chinese to English of CN20122011Y. |
Number | Date | Country | |
---|---|---|---|
62184177 | Jun 2015 | US |