The present invention relates in general to the field of remote data acquisition. More particularly, the present invention relates to a remote data acquisition and transmission system and method and, specifically, such a system for monitoring and control of vending machines.
Over the past decade, vending machine manufacturers have developed new and innovative vending equipment in response to market needs and vending operator demands. These innovations have been, for the most part, adopted by the beverage vending industry. This trend has been influenced by the accelerating rate of technological innovation in the electronic and electro-mechanical component industry. The availability of new technologies has given vending machine manufacturers the tools to address many of the requirements of vending operators. Advances in electronics are now enabling the use of computer controls and data acquisition systems directly inside the vending machine. Some of the latest vending machines now make it possible for vending machine operators to download sales, inventory, and machine health information on-site onto portable computers.
Although these computerized systems make it easier for operators to gather and analyze data, they generally do not provide the real time capabilities that are needed to make a major impact on their vending operations.
There currently exist some remote data capture systems in the vending industry. Examples of such systems include the systems disclosed in U.S. Pat. Nos. 5,608,643; 4,766,548 and 4,412,292. Most of the conventional systems make use of point-to-point data acquisition systems that use a wireless data transmission system to receive and send information from/to individual vending machines. Some of the systems use wire-line data transmission systems (e.g. telephone lines) instead of a wireless one. The wireless point-to-point systems are hampered by the relatively high cost of long-range wireless transceivers at each of the vending machines. Further, the systems that implement long-range wireless transceivers at each vending machine have a severe limitation in that they cannot be made to function properly in locations that do not have a clear RF path to the central base station outside the building, perhaps even miles away. For example, if a vending machine is located deep inside a building the ability to transmit/receive data to/from the outside of the building is hampered by the signal attenuation caused by the building's structure. On the other hand, the wire-line systems suffer from high infrastructure costs given that dedicated wire must be drawn to each vending machine in order to create the point-to-point data link. Establishing a wire-line system is often a difficult task and frequently limits the ability to move associated vending machines from one location to another location. Thus, these conventional remote data capture systems generally do not adequately fill the needs of vending machine operators.
In accordance with the present invention, a remote data acquisition and transmission system is disclosed that provides advantages over previously developed remote data acquisition systems. In one embodiment, the remote data acquisition and transmission system is for monitoring and control of vending machines. The remote data acquisition and transmission system allows vending machine operators to gather data from the field without having to manually retrieve the data from the vending equipment and to transmit data to the field such as price changes without having to visit each vending machine. This ability will generally lead directly to improved sales and lower operational costs by enhancing a manager's ability to direct operations and react quickly in order to correct problems.
According to one aspect of the present invention, the system comprises one or more application controllers and an application host. The application controller or controllers are interfaced with remote equipment from which operation data may be acquired and information transmitted thereto by each application controller. Each application controller communicates with an application host via a local area network, and the application host can communicate with a network operations center using a wide area network interface. The system may include a local area network (LAN) with one unit and its associated application host or multiple units and associated application hosts.
According to another aspect of the present invention, a remote data acquisition and transmission system is provided for vending machines. This system comprises a plurality of application controllers. Each application controller interfaces, via a serial interface to a vending machine controller, with a vending machine from which operation data is acquired by the application controller. The system may also comprise an application host that communicates with the application controllers via a local area network. The application host comprises a wide area network interface for communicating with a network operations center. The network operations center communicates with the application host via a wide area network to receive the operation data acquired by the application controllers and to manage outgoing messages and/or data. Further, the application controllers and the application host operate to autoconfigure the local area network upon initialization, and the application controllers operate as relays when necessary to establish communication between the application host and other application controllers. In addition, the network operation center maintains a database storing the operation data and providing secure third party access to the database.
According to a further aspect of the present invention, a method is provided for remote data acquisition and transmission. The method includes interfacing a plurality of application controllers with remote equipment from which operation data is acquired by the application controllers. The method further includes communicating between an application host and the application controllers via a local area network, and communicating between the application host and a network operations center using a wide area network interface. Technical advantages of this embodiment of the present invention include the use of local wire-line and/or local-area wireless transmissions to implement a local area network (LAN) between multiple vending machines. This provides a remote data acquisition system for vending machines that overcomes the limitations of current point-to-point systems by establishing a low-cost LAN that can then communicate externally using a long-range wireless or wire-line communication system. For example, a narrowband PCS wireless link (e.g., wireless two-way paging network) can be used between a remote vending machine LAN and a network operations center to establish an efficient and low-cost wide area network (WAN) which connects remote LANs together to form a larger network.
Additional technical advantages should be readily apparent from the drawings and description.
A more complete understanding of the present invention and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
The preferred embodiment of the present invention and its advantages are best understood by referring to
According to the present invention, each vending machine 14 may include an application controller 18 coupled to and interfacing with vending hardware and inventory 16. Many vending machines 14 are equipped with electronics for controlling vending operations as well as tracking some vending events such as money received, change given and number of vends from each slot. Application controllers 18 can communicate with such embedded electronics as well as be equipped to directly sense other vending events and vending equipment parameters (e.g. compressor performance). Application controllers 18 can also communicate with one another and the application host 22 via onboard wire-line interfaces or wireless transceivers using wire-line or wireless transmissions respectively.
The term “wire-line transmissions” is used to refer to all types of electromagnetic communications over wires, cables, or other types of conduits. Examples of such conduits include, but are not limited to, metal wires and cables made of copper or aluminum, fiber-optic lines, and cables constructed of other metals or composite materials satisfactory for carrying electromagnetic signals. Wire-line transmissions may be conducted in accordance with teachings of the present invention over electrical power lines, electrical power distribution systems, building electrical wiring, conventional telephone lines, T-1 lines, T-3 lines, ISDN lines, ADSL, etc.
The term “wireless transmissions” is used to refer to all types of electromagnetic communications which do not require a wire, cable, or other types of conduits. Examples of wireless transmissions for use in local area networks (LAN) include, but are not limited to, radio frequencies, especially the 900 MHZ and 2.4 GHz bands, infra-red, and laser. Examples of wireless transmissions for use in wide area networks (WAN) include, but are not limited to, narrowband personal communications services (PCS), broadband PCS, circuit switched cellular, and cellular digital packet data (CDPD), etc.
Together, application controllers 18 and application host 22 form a LAN supported by the wire-line and/or wireless transmissions 20. In addition, application controllers 18 can also act as repeaters in case application host 22 cannot directly communicate with a particular application controller 18 while another application controller 18, which does have an established communication link with application host 22, can directly communicate.
Application host 22 acquires data captured by application controllers 18 and can package and communicate that data across an external network 24 using a wide area network (WAN) interface. Application host 22 can be installed together with application controller 18 inside a vending machine or housed separately in another location. In the event that the application host 22 is placed inside a vending machine together with an application controller 18, it is possible to share some of the electronic components between them, the LAN transceiver for example, in order to reduce the cost of the hardware. In this case, the application host 22 and application controller 18 inside the same vending machine, would communicate with each other over a hardwired interface between the two components. Alternatively, the application host 22 and application controller 18 can be designed to be a single integrated component within a vending machine. Furthermore, an application host 22 can be used whose function consists of solely monitoring the application controllers 18. For example, such an application host 22 could take the form of a hand-held portable computer 23 to be carried by service or delivery personnel in order to query the application controllers 18 without having to interact via the WAN interface.
The WAN interface 22 can be implemented in one of a number of ways. In particular, WAN interface 22 is designed to support a wide area network 24 that can be implemented via wire-line or wireless transmissions. If a wireless narrowband PCS paging network is used to implement the WAN, messages from application host 22 can be communicated as digital messages through the pager network and stored in one or more dedicated message mailboxes provided by the wireless network operator. These mailboxes can be securely accessed, for example, through an Internet-based connection.
As shown in
At network operations center 26, a client access point 32 provides access from a client interface subsystem (CI) 34 across external network 24. In one implementation, client access point 32 can be a web-based interface allowing user access from a client computer across a network such as the Internet. Other implementations include providing a direct-dial connection between client interface subsystem 34 and client access point 32. Once connected, a user can use client interface subsystem 34 to obtain information from database 30 based upon data acquired from vending sites 12. Further, users can be provided with extended services such as trend information developed by mining and analyzing database 30.
According to the present invention, system 10 of
Application controller 18 interfaces with vending hardware 16. As shown, this interface can include a serial interface 56 (e.g., Multi-Drop Bus or DEX Port) that communicates with VMC 54 using a standard data protocol (e.g. DEX/UCS) implemented by many conventional vending machines. The interface can also include direct sensing of components 50 using digital sensors 58 and analog sensors 60. Analog sensors 60 can be coupled to analog-to-digital (A/D) converters 62 to convert analog measurements to digital signals. A central microprocessor or microcontroller 64 can be coupled to and interface with serial interface 56, digital sensors 58 and A/D converters 62 to acquire data relating to the operation of vending hardware 16. Application controller 18 also can include RFID transceiver device 65 that can directly scan inventory 16 in order to obtain inventory readings. For example, RFID 65 could generate a radio signal that is received by passive transponders attached to inventory items. These transponders can then reply with unique identifiers to the application controller 18 to determine exact inventory levels.
Microprocessor 64 can communicate inventory, event and other data using a wire-line or wireless LAN transceiver 66 that sends the data via wire-line or wireless transmissions respectively. As discussed above, microprocessor 64 can transmit/receive data to/from an application host located at the vending site or to/from a hand-held portable computer acting as an application host. Microprocessor 64 can also communicate with an electronic lock driver 69 which interfaces with an electronic lock 71. In the event that an application controller is collocated with an application host within a vending machine, then the two can communicate using a hardware interface bus 67 which allows the two devices to share electronic components, for example, the LAN transceiver 66.
Further, as shown, application controller 18 may include various types of memory units such as random access and read-only memory (RAM/ROM) 70, FLASH memory and/or Electrically Erasable/Programmable read-only-memory (Flash memory/EEPROM) 72 for storing application code and vending data. The Flash memory can be remotely programmed using the LAN and/or the WAN in the event that its data becomes corrupted or requires upgrade. The present invention is not limited to any specific type of memory unit. Further, application controller 18 may include a power supply 68, a backup battery 74 as well as a heater 76 (if needed).
Microprocessor 80 can receive data captured by application controllers 18, process the data and store the data in a mass storage device 86 (e.g., hard drive, solid-state recorder, FLASH memory). Microprocessor 80 can then retrieve data from storage device 86 and communicate data externally using a WAN wireless transceiver 92 or WAN wire-line interface 94 communicating via wireless or wire-line transmissions respectively. In particular, wireless transceiver 92 can be used to implement a digital paging network based communication scheme across a narrowband PCS network as mentioned above. Application host 22 can also include random access and read-only memory (RAM/ROM) 96 and/or FLASH memory 98 for storing application code and vending data. The Flash memory can be remotely programmed using the WAN in the event that its data becomes corrupted or requires upgrade. The present invention is not limited to any specific type of memory unit. Further, application host 22 can include a power supply 104, a back-up power source 100 (e.g., battery) as well as a heater 102 (if needed). Some of the components of application host 22 may be unnecessary if application host 22 and an application controller 18 are interfaced directly inside a vending machine.
User terminal 132 can provide a local user with a graphical user interface 143 to accomplish a connection to client access point 32 of network operations center 26. Database 134 can locally store information obtained from network operations center 26 regarding the user's vending machine operations. Further, the user applications and database middleware 142 can allow communication with existing legacy applications that the user may have. Further, graphical user interface 143 can be a web browser-type interface. In this case, user terminal 132 could be a computer with a web browser and an Internet connection provided by the network interface 130.
In
Creation and maintenance of the network by application host 152 can be conducted in any number of ways. One such straightforward approach is discussed below. At activation, application host 152 can transmit a broadcast signal requesting all application controllers 154, 156 and 158 to respond. Application host 152 can then build a table of application controllers 154, 156 and 158 in communication range. Application host 152 can then send a broadcast message requesting that each application controller 154, 156 and 158 in turn transmit a broadcast message requesting a response from all other application controllers 154, 156 and 158 in their communication range so each of the application controllers 154, 156, and 158 can create its own table. The information in these tables will be transmitted to application host 152. Application host 152 will then compare its initial table with all the tables sent in by the individual application controllers 154, 156 and 158. Application host 152 can then identify any application controllers 154, 156 and 158 that are not within its own primary network perimeter (communication range) and will build a routing table for application controllers 154, 156 and 158 not in communication range. This routing information will then be transmitted to each application controller 154, 156 and 158 on a relay (routing) path. From then on, data being transmitted to an application controller 154, 156 and 158 outside of application host 152's primary network perimeter will contain appropriate routing information, and vice-versa. This type of network does not preclude the possibility of any single application controller 154, 156 and 158 being totally out of network coverage but does provide for a plug-and-play network creation process for those machines within primary and secondary network boundaries. Application controllers 154, 156 and 158 completely out of range may need to be moved to a more suitable location.
One example of multiple relay capabilities provided by the present invention is shown in
In architecture 150 of
In general, the present invention provides a remote data acquisition system for monitoring and control of vending machines that includes a computer controlled application host located at vending sites. The host can include a wire-line interface or wireless transceiver through which a communication link with a remote computer can be established. The host can also include a wire-line interface and/or wireless transceiver through which the host can communicate with a plurality of vending machines at the vending site. Each vending machine can include a microprocessor controlled set of electronics that performs the actual data acquisition functions from the vending machine and that interfaces with a wire-line interface or wireless communication transceiver for establishing a link to the vending site host computer.
In the above embodiments, an application host controls operations at each vending site. In general, the application host can be implemented by software executing on a computer system that interfaces both to the vending machines on the LAN and the external network. In one embodiment, the software will have a number of software modules or objects that perform the various functions of the application host. The application controllers can also be implemented by executing software which will have a number of software modules or objects that perform the various functions of the application controllers.
Although the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made thereto without departing from the spirit and scope of the invention.
This application is a continuation application of U.S. patent application Ser. No. 09/267,254 filed on Mar. 12, 1999 by Erin M. Defossé entitled “A Wide Area Network Operation's Center that Sends and Receives Data from Vending Machines”, now U.S. Pat. No. 6,457,038; which claims priority to U.S. Provisional Patent Application Ser. No. 60/078,645, filed Mar. 19, 1998, and entitled “Remote Data Acquisition and Transmission System for the Monitoring and Control of Vending Machines” and U.S. Provisional Patent Application Ser. No. 60/099,434, filed Sep. 8, 1998, and entitled “Remote Data Acquisition and Transmission System.”
Number | Name | Date | Kind |
---|---|---|---|
3784737 | Waehner | Jan 1974 | A |
4369442 | Werth et al. | Jan 1983 | A |
4412292 | Sedam et al. | Oct 1983 | A |
4454670 | Bachmann et al. | Jun 1984 | A |
4661862 | Thompson | Apr 1987 | A |
4677565 | Ogaki et al. | Jun 1987 | A |
4766548 | Cedrone et al. | Aug 1988 | A |
4850009 | Zook et al. | Jul 1989 | A |
4926996 | Eglise et al. | May 1990 | A |
4954697 | Kokubun et al. | Sep 1990 | A |
5029098 | Levasseur | Jul 1991 | A |
5077582 | Kravette et al. | Dec 1991 | A |
5090589 | Brandes et al. | Feb 1992 | A |
5091713 | Horne et al. | Feb 1992 | A |
5117407 | Vogel | May 1992 | A |
5184179 | Tarr et al. | Feb 1993 | A |
5207784 | Schwartzendruber | May 1993 | A |
5239480 | Huegel | Aug 1993 | A |
5255819 | Peckels | Oct 1993 | A |
5282127 | Mii | Jan 1994 | A |
5323155 | Iyer et al. | Jun 1994 | A |
5337253 | Berkovsky et al. | Aug 1994 | A |
5339250 | Durbin | Aug 1994 | A |
5371348 | Kumar et al. | Dec 1994 | A |
5386360 | Wilson et al. | Jan 1995 | A |
5400246 | Wilson et al. | Mar 1995 | A |
5418945 | Carter et al. | May 1995 | A |
5445295 | Brown | Aug 1995 | A |
5505349 | Peckels | Apr 1996 | A |
5507411 | Peckels | Apr 1996 | A |
5561604 | Buckley et al. | Oct 1996 | A |
5608643 | Wichter et al. | Mar 1997 | A |
5620079 | Molbak | Apr 1997 | A |
5649308 | Andrews | Jul 1997 | A |
5671362 | Cowe et al. | Sep 1997 | A |
5701252 | Facchin et al. | Dec 1997 | A |
5708223 | Wyss | Jan 1998 | A |
5769269 | Peters | Jun 1998 | A |
5787149 | Yousefi et al. | Jul 1998 | A |
5794144 | Comer et al. | Aug 1998 | A |
5805997 | Farris | Sep 1998 | A |
5815652 | Ote et al. | Sep 1998 | A |
5818603 | Motoyama | Oct 1998 | A |
5822216 | Satchell, Jr. et al. | Oct 1998 | A |
5841866 | Bruwer et al. | Nov 1998 | A |
5842597 | Kraus et al. | Dec 1998 | A |
5844808 | Konsmo et al. | Dec 1998 | A |
5850187 | Carrender et al. | Dec 1998 | A |
5860362 | Smith | Jan 1999 | A |
5862517 | Honey et al. | Jan 1999 | A |
5867688 | Simmon et al. | Feb 1999 | A |
5892758 | Argyroudis | Apr 1999 | A |
5898904 | Wang | Apr 1999 | A |
5905442 | Mosebrook et al. | May 1999 | A |
5905882 | Sakagami et al. | May 1999 | A |
5907491 | Canada et al. | May 1999 | A |
5909183 | Borgstahl et al. | Jun 1999 | A |
5915207 | Dao et al. | Jun 1999 | A |
5918213 | Bernard et al. | Jun 1999 | A |
5924081 | Ostendorf et al. | Jul 1999 | A |
5930770 | Edgar | Jul 1999 | A |
5930771 | Stapp | Jul 1999 | A |
5941363 | Partyka et al. | Aug 1999 | A |
5943042 | Siio | Aug 1999 | A |
5949779 | Mostafa et al. | Sep 1999 | A |
5950630 | Portwood et al. | Sep 1999 | A |
5956487 | Venkatraman et al. | Sep 1999 | A |
5957262 | Molbak et al. | Sep 1999 | A |
5959536 | Chambers et al. | Sep 1999 | A |
5959869 | Miller et al. | Sep 1999 | A |
5979757 | Tracy et al. | Nov 1999 | A |
5982325 | Thornton et al. | Nov 1999 | A |
5982652 | Simonelli et al. | Nov 1999 | A |
5986219 | Carroll et al. | Nov 1999 | A |
5991749 | Morrill, Jr. | Nov 1999 | A |
5997170 | Brodbeck | Dec 1999 | A |
6003070 | Frantz | Dec 1999 | A |
6005850 | Moura et al. | Dec 1999 | A |
6012041 | Brewer et al. | Jan 2000 | A |
6021324 | Sizer, II et al. | Feb 2000 | A |
6021437 | Chen et al. | Feb 2000 | A |
6029143 | Mosher et al. | Feb 2000 | A |
6032202 | Lea et al. | Feb 2000 | A |
6038491 | McGarry et al. | Mar 2000 | A |
6052667 | Walker et al. | Apr 2000 | A |
6052750 | Lea | Apr 2000 | A |
6056194 | Kolls | May 2000 | A |
6057758 | Dempsey et al. | May 2000 | A |
6061668 | Sharrow | May 2000 | A |
6070070 | Ladue | May 2000 | A |
6072521 | Harrison et al. | Jun 2000 | A |
6084528 | Beach et al. | Jul 2000 | A |
6085888 | Tedesco et al. | Jul 2000 | A |
6119100 | Walker et al. | Sep 2000 | A |
6124800 | Beard et al. | Sep 2000 | A |
6131399 | Hall | Oct 2000 | A |
6161059 | Tedesco et al. | Dec 2000 | A |
6163811 | Porter | Dec 2000 | A |
6181981 | Varga et al. | Jan 2001 | B1 |
6199753 | Tracy et al. | Mar 2001 | B1 |
6230150 | Walker et al. | May 2001 | B1 |
6272395 | Brodbeck | Aug 2001 | B1 |
6324520 | Walker et al. | Nov 2001 | B1 |
6338149 | Ciccone, Jr. et al. | Jan 2002 | B1 |
6341271 | Salvo et al. | Jan 2002 | B1 |
6385772 | Courtney | May 2002 | B1 |
6434534 | Walker et al. | Aug 2002 | B1 |
6462644 | Howell et al. | Oct 2002 | B1 |
6525644 | Stillwagon | Feb 2003 | B1 |
6547038 | Thomsen et al. | Apr 2003 | B1 |
6550672 | Tracy et al. | Apr 2003 | B1 |
6584309 | Whigham | Jun 2003 | B1 |
6604086 | Kolls | Aug 2003 | B1 |
6604087 | Kolls | Aug 2003 | B1 |
6606602 | Kolls | Aug 2003 | B1 |
6606605 | Kolls | Aug 2003 | B1 |
6615623 | Ormerod | Sep 2003 | B1 |
6695166 | Long | Feb 2004 | B2 |
6735630 | Gelvin et al. | May 2004 | B1 |
6748296 | Banerjee et al. | Jun 2004 | B2 |
6751562 | Blackett et al. | Jun 2004 | B1 |
6754558 | Preston et al. | Jun 2004 | B2 |
6772048 | Leibu et al. | Aug 2004 | B1 |
6826607 | Gelvin et al. | Nov 2004 | B1 |
6832251 | Gelvin et al. | Dec 2004 | B1 |
6837436 | Swartz et al. | Jan 2005 | B2 |
6844813 | Hardman | Jan 2005 | B2 |
6850252 | Hoffberg | Feb 2005 | B1 |
6859831 | Gelvin et al. | Feb 2005 | B1 |
6867685 | Stillwagon | Mar 2005 | B1 |
6876988 | Helsper et al. | Apr 2005 | B2 |
6900720 | Denison et al. | May 2005 | B2 |
6959265 | Candela et al. | Oct 2005 | B1 |
6973475 | Kenyon et al. | Dec 2005 | B2 |
20010002210 | Petite | May 2001 | A1 |
20020024420 | Ayala et al. | Feb 2002 | A1 |
20020169539 | Menard et al. | Nov 2002 | A1 |
20030013482 | Brankovic | Jan 2003 | A1 |
20030128101 | Long | Jul 2003 | A1 |
20040207509 | Mlynarczyk et al. | Oct 2004 | A1 |
20050161953 | Roatis et al. | Jul 2005 | A1 |
20050179544 | Sutton et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
41 40 450 | Jun 1993 | DE |
0 564 736 | Oct 1993 | EP |
0 602 787 | Oct 1993 | EP |
0 817 138 | Jan 1998 | EP |
0 999 529 | May 2000 | EP |
1096408 | May 2001 | EP |
2 744 545 | Feb 1996 | FR |
2 755776 | May 1998 | FR |
04253294 | Sep 1992 | JP |
6296335 | Oct 1994 | JP |
9198172 | Jul 1997 | JP |
10105802 | Apr 1998 | JP |
WO 8907807 | Aug 1989 | WO |
WO 9504333 | Feb 1995 | WO |
WO 9505609 | Feb 1995 | WO |
WO 9709667 | Mar 1997 | WO |
WO 9923620 | Nov 1997 | WO |
WO 9845779 | Oct 1998 | WO |
WO 9927465 | Jun 1999 | WO |
WO 9936751 | Jul 1999 | WO |
WO 9948065 | Sep 1999 | WO |
WO 0004475 | Jan 2000 | WO |
WO 0004476 | Jan 2000 | WO |
WO 0031701 | Jun 2000 | WO |
0219281 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20020194387 A1 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
60099434 | Sep 1998 | US | |
60078645 | Mar 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09267254 | Mar 1999 | US |
Child | 10208221 | US |