Remote digital firing system

Information

  • Patent Application
  • 20060037508
  • Publication Number
    20060037508
  • Date Filed
    December 28, 2004
    20 years ago
  • Date Published
    February 23, 2006
    18 years ago
Abstract
The present invention is directed to a remote digital firing system for firing of a remote mission payload that includes a firing circuit communicatively coupled to and operative to fire the remote mission payload, a firing control panel communicatively linked to said firing circuit, and a digital code plug configured to be integrated in communicative combination with said firing circuit and said firing control panel, wherein said firing circuit is operative, with said digital code plug integrated in communicative combination therewith, to generate and write one-time random session variables to said digital code plug and to simultaneously store said one-time random session variables internally in said firing circuit; wherein said firing control panel is operative, with said digital code plug integrated in communicative combination therewith, to generate and transmit messages having said one-time random session variable embodied therein to said firing circuit; and wherein said firing circuit validates said messages by comparing said one-time random session variables embodied in said messages with said internally stored one-time random session variables prior to firing the remote mission payload.
Description
BACKGROUND OF THE INVENTION

(1) Field of the Invention


The present invention relates generally to devices for remotely activating munitions, and more specifically to a remote digital firing system comprising a firing circuit, a firing control panel, and a digital code plug that is instrumental in generating and storing one-time random session variables at the firing circuit and securely transferring such session variables to the firing control panel for operation of the firing system. The present invention allows secure control of the remote digital firing system over the same insecure radio link as, for example, control of a mobile robot.


(2) Description of Related Art


Existing firing circuit control systems have required a separate communication channel to ensure safety. The present invention overcomes this limitation by allowing all aspects of a remote device to be controlled over a single communications channel while maintaining the safety of the firing system.


In addition, existing systems for switching the output relied upon discrete digital outputs from the microcontroller activating the switch devices (relays or FETs). This presents a risk in that failure of the microcontroller or software can activate the system. The present invention substantially reduces this risk and reduces the safety critically of the embedded software.


Existing systems also have no provision to prevent a “replay attack,” where a hostile party can record the transmitted control signal while jamming the receiver, than play the recorded signal at a later time exposing personnel to harm.


BRIEF SUMMARY OF THE INVENTION

These and other objects of the present invention are achieved by a remote digital firing system for firing of a remote mission payload, comprising a firing circuit communicatively coupled to and operative to fire the remote mission payload, a firing control panel communicatively linked to said firing circuit, and a digital code plug configured to be integrated in communicative combination with said firing circuit and said firing control panel, wherein said firing circuit is operative, with said digital code plug integrated in communicative combination therewith, to generate and write one-time random session variables to said digital code plug and to simultaneously store said one-time random session variables internally in said firing circuit, wherein said firing control panel is operative, with said digital code plug integrated in communicative combination therewith, to generate and transmit messages having said one-time random session variable embodied therein to said firing circuit, and wherein said firing circuit validates said messages by comparing said one-time random session variables embodied in said messages with said internally stored one-time random session variables prior to firing the remote mission payload.


In addition, the remote digital firing system of the present invention allows for multiple firing circuits per vehicle, and multiple vehicles, all controlled by a single digital code plug and firing control panel.




BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention and the attendant features and advantages thereof may be had by reference to the following detailed description of the invention when considered in conjunction with the accompanying drawings wherein:



FIG. 1 is a schematic representation of a preferred embodiment of a remote digital firing system according to the present invention.



FIG. 2 depicts one embodiment of a hardware random noise generator for the firing circuit of the remote digital firing system according to the present invention.



FIG. 3 is a preferred embodiment of a schematic of the firing circuit for the remote digital firing system of the present invention.



FIG. 3A illustrates an exemplary pumped capacitor field effect transistor driver of the type utilized in the preferred firing circuit embodiment depicted in FIG. 3.



FIG. 4 is a flow diagram illustrating a nominal operating method for the remote digital firing system of the present invention.




DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings wherein like reference numerals identify similar or corresponding elements throughout the several views, FIG. 1 illustrates a preferred embodiment of a remote digital firing system 10 according to the present invention. The firing system 10 is operative to allow weapon firing, e.g., ordnance disposal, in a safe and reliable manner, even using unreliable and insecure communication channels such as interconnected computers, radio and/or wire links, and/or optical fibers, through the use of one-time random session codes, rolling codes, and challenge-response protocols.


The remote digital firing system 10 comprises a firing circuit 20, a firing control panel 30, and a digital code plug 40. For the described embodiment, the firing circuit 20 and the firing control panel 30 are integrated in combination with secondary equipment as described below. The firing circuit 20 and the firing control panel 30 of the described embodiment are serially linked for communication by links L1, L2, and LP wherein L1 and L2 are internal links between the firing circuit 20 and the firing control panel 30 and the respective secondary equipment and LP is an external link between such secondary equipment, e.g., wireless, electrical, optical, or combinations thereof. The external link LP can pass through multiple computers, radio systems, optical tethers, and/or combinations thereof. Due to the particular features of the remote digital firing system 10 according to the present invention, the primary serial communication link LP can be shared with other applications, e.g., an insecure radio communications links for control a mobile robot, without risk that signals from such applications will adversely impact the operation of the firing system 10, e.g., inadvertent activation of the firing system 10.


The firing circuit 20 is typically integrated in combination with a remotely controlled vehicle RCV of the type manufactured by the iRobot Corporation, with the internal link L1 providing the communication path between the firing circuit 20 and the circuitry of the vehicle RCV. See, e.g., U.S. patent application Ser. No. 09/846,756, filed 01 May 2001, entitled METHOD AND SYSTEM FOR REMOTE CONTROL OF MOBILE ROBOT. The firing circuit 20 is communicatively coupled to an electrically-activated payload PL such as a detonator (or disruptor) and operative to actuate the payload PL when the firing circuit 20 is activated to effect weapon or ordnance disposal. For example, actuation of a payload PL such as a disruptor charge by a detonator causes high kinetic energy masses to separate the detonation mechanism from the primary explosive in a targeted ordnance device. For the described embodiment, the firing circuit 20 is mounted in a payload manipulator at end of a deployment mechanism of the vehicle RCV, which allows the payload PL to be manipulated into close proximity with the ordnance device while the vehicle RCV remains spatially separated therefrom.


The firing circuit 20, which is described in further detail below, includes a microcontroller 21, a modifiable, read-only memory module 22 such as an EEPROM or flash memory, an application module 23, a hardware random noise generator 24, and a set of indicator lights 25, e.g., LEDs. The microcontroller 21 is operative, using instruction sets stored in the application module 23, to implement and manage the functions of the firing circuit 20, including, but not necessarily limited to:


(1) Transmitting and receiving message traffic to/from the firing control panel 30 in accordance with a prescribed communication protocol.


(2) Automatically generating and storing a set of one-time random session variables, i.e., an encryption key, and command codes for a SAFE/DISARM operation, an ARM operation, and a FIRE operation, and a rolling code sequence any time the digital code plug 40 is integrated in communication combination with the firing circuit 20.


(3) Disabling the firing circuit 20 when the digital key plug 40 is inserted in communicative combination with the firing circuit 20 (software redundancy to the electronic disable provided by hardware configuration of the firing circuit 20).


(4) Comparing the SAFE/DISARM code session variable stored in the memory module 22 with the corresponding SAFE/DISARM code session variable received via message traffic from the firing control panel 30.


(5) Implementing a decryption algorithm to encode and decode message traffic to/from the firing control panel 30 as described below in further detail in the disclosure relating to the prescribed communication protocol.


(6) Automatically generating a Challenge message in response to a Request-for-Challenge message received from the firing control panel 30.


(7) Validating ARMand FIRE command messages received from the firing control panel 30 by comparing the ARMor FIRE code embodied in such command message with the ARM or FIRE code stored in the firing circuit 20.


(8) Selectively operating the firing circuit 20 in response to validated command messages generated by the firing control panel 30, such operations including SAFE/DISARM, ARM, and FIRE (activation) of the firing circuit 20 (see description below in connection with FIG. 3).


(9) Generating verification messages in response to validated SAFE/DISARM, ARM, and FIRE command messages from the firing control panel 30.


(10) Automatically safing/disarming the firing circuit 20 under predetermined conditions.


(11a) Automatically implementing hardware checks of the components comprising the firing circuit 20 after successful execution of a Fire command message.


(11b) Automatically disabling the remote digital firing system 10 if a hardware fault is detected; concomitantly set hardware fault indication.


(12) Disabling the firing circuit 20 in response to receipt of the omega rolling code sequence number from the firing control panel (see function (5) description for the firing control panel 30 below).


(13) Continually implementing a constant period loop, i.e., the master loop, to:

    • (i) determine if the digital code plug 40 has been integrated in communicative combination with the firing circuit 20;
    • (ii) parse incoming message characters;
    • (iii) update condition of the status indicators;
    • (iv) update internal counters;
    • (v) check hardware status against the current state of the firing circuit 20 implemented via the instruction sets of the application module 23; and
    • (vi) generate a time based entropy source for random number generation by counting rapidly while idle and waiting for the next iteration of the loop.


The foregoing functional capabilities ensure that no double bit error in the instruction sets of the application module 23, the memory module 24, or the program counter can cause accidental activation of the remote digital firing system 10. In some preferred embodiments, double bit error safety is accomplished in software by using state enumerators with large hamming distances, and using redundant global variables to restrict hardware access in combination with the state variables, where any inconsistency triggers an error state.


The memory module 22 is used to store the one-time random session variables for use by the firing circuit 20 during operation of the remote digital firing system 10. The application module 23 comprises the instruction sets used by the microcontroller 21 to implement the functions of the firing circuit 20 described above and the decryption algorithm utilized by the firing circuit 20 to decrypt Challenge and command messages received from the firing control panel 30. This decryption algorithm is also used by the firing circuit 20 to encrypt the corresponding verification messages transmitted to the firing control panel 30 in accordance with the prescribed communication protocol. Alternatively, these instruction sets and the decryption algorithm can be stored in the memory module 23. The instruction sets for the firing circuit 20 can be implemented as hardware, software, firmware, or combinations thereof.



FIG. 2 illustrates an embodiment of the hardware random noise generator 24 of the firing circuit 20 that is operative to produce random binary bits that comprise the one-time random session variables, i.e., the encryption key, the SAFE/DISARM code, the ARM code, and the FIRE code, that govern the operation of the firing system 10 according to the present invention. This hardware random noise generator 24 comprises a reverse-biased PN transistor junction 24A to produce amplified avalanche noise that is subsequently filtered through several logic gates 24B1, 24B2, 24B3. The circuit of FIG. 2 is not highly tuned and operates effectively over a wide range of part tolerances. One of skill in the art will recognize that any one of several hardware random noise generators known in the art could be used. Bias in the generated bit stream is eliminated by repetitive XOR sampling. The functionality of the circuit is verified by the microcontroller software by checking for all ones or all zeros in the output stream. While the firing circuit 20 of the present invention can utilize a pseudorandom software algorithm to generate random numbers for the encryption key and variable session codes, it should be appreciated that such a software algorithm can be subjected to predictive crypto analysis.


For the described embodiment, the encryption key comprises 128 randomly-generated bits, the SAFE/DISARM code comprises 32 randomly-generated bits, the ARM code comprises 32 randomly-generated bits, and the FIRE code comprises 32 randomly-generated bits. These key and code lengths are sufficient to deter brute force decryption attacks that would be successful in a reasonable amount of time. Of course, one skilled in the art will appreciate that other bit lengths can be utilized for the key and codes and still be within the scope of the remote digital firing system 10 according to the present invention. The random noise generator 24 is only operative when the digital code plug 40 is integrated in communicative combination with the firing circuit 20.


The described embodiment of the firing circuit 20 includes two indicator lights 25, a red indicator light 25A and a green indicator light 25B, that provide visual indications of the status of the firing circuit 20 to the system operator. An illuminated green indicator light 25B indicates that the firing circuit 20 is in a disarmed (safe) state, a steadily illuminated red indicator light 25B indicates that the firing circuit 20 is armed (ready to fire) while a flashing illuminated red indicator light 25A indicates a malfunction associated with the firing circuit 20. The status indications provided by these indicator lights 25 are described below in further detail in conjunction with the description of a nominal operating method for the remote digital firing system 10 according to the present invention.


The firing control panel 30 is typically integrated in combination with a portable command console (PCC) or Operator Control Unit (OCU) for mobility, with the internal link L2 providing the communication path between the firing control panel 30 and the circuitry of the console PCC. The primary serial communications link LP described above provides the communication pathway between the portable command console PCC and the vehicle RCV.


The firing control panel 30 includes a microcontroller 31, an application module 32, a link test mechanism 33, an arming mechanism 34, a firing mechanism 35, and a set of indicator lights 36. The microcontroller 31 is operative, using instruction sets stored in the application module 32, to implement and manage the functions of the firing control panel 30, including, but not necessarily limited to:


(1) Transmitting and receiving message traffic to/from the firing circuit 20 in accordance with the prescribed communication protocol.


(2) Retrieving and processing the one-time random session variables and the rolling code sequence stored in the digital code plug 40 in connection with the generation of command messages.


(3) Automatically implementing a link test with the firing circuit 20 upon insertion of the digital key plug 40 in communicative combination with the firing control panel 30 (includes reading the SAFE/DISARM CODE, the encryption key, and the rolling code sequence from the digital key plug 40); link test will also be automatically implemented if any of the circumstances described in paragraphs (9) (iii)-(v) exist.


(4) Implementing the link test in response to actuation of the link-test mechanism 33 by a system operator.


(5) Transmitting the omega rolling code sequence (rolling code sequence number 255 for the described embodiment) when the digital code plug 40 is removed from communicative combination with the firing control panel 30 while simultaneously actuating the link-test mechanism 33 (see description of function (12) of the firing circuit 20 above).


(6) Erasing the stored contents (e.g., one-time random session variables and rolling code sequence) of the digital code plug 40 when the link-test mechanism 33 is actuated while simultaneously integrating the digital code plug 40 in communicative combination with the firing control panel 30;


(7) Implementing an encryption algorithm to encode and decode command message traffic to/from the firing circuit 20 as described below in further detail in the disclosure relating to the prescribed communication protocol.


(8) Automatically generating the Request-for-Challenge message and an ARM command message in response to manipulation of the arming mechanism 34 by an operator and transmitting such Request-for-Challenge and ARM command messages to the firing circuit 20 (the ARM code is read from the digital code plug 40 as a precursor to generation of the ARM command message).


(9a) Implementing an arming mechanism 34 check to determine if it has been moved to the armed position within a predetermined time interval, e.g., twenty (20) seconds for the described embodiment; and


(9b) Automatically generating, if (9a) is true, the Request-for-Challenge message and a FIRE command message in response to manipulation of the firing mechanism 35 by an operator and transmitting such Request-for-Challenge and FIRE command messages to the firing circuit 20 (the FIRE code is read from the digital code plug 40 as a precursor to generation of the FIRE command message).


(10) Validating Challenge messages received from the firing circuit 20 in response to corresponding Request-for-Challenge messages issued by the firing control panel 30, which includes a step of verifying that the applicable mechanism, i.e., the arming mechanism 34 or the firing mechanism 35, is still in the actuated position.


(11) Generating system error messages if:

    • (i) the firing mechanism 35 is actuated and the arming mechanism 33 is in the safe position;
    • (ii) the firing mechanism 35 is actuated while the link-test mechanism 33 is actuated;
    • (iii) the arming mechanism 34 is left in the armed position for more than the predetermined time interval (see paragraph (9a);
    • (iv) the link-test mechanism 33 is actuated while the arming mechanism 34 is in the armed position; and
    • (v) the link-test mechanism 33 is actuated while the firing mechanism 35 is actuated.


The application module 32 comprises the instruction sets used by the microcontroller 31 to implement the functions of the firing control panel 30 described above and the encryption algorithm utilized by the firing control panel 30 to encrypt Request-for-Challenge and command messages transmitted to the firing circuit 20 in accordance with the prescribed communication protocol. This encryption algorithm is also used by the firing control panel 30 to decrypt the corresponding ‘encrypted’ verification messages received from the firing circuit 20. The instruction sets for the firing control panel 30 can be implemented as hardware, software, firmware, or combinations thereof.


The link-test mechanism 33 is operative, in response to manipulation by an operator, to generate a signal that causes the microcontroller 31 to implement the instruction set for generating and transmitting the SAFE/DIARM command message to the firing circuit 20. For the described embodiment, the link-test mechanism 33 is a push button. The arming mechanism 34 is operative, in response to manipulation by an operator, to generate a signal that causes the microcontroller 31 to implement the instruction sets for generating and transmitting the Request-for-Challenge and ARM command signals, respectively, to the firing circuit 20. For the described embodiment, the arming mechanism 34 is 90° rotary selector switch. The firing mechanism 35 is operative, in response to manipulation by an operator, to generate a signal that causes the microcontroller 31 to implement the instruction sets for generating and transmitting the Request-for-Challenge and FIRE command messages, respectively, to the firing circuit 20. For the described embodiment the firing mechanism 35 is a locking, transient toggle switch, i.e., the toggle must be pulled to disengage a lock mechanism before the switch can be actuated. Preferably both the arming and firing mechanisms 34, 35 are single pole, double throw type switches tied to two input lines so that for a switch manipulation to generate a signal, two input bits must be changed before the microcontroller 31 recognizes the new switch position as valid and implements the corresponding instruction sets.


The described embodiment of the firing control panel 30 includes two indicator lights 36, a red indicator light 36A and a green indicator light 36B that provide visual indications of the status of the firing control panel 30. An illuminated green indicator light 36B indicates that the firing circuit 20 is in a disarmed (safe) state, a steadily-illuminated red indicator light 36A indicates that the firing control panel 30 is armed (ready to fire), and a flashing illuminated red indicator light 25A indicates a malfunction associated with the firing control panel 30. The status indications provided by these indicator lights 36 are described below in further detail in conjunction with the description of a nominal operating sequence of the remote digital firing system 10 according to the present invention.


The digital code plug 40 provides the means for securely transferring the one-time random session variables and the rolling code sequence generated by the firing circuit 20 to the firing control panel 30 and for temporarily storing such session variables and the rolling code sequence for use by the firing control panel 30 during operation of the remote digital firing system 10. The digital code plug 40 is a mechanism or device that is physically and functionally configured to be temporarily integrated in communicative combination with the firing circuit 20 and the fire control panel 30. For the described embodiment, the portable control console PCC was configured to physically receive the digital code plug 40, e.g., via a digital key socket, while the vehicle RCV is configured to physically receive the digital code plug 40, e.g., via a digital key socket. One skilled in the art will appreciate that the firing circuit 20 and/or the firing control panel 30 can be configured to directly physically receive the digital code plug 40. The digital code plug 40 includes a memory module 42, e.g., ROM, EEPROM, flash memory, for storing the one-time random session variables and the rolling code sequence.


For the described embodiment, the digital code plug 40 was a Dallas DS2433-Z01 4K EEPROM that uses a proprietary interface for reading and writing. The EEPROM was encased in a waterproof metal key assembly, which provided a complete electrical shield when this digital code plug 40 was integrated in communicative combination with the firing circuit 20. The metal key assembly was encased in a plastic case to facilitate handling and to improve the physical robustness of the digital code plug 40. One skilled in the art will appreciate that other mechanisms that include a digital storage capability can be used in conjunction with the remote digital firing system 10 according to the present invention to implement the functionality provided by the digital code plug 40 described herein, e.g., a smart card.


When the digital code plug 40 is integrated in communicative combination with the firing circuit 20, the hardware random noise generator 24 is activated by the microcontroller 21 to generate (in combination with a time based entropy source) the random binary bits that form the encryption key, the SAFE/DIARM code, the ARM code, and the FIRE code comprising the one-time random session variables, and the rolling code sequence is initialized to zero. The microcontroller 21 is operative to simultaneously write these one-time random session variables and the rolling code sequence into the memory module 42 of the digital code plug 40 and the memory module 23 of the firing circuit 20.


The remote digital firing system 10 according to the present invention utilizes a prescribed communication protocol to ensure the operational integrity and security of the firing system 10, i.e., eliminating or substantially minimizing the likelihood of operation of the firing system 10 as a result of spurious message traffic or electrical signals generated by outside sources or the firing system 10 itself. This prescribed communication protocol includes four different message types, i.e., status messages, request—challenge messages, command messages, and verification messages, predefined message characters or symbols, a predetermined message data block format, and a singular symmetric encryption/decryption scheme for all request—challenge, command, and verification message traffic as described below.


(a) Use of a message-originator character or symbol to identify the message traffic initiator, i.e., as either the firing circuit 20 or the firing control panel 30. For the described embodiment, the symbol “@” is used to identify the firing circuit 20 as the message originator and the symbol “$” is used to identify the firing control panel 30 as the message originator. This message-originator character/symbol is always the first element of any message and is transmitted as clear text.


(b) Use of a predefined status character or symbol to identify operations involving the digital code plug 40. For the described embodiment, the character “K” identifies the integration of the digital code plug 40 in communicative combination with the firing circuit 20 or the firing control panel 30, and the character/symbol “k” identifies the removal of the digital code plug 40 from communicative combination with the firing circuit 20 or the firing control panel 30. These two symbols can be detected by the RCV or PCC, as applicable, and used to disable or enable vehicle functions, such as disabling the drive motors of the RCV while the key is inserted to prevent inadvertent motion. The status character/symbol is always the last element of a status message and is transmitted as clear text. For the described embodiment, which includes an identifier for a plurality of target systems (as discussed below), this predefined character/symbol is the third (and last) element of a status message.


(c) Generation of an automatic status message in conjunction with the use of the digital code plug 40 as described in paragraph (b), i.e., whenever the digital code plug 40 is integrated in or removed from communicative combination with the firing circuit 20 or the firing control panel 30. For the described embodiment, the status message consists of three elements (see Table II).


(d) A method of addressing messages to multiple firing circuits 20n (where n is an integer identifying individual firing circuits) from a single firing control panel 30, such that each message originating at the firing control panel 30 contains the address of the intended firing circuit 20n and each message originating at a firing circuit 20n contains its unique address. In this implementation, the address is a single hexadecimal character, allowing up to 16 devices, but one skilled in the art can easily expand the address space.


(e) A method of selecting the desired weapon, i.e., firing circuit 20n, by means of a rotary selector switch.


(f) The digital code plug 40 also contains the name of the weapon whose codes it contains. When using multiple firing circuits 20n, the name of the weapon selected by the user can be displayed on an LCD to clearly indicate which weapon has been selected.


(g) Whenever the selected weapon is changed with the rotary switch, the name of the newly selected weapon is transmitted over the serial link preceded by the address of the selected weapon and the “N” character (i. E. $0NICECAP) so the selected weapon can be displayed on the OCU. A link-test message is automatically generated and transmitted to the weapon selected via the rotary switch by means of the firing control panel 30.


(h) Generation of an automatic link-test message upon integration of the digital code plug 40 in communicative combination with the firing control panel 30. This link-test message is also generated any time the link-test mechanism 33 is actuated. This message is also automatically generated as a result of the detection of an operator error caused by improper activation sequence of the switches (see paragraph (11) description of this function of the firing control panel 30). For the described embodiment, the link-test message comprises the SAFE/DIARM command message described in further detail in paragraphs (i), (j), (k), and (m).


(i) Use of a predefined character or symbol to identify the command messages of the prescribed communication protocol, i.e., the SAFE/DIARM command message, the ARM command message, and the FIRE command message, the corresponding verification messages associated with each of these command messages, and the request-challenge messages. For the described embodiment, the command messages utilize the character “S” to identify the SAFE/DIARM command message, the character “A” to identify the ARM command message, and the character “F” to identify the FIRE message. For the verification messages, the described embodiment utilizes the character “V”, in conjunction with the corresponding command message character/symbol, to identify verification messages, which indicates that the corresponding action has been executed by the firing circuit 20, i.e., safing or disarming of the firing circuit 20, arming of the circuit 20, or activating (firing) the firing circuit 20. The described embodiment uses the characters “R” and “C” to identify Request-for-Challenge and Challenge messages, respectively. The message-type character/symbol is always the last unencrypted element for any of the foregoing message types.


(j) Use of predefined, constant data block formats for the all request—challenge, command, and verification messages exchanged between the firing circuit 20 and the firing control panel 30. For the described embodiment, the data block format comprises 64 (sixty-four) bits for the request-challenge and command messages and 16 (sixteen) bits for the verification messages (all in hexadecimal format). One skilled in the art will appreciate that data block formats of other bit lengths can be used without departing from the scope of the remote digital firing system 10 of the present invention. The specific data block format for each of the various message types of the prescribed communication protocol are illustrated in Table I wherein the terminology “random number” indicates a variable required in the message validation process and the terminology “unspecified” indicates a variable that functions as a block filler, i.e., not used in the message validation process.

TABLE IMESSAGE TYPEDATA BLOCK FORMATM1. Request for32 bits (unspecified)Challenge16 bits (random number)16 bits (unspecified)M2. Challenge16 bits (random number challenge)16 bits (unspecified)16 bits (random number - from Request Msg)16 bits (unspecified)M3. SAFE/DISARM32 bits (SAFE/DISARM code - read fromCommanddigital code plug 40) 8 bits (rolling code sequence - readfrom digital code plug 40)16 bits (random challenge number - fromChallenge Msg) 8 bits (unspecified)M4. SAFE/DISARM16 bits (random challenge number - fromVerificationSAFE/DISARM Command Msg)M5. ARM Command32 bits (ARM code - read from digitalcode plug 40)16 bits (random challenge number - fromChallenge Msg)16 bits (unspecified)M6. ARM Verification16 bits (random challenge number - fromARM Command Msg)M7. FIRE Command32 bits (FIRE code - read from digitalcode plug 40)16 bits (random challenge number - fromChallenge Msg)16 bits (unspecified)M8. FIRE Verification16 bits (random challenge number - fromFIRE Command Msg)


(k) As depicted in Table I, the data block of the Safe/Disarm command message M3 includes a rolling code sequence of 8 (eight) bits. As initially stored in both the memory module 23 of the firing circuit 20 and the digital code plug 40, the rolling code sequence is a string of 0s (zeros). When the digital code plug 40 is integrated in communicative combination with the firing control panel 30, the microcontroller 31 is operative to read the rolling code sequence stored in the memory module 42 of the digital code plug 40, e.g., a string of 0s (zeros), and generate the SAFE/DIARM command message that includes this rolling code sequence. The microcontroller 31 is then operative to increment the rolling code sequence, e.g., by 1 (one), and store the incremented rolling code sequence, e.g., 00000001, in the memory module 42 of the digital code plug 40. When this SAFE/DIARM command message is received by the firing circuit 20, the microcontroller 21 compares the value of the rolling code sequence embedded in the SAFE/DIARM command message with the value of the rolling code sequence stored in the memory module 23. If the received rolling code sequence is greater than or equal to the stored rolling code sequence, then the received rolling code sequence of the SAFE/DIARM command message is accepted by the firing circuit 20 as valid. If the SAFE/DIARM command message M3 is accepted as valid by the firing circuit 20 (see paragraph (m)), the microcontroller 21 increments, e.g., by 1 (one), the rolling code sequence stored in the memory module 23. This validation procedure for the rolling code sequence is performed in conjunction with each transmission and reception of the link-test message (SAFE/DIARM command message M3), whether due to removal of and re-integration of the digital code plug 40 in communicative combination with the firing control panel 30, actuation of the link-test mechanism 33 by a system operator, or generation of the SAFE/DIARM command message as a result of a detected system error.


(l) Use of an automatic request—challenge message protocol between the firing circuit 20 and the firing control panel 30 prior to initiation of the ARM or FIRE command messages M5 or M7 by the firing control panel 30. Prior to initiating either the ARM Command or the FIRE Command, the firing control panel 30 automatically formats, encrypts, and transmits the Request-for-Challenge message M1 to the firing circuit 20 as a result of the actuation of the arming mechanism 34 or the firing mechanism 35, as applicable. In response to a Request-for-Challenge message M1, the filing circuit 20 is operative to format, ‘encrypt’ and transmit the Challenge message M2 to the firing control panel 30. Upon receipt of the Challenge message M2, the firing control panel 30 is automatically operative to ‘decrypt’ the Challenge message M2 (to access the random challenge number), to read the applicable ARM or FIRE code from the digital code plug 40, and to format, encrypt, and transmit the applicable command message to the firing circuit 20.


(m) Implementation of a validation protocol by the firing circuit 20 in connection with the SAFE/DIARM, ARM, and FIRE command messages M3, M5, or M7. This validation protocol comprises a comparison of the session variable, i.e., SAFE/DIARM code, ARM code or FIRE code, as applicable, embodied in the decrypted message data block with the corresponding session variable stored in the memory module 23 of the firing circuit 20. In addition, for the ARM and FIRE command messages M5, M7, the firing circuit 20 is further operative to compare the random number challenge embodied in the command message M5 or M7 with the random number challenge generated by the firing circuit 20 and incorporated in the preceding Challenge message M2 issued by the firing circuit 20.


(n) Use of validity windows in conjunction with: (i) receipt of the Challenge message M2 in response to the Request for Challenge message M1; and (ii) receipt of an ARM or FIRE command message M5 or M7 subsequent to transmission of the Challenge message M2 wherein such validity windows define established time limits for acceptance of such messages. The firing control panel 30 is configured to be responsive only to a Challenge message M2 received within an established validity window referenced from transmission of the Request-for-Challenge message M1. In a similar manner, the firing circuit 20 is configured to accept an Arm or Fire command message M5 or M7 from the firing control panel 30 only if such command is received within an established validity window referenced from transmission of the Challenge message M2. For the described embodiment, the established validity window is 2 (two) seconds for both the request—challenge protocol and reception of the command message. One skilled in the art will appreciate that the remote digital firing system 10 may use different time limits for the validity windows for message receipt constraints or a time value other than 2 (two) seconds for both of the message receipt constraints described above.


(o) Encryption of the data blocks of all request—challenge protocol, command, and verification message traffic between the firing circuit 20 and the fire control panel 30. The firing control panel 30 includes an algorithm for encrypting the data blocks of the Request—for-Challenge messages and the SAFE/DIARM, ARM, and FIRE command messages generated by the firing control panel 30 for transmission to the firing circuit 20. The firing circuit 20 includes an algorithm for decrypting the data blocks of the Request-for-Challenge messages and the SAFE/DIARM, ARM, and FIRE command messages received from the firing control panel 30. The firing circuit 20, however, does not include an encryption algorithm; nor does the firing control panel 30 include a decryption algorithm. However, inasmuch as remote digital firing system 10 of the present invention employs a symmetric cryptographic scheme, the decryption algorithm of the firing circuit 20 is utilized to ‘encrypt’ the cleartext data blocks of the Challenge and verification messages M1, M4, M6, M8 generated by the firing circuit 20. In a similar manner, the encryption algorithm of the firing control panel 30 is utilized to ‘decrypt’ the ‘encrypted’ data blocks of the Challenge and verification messages M1, M4, M6, M8 received from the firing circuit 20.


The singular encryption/decryption scheme for the remote digital firing system 10 of the present invention described in the preceding paragraph provides several tangible benefits. Since each microcontroller 21, 31 only utilizes one algorithm to perform both the encryption and decryption functions, the algorithm code stored in the respective memory module 23, 32 is significantly reduced. And since the firing control panel 30 includes only the encryption algorithm, encrypted command codes in the firing control panel 30 cannot be reconstructed since the decryption algorithm does not exist at the firing control panel 30. This guarantees that once the digital code plug 40 is removed from communicative combination with the firing control panel 30, the requisite responses to Challenge messages M2 cannot be generated at the firing control panel 30, i.e., the ARM Command message M5 or the FIRE command message M7.


In light of use of one-time random session variables and the limited number of messages that are subject to encryption under the prescribed communication protocol for the remote digital firing system 10 according to the present invention, the encryption algorithm for the firing system 10 need not possess a high degree of cryptographic security and need not be computationally intensive. Accordingly, the encryption algorithm implemented in the firing system 10 can be a relatively compact and low-overhead algorithm that enhances the computational speed of the remote digital firing system 10 of the present invention. The described embodiment of the firing system 10 utilizes the XTEA algorithm, which is an extension of the Tiny Encryption Algorithm.


(p) Responding to invalid command messages. An invalid command message is one wherein: (i) the cleartext string of the command message does not include the required characters/symbols—see paragraphs (a) and (i); or (ii) the session code embodied in the data block of the command message does not match the corresponding session code stored in the memory module 22 of the firing circuit 20. The firing circuit 20 is operative to ignore any invalid command message; in addition, for a type (ii) invalid message, the firing circuit 20 will automatically transmit a predefined character/symbol to the firing control panel 30 to indicate use of the wrong digital code plug 40.


In addition to the foregoing, the prescribed communication protocol for the remote digital firing system 10 according to the present invention can also be configured to include a predetermined character/symbol following the message-initiator identification character/symbol (see paragraph (a)), i.e., the second character/symbol of any message, that is used to identify up to sixteen different target systems where each vehicle RCV, firing circuit 20 combination comprises a target system. The embodiment described herein uses the “0” symbol as the target system identifier since the description provided herein is in terms of a single target system. This element is transmitted as clear text.


Table II illustrates the characteristics of the prescribed communication protocol for the remote digital firing system 10 according to the present invention as described above. Underlined segments of the message format identify the message types, i.e., Request-for-Challenge and Challenge messages, SAFE/DIARM, ARM, and FIRE command messages, verification messages. Italicized portions of the message format identify ciphertext (encrypted data blocks in hexadecimal format).

TABLE IIACTIONMSG IDMESSAGE FORMATDESCRIPTIONcustom characterIntegration of digital code@0KStatus Message -plug 40 in communicativesee paragraphs (a),combination with the firing(b), and (c)circuit 20custom characterRemoval of the digital@0kStatus Message -code plug 40 fromsee paragraphs (a),communicative combination(b), and (c)with the firing circuit 20custom characterIntegration of digital code$0KSee paragraphs (a),plug 40 in communicative(b), and (c)combination with the firingcontrol panel 30custom characterRemoval of the digital$0kSee paragraphs (a),code plug 40 from(b), and (c)communicative combinationwith the digital firingcircuit 20custom characterIntegration of digital codeM3$0SFEDCBA9876543210See paragraphs (i),plug 40 in communicative(j), (k), and (m)combination with the firingcontrol panel 30 (or actuationof the link-test mechanism 33or deactuation of the armingmechanism 34)Validation of the SAFE/DISARMM4@0VSFEDCSee paragraphs (i),command message M3(j), (k), and (m)custom characterActuation of theM1$0RFEDCBA9876543210See paragraphs (i),arming mechanism 34(j), (l), (m), and (o)Response to a Request-for-M2@0CFEDCBA9876543210See paragraphs (i),Challenge message M1(j), (l), (m), (n),and (o)Validation of the ChallengeM5$0AFEDCBA9876543210See paragraphs (i),message M2 - automatic(j), (m), (n), and (o)transmittal of the ARMcommand messageValidation of the ARMM6@0VAFEDCSee paragraphs (i),command message M5 - firing(j), (n), and (o)circuit 20 transitioned tothe armed statecustom characterActuation of the firingM1$0RFEDCBA9876543210See paragraphs (i),mechanism 35(j), (l), (m), and (o)Response to a Request-for-M2@0CFEDCBA9876543210See paragraphs (i),Challenge message M1(j), (l), (m), (n),and (o)Validation of the ChallengeM7$0FFEDCBA9876543210See paragraphs (i),message M2 - automatic(j), (m), (n), and (o)transmittal of the FIREcommand messageValidation of the FIREM8@0VFFEDCSee paragraphs (i),command message M7 - firing(j), (n), and (o)circuit 20 activated (fired)



FIG. 3 illustrates a preferred embodiment of a schematic of the firing circuit 20 for the remote digital firing system 10 according to the present invention. The firing circuit 20 includes, in addition to the microcontroller 21, the modifiable, read-only memory module 22, the application module 23, and the hardware random noise generator 24 described above, a conventional input/output interface 21I/O, e.g., a 9600 baud RS232 link, for communications with the firing control panel 30 (via serial link L2, the portable control console PCC, the external link LP, vehicle RCV, and serial link L1 for the described embodiment), a proprietary Dallas 1-wire interface 21O40 for writing the one-time random encryption key and session codes to the digital code key 40 when the digital code plug 40 is integrated in communicative combination with the firing circuit 20, an address line decoder chip 26, an output regulator 27, a power bus 28PB, an arming stage 28A, first and second firing stages 28F1, 28F2, first and second output relays 28OR1, 28OR2, and dual output lines 28DO.


The decoder 26 includes input lines 261L (address and enable) from the microcontroller 21 and output lines L00-L05 connected to the arming stage 28A (lines L00, L01), the first firing stage 28F1 (lines L02, L03) and the second firing stage 28F2 (lines L04, L05). The decoder 26 is operative, in response to a signal transmitted by the microcontroller 21, to selectively enable one of these output lines for transmission of a narrow band pulsed signal. The decoder 26 depicted in FIG. 2 is a 3-to-8 line decoder such that the microcontroller 21 can only access one branch of any stage 28A, 28F1, or 28F2 at a time, thereby substantially reducing the potential for randomly accessing these stages 28A, 28F1, or 28F2. To further negate the possibility of random access, the three address input lines and two of the enable lines of the 3-to-8 line decoder 26 are crossed with XOR gates, requiring two other output ports of the microcontroller 21 to be coordinated before any output line of the 3-to-8 line decoder 26 can be enabled.


The microcontroller 21 is operative, in response to the ARM command message, to transmit two sequential signals (3-bit address, enable) to the 3-to-8 line decoder 26, which is operative in response to such signals to transmit narrow band pulsed signals on the sequentially enabled output lines L00 and L01 to enable the arming stage 28A. In a similar manner, the microcontroller 21 is operative in response to the FIRE command message to sequentially transmit six sequential signals (3-bit address, enable) to the 3-to-8 line decoder 26, which is operative in response to such signals to transmit narrow band pulsed signals on the sequentially enabled output lines L00-L05 to enable the first and second firing stages 28F1, 28F2 as well as the arming stage 28A. The microcontroller 21 is also operative, in response to the Safe/Disarm command message, to transmit a signal (enable) to disable all output lines L00-L05 of the 3-to-8 line decoder 26, thereby disabling the arming stage 28A and the firing stages 28F1, 28F2, and de-energizing the output relays 28OR1, 28OR2.


The output regulator 27 is electrically connected to one side of the arming stage 28A and to one terminal of the first output relay 28OR1. The output regulator 27 is configured, and operative in response to an enable signal from the microcontroller 21, to produce an output of no more than 15 volts and no more than 2 amps for approximately 300 msec (actual output voltage and current will depend on the output load).


The arming stage 28A and first and second firing stages 28F1, 28F2 are operative in enabled combination to complete the electrical circuit between the power bus 28PB and the dual output lines 28DO of the firing circuit 20. Enabling of the arming stage 28A completes the electrical circuit between the power bus 28PB and the output regulator 27. Enabling the first and second firing circuits 28F1, 28F2 energizes the first and second output relays 28OR1, 28OR2, respectively, to complete the electrical circuit between the output regulator 27 and the dual output lines 28DO.


The arming stage 28A and the first and second firing stage 28F1, 28F2 of the described embodiment each comprise a pair of serialized field effect transistors (FETs), with the operation of each FET being regulated by a dedicated capacitive pumping subcircuit (see FIG. 3A which illustrates an FET enabled by a capacitive pumping subcircuit CPC). The FET pair of each stage 28A, 28F1, 28F2 are of different types, i.e., an N type and a P type, each FET type having a different failure mode to increase the reliability of the arming and firing subcircuits 28A, 28F1, 28F2. The dedicated capacitive pumping subcircuits of the arming stage 28A and firing stage 28F1, 28F2 are coupled to (via output lines L00-L05, respectively) and configured for operation only in response to narrow band pulsed signals from the decoder chip 26, which effectively eliminates the possibility of any spurious signals enabling any of the stages 28A, 28F1, 28F2.


The output relays 28OR1, 28OR2 of the described embodiment are operative, when energized, to complete the circuit between the output regulator 27 and the dual output lines 28DO. For the described embodiment, the output relays 28OR1, 28OR2 are from the NAIS TX series, rated for 2 amps switching at 30 volts. The output relays 28OR1, 28OR2 have a balanced mechanism that moves about an axis parallel to the firing circuit 20 PC board and are highly resistant to shock effects (75G malfunction rating). The output relays 28OR1, 28OR2 are mounted at different orientations relative to one another so that a single shock event is unlikely to trigger both output relays 28OR1, 28OR2. The rated life of such relays is approximately 100,000 cycles at 2 amps switching, but since the output relays 28OR1, 28OR2 are not used to switch current, their operational life should be significantly greater.


The dual output lines 28DO of the first and second output relays 28OR1, 28OR2 are shorted together until both output relays 28OR1, 28OR2 are closed (enabled). This configuration allows a system operator to verify the functionality of the firing circuit 20 before attaching a munition, and keeps the dual output lines 28DO in a shorted state to eliminate any adverse effects on the firing circuit 20 in the event of a failure of one of the first and second output relays 28OR1, 28OR2.


In addition to the foregoing features, the firing circuit 20 depicted in FIG. 3 also includes signal lines s1, s2 that provide unambiguous arm relay position feedback for the output relays 28OR1, 28OR2 to the microcontroller 21. Further, the logic gates associated with the address line decoder 26, and a logic gate 1g, are operative when the digital code plug 40 is integrated in communicative combination with the firing circuit 20, to disable the output regulator 27 and the address line decoder 26, thereby electronically disabling the output relays 28OR1, 28OR2 and the arming stage 28 A since none of the dedicated capacitive subcircuits can receive the narrow band pulsed signals that activate the FETs (see discussion above in connection with the paragraph (3) function of the microcontroller 21).


The normal operational sequence of the firing circuit 20 described above is as follows. In response to a validated ARM command message, the arming subcircuit 28 is enabled to complete the electrical circuit between the output regulator 27 and the power bus 28PB. In response to a validated, timely FIRE command message, the firing stages 28F1, 28F2 are enabled, which energizes the output relays 28OR1, 28OR2 to complete the electrical circuit between the output regulator 27 and the dual output lines 28DO.


After the output relays 28OR1, 28OR2 are energized, the microcontroller 21 transmits an enable signal to the output regulator 27, which allows current to flow through the circuit path provided by the dual output lines 28OD. This sequencing ensures that the output relays 28OR1, 28OR2 are not subjected to arcing during energization, i.e., the soft switch effect. The foregoing sequence is reversed when the dual output lines 28OD are disabled to eliminate arcing when the output relays 28OR1, 28OR2 are de-energized.


A nominal operating method 100 for the described embodiment of the remote digital firing system 10 according to the present invention is exemplary illustrated in FIG. 4. A first step 102 is implemented to prepare and check the secondary equipment for the mission. For example, the primary serial communications link LP between the vehicle RCV and the portable control console PCC is activated and tested, the deployment mechanism of the vehicle RCV is moved to the payload loading position (payload manipulator is clear of the vehicle RCV and accessible to a system operator), the vehicle RCV brakes are set.


Next, in a step 104 the system operator verifies the status of the firing circuit 20 by a visual examination of the indicator lights 25 of the firing circuit 20. At this juncture, the green indicator light 25B should be illuminated, indicating that the firing circuit 20 is in the disarmed (safe) state. A flashing red indicator light 25A at this step indicates the presence of a system fault and that the remote digital firing system 10 is inoperable. For the described embodiment, ‘flashing’ denotes a 50% duty cycle at 4 Hz.


In step 106, the digital code plug 40 is integrated in communicative combination with the firing circuit 20. The green indicator light 25 will temporarily cycle off and then illuminate steadily to indicate successful integration of the digital code plug 40 with the firing circuit 20. In response to this action, the firing circuit 20 is automatically operative to generate the key-inserted status message—see first row of Table II and paragraphs (a)-(c) of the prescribed communication protocol. A flickering red indicator light 25A at this step 106 indicates a bad digital code plug 40 or a poor connection. For the described embodiment, ‘flickering’ denotes a 12% duty cycle at 4 Hz. Encountering a flickering red indicator light 25A at this step 106 causes the method 100 to be exited.


Two functions are accomplished in step 106. First, the digital code plug 40 electronically disables the firing circuit 20, thereby precluding inadvertent or intentional operation of the firing circuit 20 (the relevant instruction sets of the firing circuit 20 provide a backup capability that precludes inadvertent or intentional operation of the firing circuit at this step). Second, a set of one-time random session variables and the rolling code sequence are automatically written to the digital code plug 40 and simultaneously to the memory module 22 of the firing circuit.


As part of step 106, the system operator attaches the mission payload PL to the payload manipulator of the vehicle RCV. Once the mission payload PL attachment process is completed, the system operator completes step 106 by removing the digital code plug 40 from communicative combination with the firing circuit 20. In response to this action, the firing circuit 20 is automatically operative to generate the key-removed status message—see second row of Table II and paragraphs (a)-(c) of the prescribed communication protocol.


In step 108, the digital code plug 40 is integrated in communicative combination with the firing control panel 30. This action causes the firing control panel 30 to: (i) generate the key-inserted status message—see third row of Table II and paragraphs (a)-(c) of the prescribed communication protocol in a substep 108A; and implement the link test, i.e., generate the SAFE/DIARM command message M 3, with the firing circuit 20—see row three of Table II and paragraphs (a), (d), (i), (j), (k), (m) and (o) of the prescribed communication protocol—to verify communications integrity between the firing control panel 30 and the firing circuit 20 in a substep 108B. The firing circuit 20 is operative, in response to the SAFE/DIARM command message M3, to implement the validation protocol with respect to such command message M3—see paragraphs (k), (m) and (o) of the prescribed communication protocol in a substep 108C. If the SAFE/DIARM command message M3 is validated, the firing circuit 20 is operative to: (1) verify that the firing circuit 20 is in the disarmed (safed) state; and to automatically generate the verification message M4—see row four of Table II and paragraphs (a), (i), (j), and (o) of the prescribed communication protocol in a substep 108D. If the SAFE/DIARM command message M3 is not validated, the remote digital firing system 10 returns to the end of step 106 (a new digital code plug 40 must be inserted) or prior to step 108A (the system operator must actuate the link-test mechanism 33 to generate another SAFE/DIARM command message M3—see paragraph (p) of the prescribed communication protocol.


At this point, the vehicle RCV is driven to the area of operations and the mission payload PL is positioned using the deployment mechanism and/or the payload manipulator of the vehicle RCV. Once the mission payload PL has been properly positioned, the mission payload PL can be activated by performing steps 110 and 112 as described below.


In step 110, the system operator actuates the arming mechanism 34 of the firing control panel 30 to arm the firing circuit 20. Arming of the firing circuit 20 requires the implementation of several substeps as follows. In substep 110A, the firing control panel 30 is automatically operative, in response to actuation of the arming mechanism 34, to generate and transmit a Request for Challenge message M1—see row seven of Table II and paragraphs (a), (f), (j), (l), and (o) of the prescribed communication protocol—to the firing circuit 20. In substep 110B the firing circuit 20 is automatically operative, in response to message M1, to generate and transmit a Challenge message M2 to the firing control panel 30—see row eight of Table II and paragraphs (a), (i), (j), (l), and (o) of the prescribed communication protocol—to the firing control panel 30.


In response to the Challenge message M2, the firing control panel 30 is operative in substep 110C to verify panel status and compliance with the prescribed communication protocol constraints. More specifically, the firing control panel 30 is operative to: (i) verify that the arming mechanism 34 is still in the armed position; and (ii) ensure that the Challenge message M2 was received within the established validity window—see paragraph (n) of the prescribed communication protocol. In step 110D the firing control panel 30 is operative to automatically generate and transmit the ARM command message M5—see row nine of Table II and paragraphs (a), (i), (j), (l), and (o) of the prescribed communication protocol—to the firing circuit 20. Upon receipt of the ARM command message M5, the firing circuit is operative in substep 110E to: (i) ensure the ARM command message M5 was received within the established validity window—see paragraph (n) of the prescribed communication protocol; and (ii) implement the validation protocol with respect the ARM command message M5—see paragraph (m) of the prescribed communication protocol. If the ARM command message M5 was received within the established validity window and valid, the firing circuit 20 is armed in substep 110F and the firing circuit 20 automatically transmits a verification message M6—see row ten of Table II and paragraphs (a), (i), (j), and (o)—to the firing control panel 30. Finally in substep 110G, the firing circuit 20 and the firing control panel 30 are operative to extinguish the green indicator lights 25B, 36B, respectively, and to illuminate the red indicator lights 25A, 36A, respectively, to provide visual indications that the firing circuit 20 is in the armed state.


In step 112, the system operator actuates the firing mechanism 35 of the firing control panel 30 to activate (fire) the firing circuit 20 to fire the remote mission payload PL. Firing of the firing circuit 20 requires the implementation of several substeps as follows. In substep 112A, the firing control panel 30 is automatically operative, in response to actuation of the firing mechanism 35, to generate and transmit a Request for Challenge message M1—see row eleven of Table II and paragraphs (a), (i), (j), (l), and (o) of the prescribed communication protocol—to the firing circuit 20. In step 112B the firing circuit 20 is automatically operative, in response to message M1, to generate and transmit a Challenge message M2 to the firing control panel 30—see row twelve of Table II and paragraphs (a), (i), (j),(l), and (o) of the prescribed communication protocol—to the firing control panel 30.


In response to the Challenge message M2, the firing control panel 30 is operative in step 112C to verify panel status and compliance with the prescribed communication protocol constraints. More specifically, the firing control panel 30 is operative to: (i) verify that the firing mechanism 35 is still in the activated position; and (ii) ensure that the Challenge message M2 was received within the established validity window—see paragraph (n) of the prescribed communication protocol. In step 112D the firing control panel 30 is operative to automatically generate and transmit the FIRE command message M7—see row thirteen of Table II and paragraphs (a), (i), (j), (l), and (o) of the prescribed communication protocol—to the firing circuit 20. Upon receipt of the FIRE command message M7, the firing circuit is operative in step 112E to: (i) ensure the FIRE command message M7 was received within the established validity window—see paragraph (n) of the prescribed communication protocol; and (ii) implement the validation protocol with respect the received FIRE command message M7—see paragraph (m) of the prescribed communication protocol. If the FIRE command message M7 was received within the established validity window and valid, the firing circuit 20 is activated (fired) in step 112F and the firing circuit 20 automatically transmits a verification message M14—see row fourteen of Table II and paragraphs (a), (i), (j), and (o)—to the firing control panel 30. As discussed above in connection with specifics described for the firing circuit 20 depicted in FIG. 3 the firing circuit 20 is activated in a “soft switch” fashion, i.e., the output relays 28OR1, 28OR2 are enabled-prior to the enablement of the output regulator 27 to preclude arcing of the output relays 28OR1, 28OR2. In step 112G, the firing control panel 30 is operative, in response to the verification message M14, to illuminate the red indicator light 36A on the firing control panel 30 in a flashing mode to alert the system operator to restore the arming mechanism 34 to the disarmed (safed) position.


In step 114 the arming mechanism 34 is manipulated to restore the arming mechanism 34 to the disarmed (safed) position. The firing control panel 30 is operative, in response to restoration of the arming mechanism 34 to the disarmed (safed) position, to generate and transmit a generate the SAFE/DIARM command message M3, to the firing circuit 20—see row five of Table II and paragraphs (a), (h), (i), (j), (k), (m) and (o) of the prescribed communication protocol. Receipt of the SAFE/DIARM command message M3 causes the firing circuit 20 to disable the firing circuit 20 and to transmit the verification message M4—see row six of Table II and paragraphs (a), (i), (j), and (o) of the prescribed communication protocol—to the firing control panel 30. Upon receipt of the verification message M4, the firing control panel 30 is operative to extinguish the flashing red indicator light 36A and steadily illuminate the green indicator light 36B to indicate that the firing circuit 20 is disarmed.


Finally, in step 116 the firing circuit 20 is operative to implement a post-firing test protocol to ensure the continued operability of the components comprising the firing circuit 20 described above in connection with FIG. 3.


For the described embodiment wherein the firing circuit 20 is integrated in combination with the vehicle RCV and the firing control panel 30 is integrated in combination with the portable control console PCC, the vehicle RCV and the portable control console PCC each include a microprocessor that is an element of the corresponding serial link L1 or L2 for the remote digital firing circuit 10. These microprocessors, accordingly, function as serial pass through for all message traffic between the firing control panel 30 and the firing circuit 20. In view of this characteristic of the microprocessors of the vehicle RCV and the portable control console PCC, these microprocessors can be functionally configured, e.g., by software, firmware, hardware, or combinations thereof, to be operative, under specified conditions, to inhibit the transmission of ARM and FIRE command messages from the firing control panel 30 to the firing circuit 20.


A variety of modification and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the present invention may be practiced other than as specifically described herein.

Claims
  • 1-3. (canceled)
  • 4. A remote digital firing system for firing a remote mission payload, the remote digital firing system comprising: a firing circuit communicatively coupled to and operative to fire the remote mission payload; a firing control panel communicatively linked to the firing circuit; and a digital code plug configured to be integrated in communicative combination with the firing circuit and the firing control panel; wherein the firing circuit is operative, with the digital code plug integrated in communicative combination therewith, to generate and write one-time random session variables to the digital code plug and to simultaneously store the one-time random session variables internally in the firing circuit; wherein the firing control panel is operative, with the digital code plug integrated in communicative combination therewith, to generate and transmit messages having the one-time random session variables embodied therein to the firing circuit; wherein the firing circuit validates the messages by comparing the one-time random session variables embodied in the messages with the internally stored one-time random session variables prior to firing the remote mission payload; and wherein the one-time random session variables includes a SAFE/DISARM code for disarming the firing circuit.
  • 5. The remote digital firing system of claim 4 wherein the firing control panel is automatically operative when the digital code plug is integrated in communicative combination therewith to generate and transmit a SAFE/DISARM command message embodying the SAFE/DISARM code to the firing circuit to disable the firing circuit.
  • 6. The remote digital firing system of claim 5 wherein the one-time session variables include a rolling code sequence that is embodied in the SAFE/DIARM command message.
  • 7. A remote digital firing system for firing a remote mission payload, the remote digital firing system comprising: a firing circuit communicatively coupled to and operative to fire the remote mission payload; a firing control panel communicatively linked to the firing circuit; and a digital code plug configured to be integrated in communicative combination with the firing circuit and the firing control panel; wherein the firing circuit is operative, with the digital code Plug integrated in communicative combination therewith, to generate and write one-time random session variables to the digital code plug and to simultaneously store the one-time random session variables internally in the firing circuit; wherein the firing control panel is operative, with the digital code plug integrated in communicative combination therewith, to generate and transmit messages having the one-time random session variables embodied therein to the firing circuit; wherein the firing circuit validates the messages by comparing the one-time random session variables embodied in the messages with the internally stored one-time random session variables prior to firing the remote mission payload; and wherein the one-time session variables includes an encryption key.
  • 8. The remote digital firing system of claim 7 wherein the firing control panel includes an encryption algorithm that uses the encryption key to encrypt selected ones of the messages transmitted to the firing circuit; and wherein the firing circuit includes a decryption algorithm that uses the encryption key to decrypt the selected messages encrypted by the firing control panel.
  • 9. The remote digital firing system of claim 8 wherein the firing circuit uses the decryption algorithm and the encryption key to encrypt messages transmitted thereby in response to the selected encrypted messages from the firing control panel; and wherein the firing control panel uses the encryption algorithm and the encryption key to decrypt the encrypted messages transmitted by the firing circuit.
  • 10-12. (canceled)
  • 13. A remote digital firing system for firing a remote mission payload, the remote digital firing system comprising; a firing circuit communicatively coupled to and operative to fire the remote mission payload; a firing control panel communicatively linked to the firing circuit; and a digital code plug configured to be integrated in communicative combination with the firing circuit and the firing control panel; wherein: the firing circuit is operative, with the digital code plug integrated in communicative combination therewith, to generate and write one-time random session variables to the digital code plug and to simultaneously store the one-time random session variables internally in the firing circuit; the firing control panel is operative, with the digital code plug integrated in communicative combination therewith, to generate and transmit messages having the one-time random session variables embodied therein to the firing circuit; the firing circuit validates the messages by comparing the one-time random session variables embodied in the messages with the internally stored one-time random session variables prior to firing the remote mission payload; a predefined communication protocol defines the types, formats, contents, cryptographic requirements, and sequencing of messages transmitted by the firing control panel to the firing circuit and the messages transmitted by said firing circuit to said firing control panel; the types of messages transmitted between the firing control panel and the firing circuit include status messages, request-challenge messages, command messages, and verification messages; the format of the request-challenge messages, command messages, and verification messages includes a message-originator identification character, one or more characters for specifically identifying each of the request-challenge messages, command messages, and verification messages, and a data block; the one-time session variables include an encryption key; and the firing control panel includes an encryption algorithm that uses the encryption key to encrypt the data block; and the firing circuit includes a decryption algorithm that uses the encryption key to decrypt the data blocks encrypted by the firing control panel.
  • 14-15. (canceled)
  • 16. A firing circuit for a remote digital firing system that includes a firing control panel and a digital code plug, the firing circuit comprising: a microcontroller that includes a modifiable, read-only memory module, an application module for storing instruction sets to control the operation of the microcontroller, an input/output interface for communicating with the firing control panel, an output interface integrating the digital code plug in communicative combination with the firing circuit; a hardware random noise generator for generating and writing a one-time random encryption key and session codes to the digital code plug when integrated in communicative combination with the firing circuit and simultaneously writing the one-time random encryption key and session codes to the modifiable, read-only memory module; an address line decoder connected to the microcontroller, an arming stage connected to the address line decoder; a power bus connected to the arming stage; an output regulator connected to the arming stage; first and second firing stages connected to the address line decoder; and first and second output relays connected to the first and second firing stages, respectively, the first and second output relays defining dual output lines; wherein the address line decoder is operative in response to a first signal from the microcontroller to selectively enable the arming stage so that the output regulator is electrically coupled to the power bus; wherein the address line decoder is operative in response to a second signal from the microcontroller to selectively enable the first and second firing stages, which energizes the first and second output relays, respectively, to electrically couple the dual output lines to the output regulator; and wherein the microcontroller is operative to transmit a third signal to enable the output regulator subsequent to energization of the first and second output relays to complete the electrical circuit between the power bus and the dual output lines.
  • 17. The firing circuit of claim 16 wherein: the arming stage comprises a first field effect transistor and a capacitive pumping subcircuit electrically coupled thereto and a second field effect transistor and a capacitive pumping circuit electrically coupled thereto, and wherein the first field effect transistor is serially connected to said the second field effect transistor, the first field effect transistor is electrically connected to the output regulator, the second field effect transistor is electrically connected to the power bus, and the capacitive pumping subcircuits are electrically connected to the address line decoder; the first firing stage comprises a first field effect transistor and a capacitive pumping subcircuit electrically coupled thereto and a second field effect transistor and a capacitive pumping circuit electrically coupled thereto, and wherein the first field effect transistor is serially connected to the second field effect transistor, the first field effect transistor is electrically connected to ground, the second field effect transistor is electrically connected to the first output relay, and the capacitive pumping subcircuits are electrically connected to the address line decoder; and the second firing stage comprises a first field effect transistor and a capacitive pumping subcircuit electrically coupled thereto and a second field effect transistor and a capacitive pumping circuit electrically coupled thereto, and wherein the first field effect transistor is serially connected to the second field effect transistor, the first field effect transistor is electrically connected to ground, the second field effect transistor is electrically connected to the second output relay, and the capacitive pumping subcircuits are electrically connected to the address line decoder; wherein the address line decoder is operable to selectively enable the first and second field effect transistors of the arming stage and the first and second firing stages by means of a narrow band, pulsed signal transmitted to the respective capacitive pumping subcircuits.
  • 18. A method of operating a remote digital firing system that includes a firing circuit, a firing control panel, and a digital code plug to fire a remote mission payload communicatively coupled to the firing circuit, the method comprising integrating the digital code plug in communicative combination with the firing circuit to generate and write one-time random session variables to the digital code plug and simultaneously storing the session variables in the firing circuit; integrating the digital code plug in communicative combination with the firing control panel; actuating an arming mechanism of the firing control panel to transmit an ARM command message embodying one session variable read from the digital code plug to arm the firing circuit; and actuating a firing mechanism of the firing control panel to transmit a fire message embodying another session variable read from the digital code plug to activate the firing circuit to fire the remote mission payload.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to and claims priority from U.S. provisional patent application Ser. No. 60/340,175, filed 14 Dec. 2001, and entitled FIRING CIRCUIT.

Provisional Applications (1)
Number Date Country
60340175 Dec 2001 US
Continuations (1)
Number Date Country
Parent 10319853 Dec 2002 US
Child 11024243 Dec 2004 US