Remote distributed antenna system

Information

  • Patent Grant
  • 9999038
  • Patent Number
    9,999,038
  • Date Filed
    Friday, June 10, 2016
    8 years ago
  • Date Issued
    Tuesday, June 12, 2018
    6 years ago
Abstract
A distributed antenna system is provided that frequency shifts the output of one or more microcells to a 60 GHz or higher frequency range for transmission to a set of distributed antennas. The cellular band outputs of these microcell base station devices are used to modulate a 60 GHz (or higher) carrier wave, yielding a group of subcarriers on the 60 GHz carrier wave. This group will then be transmitted in the air via analog microwave RF unit, after which it can be repeated or radiated to the surrounding area. The repeaters amplify the signal and resend it on the air again toward the next repeater. In places where a microcell is required, the 60 GHz signal is shifted in frequency back to its original frequency (e.g., the 1.9 GHz cellular band) and radiated locally to nearby mobile devices.
Description
TECHNICAL FIELD

The subject disclosure relates to wireless communications, e.g., to providing a remote distributed antenna system using signals in defined bands, such as microwaves.


BACKGROUND

As smart phones and other portable devices increasingly become ubiquitous, and data usage skyrockets, macrocell base stations and existing wireless infrastructure are being overwhelmed. To provide additional mobile bandwidth, small cell deployment is being pursued, with microcells and picocells providing coverage for much smaller areas than traditional macrocells, but at high expense.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating an example, non-limiting embodiment of a distributed antenna system in accordance with various aspects described herein.



FIG. 2 is a block diagram illustrating an example, non-limiting embodiment of a distributed antenna system in accordance with various aspects described herein.



FIG. 3 is a block diagram illustrating an example, non-limiting embodiment of a distributed antenna launcher system in accordance with various aspects described herein.



FIG. 4 is a block diagram illustrating an example, non-limiting embodiment of a distributed antenna repeater system in accordance with various aspects described herein.



FIG. 5 is a block diagram illustrating an example, non-limiting embodiment of a distributed antenna launcher system in accordance with various aspects described herein.



FIG. 6 is a block diagram illustrating an example, non-limiting embodiment of a distributed antenna repeater system in accordance with various aspects described herein.



FIG. 7 is a block diagram illustrating an example, non-limiting embodiment of a millimeter band antenna apparatus in accordance with various aspects described herein.



FIG. 8 illustrates a flow diagram of an example, non-limiting embodiment of a method for providing a distributed antenna system as described herein.



FIG. 9 is a block diagram of an example, non-limiting embodiment of a computing environment in accordance with various aspects described herein.



FIG. 10 is a block diagram of an example, non-limiting embodiment of a mobile network platform in accordance with various aspects described herein.



FIG. 11A is a block diagram illustrating an example, non-limiting embodiment of a communication system in accordance with various aspects described herein.



FIG. 11B is a block diagram illustrating an example, non-limiting embodiment of a portion of the communication system of FIG. 11A in accordance with various aspects described herein.



FIGS. 11C and 11D are block diagrams illustrating example, non-limiting embodiments of a communication node of the communication system of FIG. 11A in accordance with various aspects described herein.



FIG. 12A is a graphical diagram illustrating an example, non-limiting embodiment of downlink and uplink communication techniques for enabling a base station to communicate with communication nodes in accordance with various aspects described herein.



FIG. 12B is a block diagram illustrating an example, non-limiting embodiment of a communication node in accordance with various aspects described herein.



FIG. 12C is a block diagram illustrating an example, non-limiting embodiment of a communication node in accordance with various aspects described herein.



FIG. 12D is a graphical diagram illustrating an example, non-limiting embodiment of a frequency spectrum in accordance with various aspects described herein.



FIG. 12E is a graphical diagram illustrating an example, non-limiting embodiment of a frequency spectrum in accordance with various aspects described herein.



FIG. 12F is a graphical diagram illustrating an example, non-limiting embodiment of a frequency spectrum in accordance with various aspects described herein.



FIG. 12G is a graphical diagram illustrating an example, non-limiting embodiment of a frequency spectrum in accordance with various aspects described herein.



FIG. 12H is a block diagram illustrating an example, non-limiting embodiment of a transmitter in accordance with various aspects described herein.



FIG. 12I is a block diagram illustrating an example, non-limiting embodiment of a receiver in accordance with various aspects described herein.



FIG. 13A illustrates a flow diagram of an example, non-limiting embodiment of a method in accordance with various aspects described herein.



FIG. 13B illustrates a flow diagram of an example, non-limiting embodiment of a method in accordance with various aspects described herein.



FIG. 13C illustrates a flow diagram of an example, non-limiting embodiment of a method in accordance with various aspects described herein.



FIG. 13D illustrates a flow diagram of an example, non-limiting embodiment of a method in accordance with various aspects described herein.



FIG. 13E illustrates a flow diagram of an example, non-limiting embodiment of a method in accordance with various aspects described herein.



FIG. 13F illustrates a flow diagram of an example, non-limiting embodiment of a method in accordance with various aspects described herein.



FIG. 13G illustrates a flow diagram of an example, non-limiting embodiment of a method in accordance with various aspects described herein.



FIG. 13H illustrates a flow diagram of an example, non-limiting embodiment of a method in accordance with various aspects described herein.



FIG. 13I illustrates a flow diagram of an example, non-limiting embodiment of a method in accordance with various aspects described herein.



FIG. 13J illustrates a flow diagram of an example, non-limiting embodiment of a method in accordance with various aspects described herein.



FIG. 13K illustrates a flow diagram of an example, non-limiting embodiment of a method in accordance with various aspects described herein.





DETAILED DESCRIPTION

One or more embodiments are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the various embodiments. It is evident, however, that the various embodiments can be practiced without these specific details (and without applying to any particular networked environment or standard).


To provide network connectivity for increasing numbers of mobile devices, a distributed antenna system is provided that allows one or more base stations to have antennas that are distributed over a wide area. Small cell deployments can be used to supplement the traditional macrocellular deployments and require a pervasive and high capacity network to support them.


Various embodiments disclosed herein relate to a microwave system that carries the output signals of one or more microcells (or picocells, femtocells, and other types of small cell deployments) on a carrier wave that has a frequency corresponding to a millimeter-wave band (e.g., 60 GHz and higher). However, various embodiments disclosed here can operate at nearly any microwave frequency. A cluster of one or more microcell base station devices can be housed at a launching point, and serve several microcells in its vicinity. The RF (radio frequency) outputs of these microcell base station devices can be used to modulate a 60 GHz (or higher) carrier wave, yielding a group of subcarriers on the 60 GHz carrier wave. This group will then be transmitted in the air via an especially designed analog microwave RF unit, after which it can be repeated or radiated to the surrounding area. The repeaters amplify the signal and resend it on the air again toward the next repeater. In places where a microcell is required, the 60 GHz signal is shifted in frequency back to its original frequency (e.g., the 1.9 GHz cellular band) and radiated locally to nearby mobile devices.


As the 60 GHz carrier hops from one antenna site to the next, various subcarriers can be added or dropped depending on the traffic requirements of that site. The selection of channels to be added or dropped can be controlled dynamically as traffic loads shift. The return signals from the mobile devices can be modulated to another frequency in the 60 GHz range and can be sent back in the opposite direction to the original launching point. In another embodiment, time-division duplexing can be used and the return signals can be at the same frequency as the original signals. The repeaters thus essentially space shift the microcell base station devices from the launching point location to other places via radio hops from one utility pole to another. The launcher and repeaters can frequency shift the cellular signals via an analog process (modulating the carrier wave) in such a way the system is scalable and flexible, allowing additional microcells and antenna sites to be added as well as being communication protocol agnostic. The system disclosed herein will work for current cellular communication protocols just as well as it will work for future deployments.


For these considerations as well as other considerations, in one or more embodiments, a system includes a memory to store instructions and a processor, coupled to the memory to facilitate execution of the instructions to perform operations including facilitating receipt of a first signal from a base station device, wherein the first signal is determined to be in a cellular band. The operations include modulating a carrier wave signal with the first signal and generating a transmission based on the carrier wave signal and the first signal. The operations can also include directing the transmission to a remote antenna wirelessly.


Another embodiment includes a memory to store instructions and a processor, coupled to the memory to facilitate execution of the instructions to perform operations including receiving a first wireless transmission. The operations can also include extracting a signal from the first wireless transmission, where the signal is in a cellular band frequency. The operations can also include transmitting the signal to a mobile device and retransmitting the first wireless transmission.


In another embodiment, a method includes receiving, by a device including a processor, a defined high frequency transmission directed to a remote antenna. The method can also include identifying a signal from a plurality of signals, that is determined to be associated with the remote antenna, where the plurality of signals are carried in a plurality of channels with the defined high frequency transmission. The method can then include extracting the signal, transmitting the signal directed to a mobile device, and retransmitting the defined high frequency transmission directed to another remote antenna.


Turning now to FIG. 1, illustrated is an example, non-limiting embodiment of a distributed antenna system 100 in accordance with various aspects described herein. System 100 includes one or more microcell base stations (shown in more detail in FIGS. 3 and 5) at base station device 114 that is communicably coupled to a network connection via a physical connection (e.g., wired or optical) to a mobile network. In some embodiments, the base station device 114 can be communicably coupled to a macrocell site or the site's network connection. Macrocells can have dedicated connections to the mobile network, and base station device 114 can share the macrocell site's connection. Base station device 114 can be mounted on, or attached to light pole 102. In some embodiments, the base station device 114 can be mounted on utility poles, or other raised structures. In some embodiments, the base station device 114 can be installed on or near the ground.


Base station device 114 can provide connectivity for mobile devices 120 and 122. Antennas 116 and 118, mounted on or near launcher 108 or repeaters 110 and 112 on light poles (or utility poles or other structures) 102, 104, and 106 can receive signals from base station device 114 and transmit those signals to mobile devices 120 and 122 over a much wider area than if the antennas 116 and 118 were located at or near base station device 114.


It is to be appreciated that FIG. 1 displays three light poles, with one base station device, for purposes of simplicity. In other embodiments, light pole 102 can have more base station devices, and one or more light poles with distributed antennas are possible. In some embodiments, there can be launchers and/or repeaters without antennas. Antennas can be communicably coupled to launchers and/or repeaters in areas where microcell deployments are required or can be spaced out to avoid excessive overlap.


Launcher 108 can receive the signals from the base station device 114 that are directed at mobile devices 120 and 122 and modulate a 60 GHz carrier wave, yielding a group of subcarriers on the 60 GHz carrier. The launcher 108 can then transmit the carrier wave to repeaters within range, in this case, repeater 110. Repeater 110 can extract the signal directed toward mobile device 120 from the carrier wave, and radiate the signal to the mobile device 120 via antenna 116. Repeater 110 can then retransmit the carrier wave to repeater 112, where repeater 112 extracts the signal directed at mobile device 122 and radiates the signal via antenna 118. Repeater 112 can then retransmit the carrier wave transmission to the next repeater. The repeaters 110 and 112 can also amplify the transmission before retransmitting using a combination of low noise amplifiers and power amplifiers.


In various embodiments, the repeaters 110 and 112 and/or antennas 116 and 118 can be assigned to channels that correspond to predetermined bandwidth ranges in the carrier wave. The repeaters 110 and 112 can extract the assigned signals from the carrier wave, wherein the signals correspond to the channels and or bandwidths corresponding to the repeaters and/or antennas. In this way, the antennas 116 and 118 radiate the correct signal for the microcell area. In other embodiments, the carrier wave can include a control channel that contains metadata that indicates which of the subcarriers correspond to the antennas 116 and 118, and so repeaters 110 and 112 extract the appropriate signal.


As the 60 GHz carrier wave hops from one radiator site to another, various subcarriers can be added or dropped, depending on the traffic requirements of that site. The selection of channels to be added or dropped can be controlled dynamically as traffic load shifts.


When mobile devices 120 and/or 122 send signals back to the mobile network, antennas 116 and/or 118 receive those signals and repeaters 110 and/or 112 use the signals to modulate another carrier wave (e.g., are shifted to 60 GHz in the analog domain) and then the carrier wave is transmitted back to the launcher 108 where the signals from mobile devices 120 an/or 122 are extracted and delivered to base station device 114.


Turning now to FIG. 2, a block diagram illustrating an example, non-limiting embodiment of a distributed antenna system 200 in accordance with various aspects described herein is shown. System 200 includes one or more microcell base station devices (shown in more detail in FIGS. 3 and 5) at base station 214 that is communicably coupled to a network connection via a physical connection (e.g., wired or optical) to a mobile network. In some embodiments, the base station 214 can be communicably coupled to a macrocell site or the site's network connection. Macrocells can have dedicated connections to the mobile network, and base station 214 can share the macrocell site's network connection. Base station 214 can be mounted on, or attached to light pole 202. In some embodiments, the base station 214 can be mounted on utility poles, or other raised structures. In some embodiments, the base station 214 can be installed on or near the ground.



FIG. 2 depicts a different embodiment than that shown in FIG. 1. In FIG. 2, unlike in FIG. 1, the transmission hop between light poles 204 and 206 can be implemented using a carrier wave that is sent via a power line (e.g., a surface wave), or via an underground conduit (e.g., a pipe) as a guided electromagnetic wave. In some embodiments, the transmission 220 can be sent down a wire or other traditional datalink.


Whatever the transmission means, the functionality is similar to FIG. 1, where launcher 208 can receive the signals from the base station 214 that are directed at mobile devices 216 and 218 and modulate a 60 GHz carrier wave, yielding a group of subcarriers on the 60 GHz carrier. The launcher 208 can then transmit the carrier wave to repeaters within range, in this case, repeater 222. Repeater 210 can extract the signal directed toward mobile device 216 from the carrier wave, and radiate the signal to the mobile device 216 via antenna 222. Repeater 210 can then retransmit the carrier wave via the physical link or as a surface wave over a power line to repeater 212, where repeater 212 extracts the signal directed at mobile device 218 and radiates the signal via antenna 224. Repeater 212 can then retransmit the carrier wave transmission to the next repeater. The repeaters 210 and 212 can also amplify the transmission before retransmitting using a combination of low noise amplifiers and power amplifiers.


Turning now to FIG. 3, illustrated is a block diagram of an example, non-limiting embodiment of a distributed antenna launcher system 300 in accordance with various aspects described herein. FIG. 3 shows in more detail the base station 104 and launcher 106 described in FIG. 1. A base station 302 can include a router 304 and a microcell base station device 308 (or picocell, femtocell, or other small cell deployment). The base station 302 can receive an external network connection 306 that is linked to existing infrastructure. The network connection 306 can be physical (such as fiber or cable) or wireless (such as a high-bandwidth microwave connection). The existing infrastructure that the network connection 306 can be linked to, can in some embodiments be macrocell sites. For those macrocell sites that have high data rate network connections, base station 302 can share the network connection with the macrocell site.


The router 304 can provide connectivity for microcell base station device 308 which facilitates communications with the mobile devices. While FIG. 3 shows that base station 302 has one microcell base station device, in other embodiments, the base station 302 can include two or more microcell base station devices. The RF output of microcell base station device 308 can be used to modulate a 60 GHz signal and be connected via fiber to an out door unit (“ODU”) 310. ODU 310 can be any of a variety of microwave antennas that can receive and transmit microwave signals. In some embodiments, ODU unit can be a millimeter-wave band antenna apparatus as shown in FIG. 7.


Turning now to FIG. 4, a block diagram illustrating an example, non-limiting embodiment of a distributed antenna repeater system 400 in accordance with various aspects described herein is shown. ODU 402 can receive a millimeter-wave transmission sent from another ODU at a repeater or a launcher. The transmission can be a carrier wave with a plurality of subcarrier signals. A repeater 406 can receive the transmission and an analog tap and modulator 408 can extract a signal from the plurality of subcarrier signals and radiate the signal via an antenna 410 to a mobile device. The analog tap and modulator 408 can also amplify the transmission received by ODU 402 and retransmit the carrier wave to another repeater or launcher via ODU 404.


Antenna 410 can also receive a communication protocol signal from a mobile device, and analog tap and modulator 408 can use the signal to modulate another carrier wave, and ODUs 402 or 404 can send the carrier wave transmission on to a base station device.


With reference to FIG. 5, a block diagram illustrating an example, non-limiting embodiment of a distributed antenna launcher system 500 in accordance with various aspects described herein is shown. System 500 includes microcell base station devices 504, 506, and 508 that transmit to and receive signals from mobile devices that are in their respective cells. It is to be appreciated that system 500 is shown with 3 microcell base station devices purely for exemplary reasons. In other embodiments, a base station site, or cluster can contain one or more microcell base station devices.


The outputs of the microcell base station devices 504, 506, and 508 can be combined with a millimeter wave carrier wave generated by a local oscillator 514 at frequency mixers 522, 520, and 518 respectively. Frequency mixers 522, 520, and 518 can use heterodyning techniques to frequency shift the signals from microcell base station devices 504, 506, and 508. This can be done in the analog domain, and as a result the frequency shifting can be done without regard to the type of communications protocol that microcell base station devices 504, 506, and 508 use. Over time, as new communications technologies are developed, the microcell base station devices 504, 506, and 508 can be upgraded or replaced and the frequency shifting and transmission apparatus can remain, simplifying upgrades.


The controller 510 can generate the control signal that accompanies the carrier wave, and GPS module 512 can synchronize the frequencies for the control signal such that the exact frequencies can be determined. The GPS module 512 can also provide a time reference for the distributed antenna system.


Multiplexer/demultiplexer 524 can frequency division multiplex the signals from frequency mixers 518, 520, and 522 in accordance with the control signal from controller 510. Each of the signals can assigned channels on the carrier wave, and the control signal can provide information indicating the microcell signals that correspond to each channel.


ODU unit 502 can also receive transmissions sent by repeaters, where the transmission's carrier wave are carrying signals directed at the microcell base station devices 504, 506, and 508 from mobile devices. Multiplexer/demultiplexer 524 can separate the subcarrier signals from each other and direct them to the correct microcells based on the channels of the signals, or based on metadata in the control signal. The frequency mixers 518, 520, and 522 can then extract the signals from the carrier wave and direct the signals to the corresponding microcells.


Turning now to FIG. 6, a block diagram illustrating an example, non-limiting embodiment of a distributed antenna repeater system 600 in accordance with various aspects described herein is shown. Repeater system 600 includes ODUs 602 and 604 that receive and transmit transmissions from launchers and other repeaters.


In various embodiments, ODU 602 can receive a transmission from a launcher with a plurality of subcarriers. Diplexer 606 can separate the transmission from other transmissions that the ODU 602 is sending, and direct the transmission to low noise amplifier (“LNA”) 608. A frequency mixer 628, with help from a local oscillator 612, can downshift the transmission (which is at or above 60 GHz) to the cellular band (˜1.9 GHz). An extractor 632 can extract the signal on the subcarrier that corresponds to antenna 622 and direct the signal to the antenna 622. For the signals that are not being radiated at this antenna location, extractor 632 can redirect them to another frequency mixer 636, where the signals are used to modulate a carrier wave generated by local oscillator 614. The carrier wave, with its subcarriers, is directed to a power amplifier (“PA”) 616 and is retransmitted by ODU 604 to another repeater, via diplexer 620.


At the antenna 622, a PA 624 can boost the signal for transmission to the mobile device. An LNA 626 can be used to amplify weak signals that are received from the mobile device and then send the signal to a multiplexer 634 which merges the signal with signals that have been received from ODU 604. The signals received from ODU 604 have been split by diplexer 620, and then passed through LNA 618, and downshifted in frequency by frequency mixer 638. When the signals are combined by multiplexer 634, they are upshifted in frequency by frequency mixer 630, and then boosted by PA 610, and transmitted back to the launcher or another repeater by ODU 602.


Turning now to FIG. 7, a block diagram illustrating an example, non-limiting embodiment of a millimeter-wave band antenna apparatus 700 in accordance with various aspects described herein is shown. The radio repeater 704 can have a plastic cover 702 to protect the radio antennas 706. The radio repeater 704 can be mounted to a utility pole, light pole, or other structure 708 with a mounting arm 710. The radio repeater can also receive power via power cord 712 and output the signal to a nearby microcell using fiber or cable 714.


In some embodiments, the radio repeater 704 can include 16 antennas. These antennas can be arranged radially, and each can have approximately 24 degrees of azimuthal beamwidth. There can thus be a small overlap between each antennas beamwidths. The radio repeater 704, when transmitting, or receiving transmissions, can automatically select the best sector antenna to use for the connections based on signal measurements such as signal strength, signal to noise ratio, etc. Since the radio repeater 704 can automatically select the antennas to use, in one embodiment, precise antenna alignment is not implemented, nor are stringent requirements on mounting structure twist, tilt, and sway.


In some embodiments, the radio repeater 704 can include an apparatus such as repeater system 600 or 400 within the apparatus, thus enabling a self-contained unit to be a repeater in the distributed antenna network, in addition to facilitating communications with mobile devices.



FIG. 8 illustrates a process in connection with the aforementioned systems. The process in FIG. 8 can be implemented for example by systems 100, 200, 300, 400, 500, 600, and 700 illustrated in FIGS. 1-7 respectively. While for purposes of simplicity of explanation, the methods are shown and described as a series of blocks, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described hereinafter.



FIG. 8 illustrates a flow diagram of an example, non-limiting embodiment of a method for providing a distributed antenna system as described herein. Methodology 800 can include step 802, where a defined high frequency transmission is received from a remote antenna. The first defined frequency transmission can be at or greater than 60 GHz. The transmission can be received by an outdoor microwave transceiver (e.g., ODU 602 or radio repeater 704). At step 804, a signal, from a plurality of signals in the transmission, is identified and determined to be associated with the remote antenna (e.g., based on the control channel), and wherein the plurality of signals are carried in a plurality of channels with the defined high frequency transmission. The plurality of channels can be frequency division multiplexed together in some embodiments. The channel that the signals are occupying can determine which remote antenna the signals are directed towards, and at step 806, a frequency mixer (e.g., 628) and multiplexer/demultiplexer (e.g., 632) can extract the signal from the plurality of signals and shift the signal back to the native frequency of around 1.9 GHz. At step 808, the signal can be transmitted (e.g., by antenna 622) to a mobile device that the signal is directed towards. At 810, the defined frequency transmission can be retransmitted on towards another remote antenna and/or repeater in the chain.


Referring now to FIG. 9, there is illustrated a block diagram of a computing environment in accordance with various aspects described herein. For example, in some embodiments, the computer can be or be included within the distributed antenna system disclosed in any of the previous systems 100, 200, 300, 400, 500, 600 and/or 700.


In order to provide additional context for various embodiments described herein, FIG. 9 and the following discussion are intended to provide a brief, general description of a suitable computing environment 900 in which the various embodiments of the embodiment described herein can be implemented. While the embodiments have been described above in the general context of computer-executable instructions that can run on one or more computers, those skilled in the art will recognize that the embodiments can be also implemented in combination with other program modules and/or as a combination of hardware and software.


Generally, program modules include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the inventive methods can be practiced with other computer system configurations, including single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices.


The terms “first,” “second,” “third,” and so forth, as used in the claims, unless otherwise clear by context, is for clarity only and doesn't otherwise indicate or imply any order in time. For instance, “a first determination,” “a second determination,” and “a third determination,” does not indicate or imply that the first determination is to be made before the second determination, or vice versa, etc.


The illustrated embodiments of the embodiments herein can be also practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.


Computing devices typically include a variety of media, which can include computer-readable storage media and/or communications media, which two terms are used herein differently from one another as follows. Computer-readable storage media can be any available storage media that can be accessed by the computer and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable storage media can be implemented in connection with any method or technology for storage of information such as computer-readable instructions, program modules, structured data or unstructured data.


Computer-readable storage media can include, but are not limited to, random access memory (RAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices or other tangible and/or non-transitory media which can be used to store desired information. In this regard, the terms “tangible” or “non-transitory” herein as applied to storage, memory or computer-readable media, are to be understood to exclude only propagating transitory signals per se as modifiers and do not relinquish rights to all standard storage, memory or computer-readable media that are not only propagating transitory signals per se.


Computer-readable storage media can be accessed by one or more local or remote computing devices, e.g., via access requests, queries or other data retrieval protocols, for a variety of operations with respect to the information stored by the medium.


Communications media typically embody computer-readable instructions, data structures, program modules or other structured or unstructured data in a data signal such as a modulated data signal, e.g., a carrier wave or other transport mechanism, and includes any information delivery or transport media. The term “modulated data signal” or signals refers to a signal that has one or more of its characteristics set or changed in such a manner as to encode information in one or more signals. By way of example, and not limitation, communication media include wired media, such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.


With reference again to FIG. 9, the example environment 900 for implementing various embodiments of the aspects described herein includes a computer 902, the computer 902 including a processing unit 904, a system memory 906 and a system bus 908. The system bus 908 couples system components including, but not limited to, the system memory 906 to the processing unit 904. The processing unit 904 can be any of various commercially available processors. Dual microprocessors and other multi-processor architectures can also be employed as the processing unit 904.


The system bus 908 can be any of several types of bus structure that can further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. The system memory 906 includes ROM 910 and RAM 912. A basic input/output system (BIOS) can be stored in a non-volatile memory such as ROM, erasable programmable read only memory (EPROM), EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the computer 902, such as during startup. The RAM 912 can also include a high-speed RAM such as static RAM for caching data.


The computer 902 further includes an internal hard disk drive (HDD) 914 (e.g., EIDE, SATA), which internal hard disk drive 914 can also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 916, (e.g., to read from or write to a removable diskette 918) and an optical disk drive 920, (e.g., reading a CD-ROM disk 922 or, to read from or write to other high capacity optical media such as the DVD). The hard disk drive 914, magnetic disk drive 916 and optical disk drive 920 can be connected to the system bus 908 by a hard disk drive interface 924, a magnetic disk drive interface 926 and an optical drive interface 928, respectively. The interface 924 for external drive implementations includes at least one or both of Universal Serial Bus (USB) and Institute of Electrical and Electronics Engineers (IEEE) 994 interface technologies. Other external drive connection technologies are within contemplation of the embodiments described herein.


The drives and their associated computer-readable storage media provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For the computer 902, the drives and storage media accommodate the storage of any data in a suitable digital format. Although the description of computer-readable storage media above refers to a hard disk drive (HDD), a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of storage media which are readable by a computer, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, can also be used in the example operating environment, and further, that any such storage media can contain computer-executable instructions for performing the methods described herein.


A number of program modules can be stored in the drives and RAM 912, including an operating system 930, one or more application programs 932, other program modules 934 and program data 936. All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 912. The systems and methods described herein can be implemented utilizing various commercially available operating systems or combinations of operating systems.


A user can enter commands and information into the computer 902 through one or more wired/wireless input devices, e.g., a keyboard 938 and a pointing device, such as a mouse 940. Other input devices (not shown) can include a microphone, an infrared (IR) remote control, a joystick, a game pad, a stylus pen, touch screen or the like. These and other input devices are often connected to the processing unit 904 through an input device interface 942 that can be coupled to the system bus 908, but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a universal serial bus (USB) port, an IR interface, etc.


A monitor 944 or other type of display device can be also connected to the system bus 908 via an interface, such as a video adapter 946. In addition to the monitor 944, a computer typically includes other peripheral output devices (not shown), such as speakers, printers, etc.


The computer 902 can operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 948. The remote computer(s) 948 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically includes many or all of the elements described relative to the computer 902, although, for purposes of brevity, only a memory/storage device 950 is illustrated. The logical connections depicted include wired/wireless connectivity to a local area network (LAN) 952 and/or larger networks, e.g., a wide area network (WAN) 954. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which can connect to a global communications network, e.g., the Internet.


When used in a LAN networking environment, the computer 902 can be connected to the local network 952 through a wired and/or wireless communication network interface or adapter 956. The adapter 956 can facilitate wired or wireless communication to the LAN 952, which can also include a wireless AP disposed thereon for communicating with the wireless adapter 956.


When used in a WAN networking environment, the computer 902 can include a modem 958 or can be connected to a communications server on the WAN 954 or has other means for establishing communications over the WAN 954, such as by way of the Internet. The modem 958, which can be internal or external and a wired or wireless device, can be connected to the system bus 908 via the input device interface 942. In a networked environment, program modules depicted relative to the computer 902 or portions thereof, can be stored in the remote memory/storage device 950. It will be appreciated that the network connections shown are example and other means of establishing a communications link between the computers can be used.


The computer 902 can be operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone. This can include Wireless Fidelity (Wi-Fi) and BLUETOOTH® wireless technologies. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.


Wi-Fi can allow connection to the Internet from a couch at home, a bed in a hotel room or a conference room at work, without wires. Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE 802.11 (a, b, g, n, ac, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which can use IEEE 802.3 or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands, at an 11 Mbps (802.11a) or 54 Mbps (802.11b) data rate, for example or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic 10BaseT wired Ethernet networks used in many offices.



FIG. 10 presents an example embodiment 1000 of a mobile network platform 1010 that can implement and exploit one or more aspects of the disclosed subject matter described herein. Generally, wireless network platform 1010 can include components, e.g., nodes, gateways, interfaces, servers, or disparate platforms, that facilitate both packet-switched (PS) (e.g., internet protocol (IP), frame relay, asynchronous transfer mode (ATM)) and circuit-switched (CS) traffic (e.g., voice and data), as well as control generation for networked wireless telecommunication. As a non-limiting example, wireless network platform 1010 can be included in telecommunications carrier networks, and can be considered carrier-side components as discussed elsewhere herein. Mobile network platform 1010 includes CS gateway node(s) 1012 which can interface CS traffic received from legacy networks like telephony network(s) 1040 (e.g., public switched telephone network (PSTN), or public land mobile network (PLMN)) or a signaling system #7 (SS7) network 1070. Circuit switched gateway node(s) 1012 can authorize and authenticate traffic (e.g., voice) arising from such networks. Additionally, CS gateway node(s) 1012 can access mobility, or roaming, data generated through SS7 network 1070; for instance, mobility data stored in a visited location register (VLR), which can reside in memory 1030. Moreover, CS gateway node(s) 1012 interfaces CS-based traffic and signaling and PS gateway node(s) 1018. As an example, in a 3GPP UMTS network, CS gateway node(s) 1012 can be realized at least in part in gateway GPRS support node(s) (GGSN). It should be appreciated that functionality and specific operation of CS gateway node(s) 1012, PS gateway node(s) 1018, and serving node(s) 1016, is provided and dictated by radio technology(ies) utilized by mobile network platform 1010 for telecommunication.


In addition to receiving and processing CS-switched traffic and signaling, PS gateway node(s) 1018 can authorize and authenticate PS-based data sessions with served mobile devices. Data sessions can include traffic, or content(s), exchanged with networks external to the wireless network platform 1010, like wide area network(s) (WANs) 1050, enterprise network(s) 1070, and service network(s) 1080, which can be embodied in local area network(s) (LANs), can also be interfaced with mobile network platform 1010 through PS gateway node(s) 1018. It is to be noted that WANs 1050 and enterprise network(s) 1060 can embody, at least in part, a service network(s) like IP multimedia subsystem (IMS). Based on radio technology layer(s) available in technology resource(s) 1017, packet-switched gateway node(s) 1018 can generate packet data protocol contexts when a data session is established; other data structures that facilitate routing of packetized data also can be generated. To that end, in an aspect, PS gateway node(s) 1018 can include a tunnel interface (e.g., tunnel termination gateway (TTG) in 3GPP UMTS network(s) (not shown)) which can facilitate packetized communication with disparate wireless network(s), such as Wi-Fi networks.


In embodiment 1000, wireless network platform 1010 also includes serving node(s) 1016 that, based upon available radio technology layer(s) within technology resource(s) 1017, convey the various packetized flows of data streams received through PS gateway node(s) 1018. It is to be noted that for technology resource(s) 1017 that rely primarily on CS communication, server node(s) can deliver traffic without reliance on PS gateway node(s) 1018; for example, server node(s) can embody at least in part a mobile switching center. As an example, in a 3GPP UMTS network, serving node(s) 1016 can be embodied in serving GPRS support node(s) (SGSN).


For radio technologies that exploit packetized communication, server(s) 1014 in wireless network platform 1010 can execute numerous applications that can generate multiple disparate packetized data streams or flows, and manage (e.g., schedule, queue, format . . . ) such flows. Such application(s) can include add-on features to standard services (for example, provisioning, billing, customer support . . . ) provided by wireless network platform 1010. Data streams (e.g., content(s) that are part of a voice call or data session) can be conveyed to PS gateway node(s) 1018 for authorization/authentication and initiation of a data session, and to serving node(s) 1016 for communication thereafter. In addition to application server, server(s) 1014 can include utility server(s), a utility server can include a provisioning server, an operations and maintenance server, a security server that can implement at least in part a certificate authority and firewalls as well as other security mechanisms, and the like. In an aspect, security server(s) secure communication served through wireless network platform 1010 to ensure network's operation and data integrity in addition to authorization and authentication procedures that CS gateway node(s) 1012 and PS gateway node(s) 1018 can enact. Moreover, provisioning server(s) can provision services from external network(s) like networks operated by a disparate service provider; for instance, WAN 1050 or Global Positioning System (GPS) network(s) (not shown). Provisioning server(s) can also provision coverage through networks associated to wireless network platform 1010 (e.g., deployed and operated by the same service provider), such as femto-cell network(s) (not shown) that enhance wireless service coverage within indoor confined spaces and offload RAN resources in order to enhance subscriber service experience within a home or business environment by way of UE 1075.


It is to be noted that server(s) 1014 can include one or more processors configured to confer at least in part the functionality of macro network platform 1010. To that end, the one or more processor can execute code instructions stored in memory 1030, for example. It is should be appreciated that server(s) 1014 can include a content manager 1015, which operates in substantially the same manner as described hereinbefore.


In example embodiment 1000, memory 1030 can store information related to operation of wireless network platform 1010. Other operational information can include provisioning information of mobile devices served through wireless platform network 1010, subscriber databases; application intelligence, pricing schemes, e.g., promotional rates, flat-rate programs, couponing campaigns; technical specification(s) consistent with telecommunication protocols for operation of disparate radio, or wireless, technology layers; and so forth. Memory 1030 can also store information from at least one of telephony network(s) 1040, WAN 1050, enterprise network(s) 1060, or SS7 network 1070. In an aspect, memory 1030 can be, for example, accessed as part of a data store component or as a remotely connected memory store.


In order to provide a context for the various aspects of the disclosed subject matter, FIG. 10, and the following discussion, are intended to provide a brief, general description of a suitable environment in which the various aspects of the disclosed subject matter can be implemented. While the subject matter has been described above in the general context of computer-executable instructions of a computer program that runs on a computer and/or computers, those skilled in the art will recognize that the disclosed subject matter also can be implemented in combination with other program modules. Generally, program modules include routines, programs, components, data structures, etc. that perform particular tasks and/or implement particular abstract data types.


Turning now to FIG. 11A, a block diagram illustrating an example, non-limiting embodiment of a communication system 1100 in accordance with various aspects of the subject disclosure is shown. The communication system 1100 can include a macro base station 1102 such as a base station or access point having antennas that covers one or more sectors (e.g., 6 or more sectors). The macro base station 1102 can be communicatively coupled to a communication node 1104A that serves as a master or distribution node for other communication nodes 1104B-E distributed at differing geographic locations inside or beyond a coverage area of the macro base station 1102. The communication nodes 1104 operate as a distributed antenna system configured to handle communications traffic associated with client devices such as mobile devices (e.g., cell phones) and/or fixed/stationary devices (e.g., a communication device in a residence, or commercial establishment) that are wirelessly coupled to any of the communication nodes 1104. In particular, the wireless resources of the macro base station 1102 can be made available to mobile devices by allowing and/or redirecting certain mobile and/or stationary devices to utilize the wireless resources of a communication node 1104 in a communication range of the mobile or stationary devices.


The communication nodes 1104A-E can be communicatively coupled to each other over an interface 1110. In one embodiment, the interface 1110 can comprise a wired or tethered interface (e.g., fiber optic cable). In other embodiments, the interface 1110 can comprise a wireless RF interface forming a radio distributed antenna system. In various embodiments, the communication nodes 1804A-E can be configured to provide communication services to mobile and stationary devices according to instructions provided by the macro base station 1102. In other examples of operation however, the communication nodes 1104A-E operate merely as analog repeaters to spread the coverage of the macro base station 1102 throughout the entire range of the individual communication nodes 1104A-E.


The micro base stations (depicted as communication nodes 1104) can differ from the macro base station in several ways. For example, the communication range of the micro base stations can be smaller than the communication range of the macro base station. Consequently, the power consumed by the micro base stations can be less than the power consumed by the macro base station. The macro base station optionally directs the micro base stations as to which mobile and/or stationary devices they are to communicate with, and which carrier frequency, spectral segment(s) and/or timeslot schedule of such spectral segment(s) are to be used by the micro base stations when communicating with certain mobile or stationary devices. In these cases, control of the micro base stations by the macro base station can be performed in a master-slave configuration or other suitable control configurations. Whether operating independently or under the control of the macro base station 1102, the resources of the micro base stations can be simpler and less costly than the resources utilized by the macro base station 1102.


Turning now to FIG. 11B, a block diagram illustrating an example, non-limiting embodiment of the communication nodes 1104B-E of the communication system 1100 of FIG. 11A is shown. In this illustration, the communication nodes 1104B-E are placed on a utility fixture such as a light post. In other embodiments, some of the communication nodes 1104B-E can be placed on a building or a utility post or pole that is used for distributing power and/or communication lines. The communication nodes 1104B-E in these illustrations can be configured to communicate with each other over the interface 1110, which in this illustration is shown as a wireless interface. The communication nodes 1104B-E can also be configured to communicate with mobile or stationary devices 1106A-C over a wireless interface 1111 that conforms to one or more communication protocols (e.g., fourth generation (4G) wireless signals such as LTE signals or other 4G signals, fifth generation (5G) wireless signals, WiMAX, 802.11 signals, ultra-wideband signals, etc.). The communication nodes 1104 can be configured to exchange signals over the interface 1110 at an operating frequency that may be higher (e.g., 28 GHz, 38 GHz, 60 GHz, 80 GHz or higher) than the operating frequency used for communicating with the mobile or stationary devices (e.g., 1.9 GHz) over interface 1111. The high carrier frequency and a wider bandwidth can be used for communicating between the communication nodes 1104 enabling the communication nodes 1104 to provide communication services to multiple mobile or stationary devices via one or more differing frequency bands, (e.g. a 900 MHz band, 1.9 GHz band, a 2.4 GHz band, and/or a 5.8 GHz band, etc.) and/or one or more differing protocols, as will be illustrated by spectral downlink and uplink diagrams of FIG. 12A described below. In other embodiments, particularly where the interface 1110 is implemented via a guided wave communications system on a wire, a wideband spectrum in a lower frequency range (e.g. in the range of 2-6 GHz, 4-10 GHz, etc.) can be employed.


Turning now to FIGS. 11C-11D, block diagrams illustrating example, non-limiting embodiments of a communication node 1104 of the communication system 1100 of FIG. 11A is shown. The communication node 1104 can be attached to a support structure 1118 of a utility fixture such as a utility post or pole as shown in FIG. 11C. The communication node 1104 can be affixed to the support structure 1118 with an arm 1120 constructed of plastic or other suitable material that attaches to an end of the communication node 1104. The communication node 1104 can further include a plastic housing assembly 1116 that covers components of the communication node 1104. The communication node 1104 can be powered by a power line 1121 (e.g., 110/220 VAC). The power line 1121 can originate from a light pole or can be coupled to a power line of a utility pole.


In an embodiment where the communication nodes 1104 communicate wirelessly with other communication nodes 1104 as shown in FIG. 11B, a top side 1112 of the communication node 1104 (illustrated also in FIG. 11D) can comprise a plurality of antennas 1122 (e.g., 16 dielectric antennas devoid of metal surfaces) coupled to one or more transceivers such as, for example, in whole or in part, the transceiver 1100 illustrated in FIG. 11. Each of the plurality of antennas 1122 of the top side 1112 can operate as a sector of the communication node 1104, each sector configured for communicating with at least one communication node 1104 in a communication range of the sector. Alternatively, or in combination, the interface 1110 between communication nodes 1104 can be a tethered interface (e.g., a fiber optic cable, or a power line used for transport of guided electromagnetic waves as previously described). In other embodiments, the interface 1110 can differ between communication nodes 1104. That is, some communications nodes 1104 may communicate over a wireless interface, while others communicate over a tethered interface. In yet other embodiments, some communications nodes 1104 may utilize a combined wireless and tethered interface.


A bottom side 1114 of the communication node 1104 can also comprise a plurality of antennas 1124 for wirelessly communicating with one or more mobile or stationary devices 1106 at a carrier frequency that is suitable for the mobile or stationary devices 1106. As noted earlier, the carrier frequency used by the communication node 1104 for communicating with the mobile or station devices over the wireless interface 1111 shown in FIG. 11B can be different from the carrier frequency used for communicating between the communication nodes 1104 over interface 1110. The plurality of antennas 1124 of the bottom portion 1114 of the communication node 1104 can also utilize a transceiver such as, for example, in whole or in part, the transceiver 1100 illustrated in FIG. 11.


Turning now to FIG. 12A, a block diagram illustrating an example, non-limiting embodiment of downlink and uplink communication techniques for enabling a base station to communicate with the communication nodes 1104 of FIG. 11A is shown. In the illustrations of FIG. 12A, downlink signals (i.e., signals directed from the macro base station 1102 to the communication nodes 1104) can be spectrally divided into control channels 1202, downlink spectral segments 1206 each including modulated signals which can be frequency converted to their original/native frequency band for enabling the communication nodes 1104 to communicate with one or more mobile or stationary devices 1206, and pilot signals 1204 which can be supplied with some or all of the spectral segments 1206 for mitigating distortion created between the communication nodes 1204. The pilot signals 1204 can be processed by the top side 1116 (tethered or wireless) transceivers of downstream communication nodes 1104 to remove distortion from a receive signal (e.g., phase distortion). Each downlink spectral segment 1206 can be allotted a bandwidth 1205 sufficiently wide (e.g., 50 MHz) to include a corresponding pilot signal 1204 and one or more downlink modulated signals located in frequency channels (or frequency slots) in the spectral segment 1206. The modulated signals can represent cellular channels, WLAN channels or other modulated communication signals (e.g., 10-20 MHz), which can be used by the communication nodes 1104 for communicating with one or more mobile or stationary devices 1106.


Uplink modulated signals generated by mobile or stationary communication device in their native/original frequency bands can be frequency converted and thereby located in frequency channels (or frequency slots) in the uplink spectral segment 1210. The uplink modulated signals can represent cellular channels, WLAN channels or other modulated communication signals. Each uplink spectral segment 1210 can be allotted a similar or same bandwidth 1205 to include a pilot signal 1208 which can be provided with some or each spectral segment 1210 to enable upstream communication nodes 1104 and/or the macro base station 1102 to remove distortion (e.g., phase error).


In the embodiment shown, the downlink and uplink spectral segments 1206 and 1210 each comprise a plurality of frequency channels (or frequency slots), which can be occupied with modulated signals that have been frequency converted from any number of native/original frequency bands (e.g. a 900 MHz band, 1.9 GHz band, a 2.4 GHz band, and/or a 5.8 GHz band, etc.). The modulated signals can be up-converted to adjacent frequency channels in downlink and uplink spectral segments 1206 and 1210. In this fashion, while some adjacent frequency channels in a downlink spectral segment 1206 can include modulated signals originally in a same native/original frequency band, other adjacent frequency channels in the downlink spectral segment 1206 can also include modulated signals originally in different native/original frequency bands, but frequency converted to be located in adjacent frequency channels of the downlink spectral segment 1206. For example, a first modulated signal in a 1.9 GHz band and a second modulated signal in the same frequency band (i.e., 1.9 GHz) can be frequency converted and thereby positioned in adjacent frequency channels of a downlink spectral segment 1206. In another illustration, a first modulated signal in a 1.9 GHz band and a second communication signal in a different frequency band (i.e., 2.4 GHz) can be frequency converted and thereby positioned in adjacent frequency channels of a downlink spectral segment 1206. Accordingly, frequency channels of a downlink spectral segment 1206 can be occupied with any combination of modulated signals of the same or differing signaling protocols and of a same or differing native/original frequency bands.


Similarly, while some adjacent frequency channels in an uplink spectral segment 1210 can include modulated signals originally in a same frequency band, adjacent frequency channels in the uplink spectral segment 1210 can also include modulated signals originally in different native/original frequency bands, but frequency converted to be located in adjacent frequency channels of an uplink segment 1210. For example, a first communication signal in a 2.4 GHz band and a second communication signal in the same frequency band (i.e., 2.4 GHz) can be frequency converted and thereby positioned in adjacent frequency channels of an uplink spectral segment 1210. In another illustration, a first communication signal in a 1.9 GHz band and a second communication signal in a different frequency band (i.e., 2.4 GHz) can be frequency converted and thereby positioned in adjacent frequency channels of the uplink spectral segment 1206. Accordingly, frequency channels of an uplink spectral segment 1210 can be occupied with any combination of modulated signals of a same or differing signaling protocols and of a same or differing native/original frequency bands. It should be noted that a downlink spectral segment 1206 and an uplink spectral segment 1210 can themselves be adjacent to one another and separated by only a guard band or otherwise separated by a larger frequency spacing, depending on the spectral allocation in place.


Turning now to FIG. 12B, a block diagram 1220 illustrating an example, non-limiting embodiment of a communication node is shown. In particular, the communication node device such as communication node 1104A of a radio distributed antenna system includes a base station interface 1222, duplexer/diplexer assembly 1224, and two transceivers 1230 and 1232. It should be noted however, that when the communication node 1104A is collocated with a base station, such as a macro base station 1102, the duplexer/diplexer assembly 1224 and the transceiver 1230 can be omitted and the transceiver 1232 can be directly coupled to the base station interface 1222.


In various embodiments, the base station interface 1222 receives a first modulated signal having one or more down link channels in a first spectral segment for transmission to a client device such as one or more mobile communication devices. The first spectral segment represents an original/native frequency band of the first modulated signal. The first modulated signal can include one or more downlink communication channels conforming to a signaling protocol such as a LTE or other 4G wireless protocol, a 5G wireless communication protocol, an ultra-wideband protocol, a WiMAX protocol, a 802.11 or other wireless local area network protocol and/or other communication protocol. The duplexer/diplexer assembly 1224 transfers the first modulated signal in the first spectral segment to the transceiver 1230 for direct communication with one or more mobile communication devices in range of the communication node 1104A as a free space wireless signal. In various embodiments, the transceiver 1230 is implemented via analog circuitry that merely provides: filtration to pass the spectrum of the downlink channels and the uplink channels of modulated signals in their original/native frequency bands while attenuating out-of-band signals, power amplification, transmit/receive switching, duplexing, diplexing, and impedance matching to drive one or more antennas that sends and receives the wireless signals of interface 1110.


In other embodiments, the transceiver 1232 is configured to perform frequency conversion of the first modulated signal in the first spectral segment to the first modulated signal at a first carrier frequency based on, in various embodiments, an analog signal processing of the first modulated signal without modifying the signaling protocol of the first modulated signal. The first modulated signal at the first carrier frequency can occupy one or more frequency channels of a downlink spectral segment 1206. The first carrier frequency can be in a millimeter-wave or microwave frequency band. As used herein analog signal processing includes filtering, switching, duplexing, diplexing, amplification, frequency up and down conversion, and other analog processing that does not require digital signal processing, such as including without limitation either analog to digital conversion, digital to analog conversion, or digital frequency conversion. In other embodiments, the transceiver 1232 can be configured to perform frequency conversion of the first modulated signal in the first spectral segment to the first carrier frequency by applying digital signal processing to the first modulated signal without utilizing any form of analog signal processing and without modifying the signaling protocol of the first modulated signal. In yet other embodiments, the transceiver 1232 can be configured to perform frequency conversion of the first modulated signal in the first spectral segment to the first carrier frequency by applying a combination of digital signal processing and analog processing to the first modulated signal and without modifying the signaling protocol of the first modulated signal.


The transceiver 1232 can be further configured to transmit one or more control channels, one or more corresponding reference signals, such as pilot signals or other reference signals, and/or one or more clock signals together with the first modulated signal at the first carrier frequency to a network element of the distributed antenna system, such as one or more downstream communication nodes 1104B-E, for wireless distribution of the first modulated signal to one or more other mobile communication devices once frequency converted by the network element to the first spectral segment. In particular, the reference signal enables the network element to reduce a phase error (and/or other forms of signal distortion) during processing of the first modulated signal from the first carrier frequency to the first spectral segment. The control channel can include instructions to direct the communication node of the distributed antenna system to convert the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment, to control frequency selections and reuse patterns, handoff and/or other control signaling. In embodiments where the instructions transmitted and received via the control channel are digital signals, the transceiver can 1232 can include a digital signal processing component that provides analog to digital conversion, digital to analog conversion and that processes the digital data sent and/or received via the control channel. The clock signals supplied with the downlink spectral segment 1206 can be utilized to synchronize timing of digital control channel processing by the downstream communication nodes 1104B-E to recover the instructions from the control channel and/or to provide other timing signals.


In various embodiments, the transceiver 1232 can receive a second modulated signal at a second carrier frequency from a network element such as a communication node 1104B-E. The second modulated signal can include one or more uplink frequency channels occupied by one or more modulated signals conforming to a signaling protocol such as a LTE or other 4G wireless protocol, a 5G wireless communication protocol, an ultra-wideband protocol, a 802.11 or other wireless local area network protocol and/or other communication protocol. In particular, the mobile or stationary communication device generates the second modulated signal in a second spectral segment such as an original/native frequency band and the network element frequency converts the second modulated signal in the second spectral segment to the second modulated signal at the second carrier frequency and transmits the second modulated signal at the second carrier frequency as received by the communication node 1104A. The transceiver 1232 operates to convert the second modulated signal at the second carrier frequency to the second modulated signal in the second spectral segment and sends the second modulated signal in the second spectral segment, via the duplexer/diplexer assembly 1224 and base station interface 1222, to a base station, such as macro base station 1102, for processing.


Consider the following examples where the communication node 1104A is implemented in a distributed antenna system. The uplink frequency channels in an uplink spectral segment 1210 and downlink frequency channels in a downlink spectral segment 1206 can be occupied with signals modulated and otherwise formatted in accordance with a DOCSIS 2.0 or higher standard protocol, a WiMAX standard protocol, an ultra-wideband protocol, a 802.11 standard protocol, a 4G or 5G voice and data protocol such as an LTE protocol and/or other standard communication protocol. In addition to protocols that conform with current standards, any of these protocols can be modified to operate in conjunction with the system of FIG. 11A. For example, a 802.11 protocol or other protocol can be modified to include additional guidelines and/or a separate data channel to provide collision detection/multiple access over a wider area (e.g. allowing network elements or communication devices communicatively coupled to the network elements that are communicating via a particular frequency channel of a downlink spectral segment 1206 or uplink spectral segment 1210 to hear one another). In various embodiments all of the uplink frequency channels of the uplink spectral segment 1210 and downlink frequency channel of the downlink spectral segment 1206 can all be formatted in accordance with the same communications protocol. In the alternative however, two or more differing protocols can be employed on both the uplink spectral segment 1210 and the downlink spectral segment 1206 to, for example, be compatible with a wider range of client devices and/or operate in different frequency bands.


When two or more differing protocols are employed, a first subset of the downlink frequency channels of the downlink spectral segment 1206 can be modulated in accordance with a first standard protocol and a second subset of the downlink frequency channels of the downlink spectral segment 1206 can be modulated in accordance with a second standard protocol that differs from the first standard protocol. Likewise a first subset of the uplink frequency channels of the uplink spectral segment 1210 can be received by the system for demodulation in accordance with the first standard protocol and a second subset of the uplink frequency channels of the uplink spectral segment 1210 can be received in accordance with a second standard protocol for demodulation in accordance with the second standard protocol that differs from the first standard protocol.


In accordance with these examples, the base station interface 1222 can be configured to receive modulated signals such as one or more downlink channels in their original/native frequency bands from a base station such as macro base station 1102 or other communications network element. Similarly, the base station interface 1222 can be configured to supply to a base station modulated signals received from another network element that is frequency converted to modulated signals having one or more uplink channels in their original/native frequency bands. The base station interface 1222 can be implemented via a wired or wireless interface that bidirectionally communicates communication signals such as uplink and downlink channels in their original/native frequency bands, communication control signals and other network signaling with a macro base station or other network element. The duplexer/diplexer assembly 1224 is configured to transfer the downlink channels in their original/native frequency bands to the transceiver 1232 which frequency converts the frequency of the downlink channels from their original/native frequency bands into the frequency spectrum of interface 1110—in this case a wireless communication link used to transport the communication signals downstream to one or more other communication nodes 1104B-E of the distributed antenna system in range of the communication device 1104A.


In various embodiments, the transceiver 1232 includes an analog radio that frequency converts the downlink channel signals in their original/native frequency bands via mixing or other heterodyne action to generate frequency converted downlink channels signals that occupy downlink frequency channels of the downlink spectral segment 1206. In this illustration, the downlink spectral segment 1206 is within the downlink frequency band of the interface 1110. In an embodiment, the downlink channel signals are up-converted from their original/native frequency bands to a 28 GHz, 38 GHz, 60 GHz, 70 GHz or 80 GHz band of the downlink spectral segment 1206 for line-of-sight wireless communications to one or more other communication nodes 1104B-E. It is noted, however, that other frequency bands can likewise be employed for a downlink spectral segment 1206 (e.g., 3 GHz to 5 GHz). For example, the transceiver 1232 can be configured for down-conversion of one or more downlink channel signals in their original/native spectral bands in instances where the frequency band of the interface 1110 falls below the original/native spectral bands of the one or more downlink channels signals.


The transceiver 1232 can be coupled to multiple individual antennas, such as antennas 1122 presented in conjunction with FIG. 11D, for communicating with the communication nodes 1104B, a phased antenna array or steerable beam or multi-beam antenna system for communicating with multiple devices at different locations. The duplexer/diplexer assembly 1224 can include a duplexer, triplexer, splitter, switch, router and/or other assembly that operates as a “channel duplexer” to provide bi-directional communications over multiple communication paths via one or more original/native spectral segments of the uplink and downlink channels.


In addition to forwarding frequency converted modulated signals downstream to other communication nodes 1104B-E at a carrier frequency that differs from their original/native spectral bands, the communication node 1104A can also communicate all or a selected portion of the modulated signals unmodified from their original/native spectral bands to client devices in a wireless communication range of the communication node 1104A via the wireless interface 1111. The duplexer/diplexer assembly 1224 transfers the modulated signals in their original/native spectral bands to the transceiver 1230. The transceiver 1230 can include a channel selection filter for selecting one or more downlink channels and a power amplifier coupled to one or more antennas, such as antennas 1124 presented in conjunction with FIG. 11D, for transmission of the downlink channels via wireless interface 1111 to mobile or fixed wireless devices.


In addition to downlink communications destined for client devices, communication node 1104A can operate in a reciprocal fashion to handle uplink communications originating from client devices as well. In operation, the transceiver 1232 receives uplink channels in the uplink spectral segment 1210 from communication nodes 1104B-E via the uplink spectrum of interface 1110. The uplink frequency channels in the uplink spectral segment 1210 include modulated signals that were frequency converted by communication nodes 1104B-E from their original/native spectral bands to the uplink frequency channels of the uplink spectral segment 1210. In situations where the interface 1110 operates in a higher frequency band than the native/original spectral segments of the modulated signals supplied by the client devices, the transceiver 1232 down-converts the up-converted modulated signals to their original frequency bands. In situations, however, where the interface 1110 operates in a lower frequency band than the native/original spectral segments of the modulated signals supplied by the client devices, the transceiver 1232 up-converts the down-converted modulated signals to their original frequency bands. Further, the transceiver 1230 operates to receive all or selected ones of the modulated signals in their original/native frequency bands from client devices via the wireless interface 1111. The duplexer/diplexer assembly 1224 transfers the modulated signals in their original/native frequency bands received via the transceiver 1230 to the base station interface 1222 to be sent to the macro base station 1102 or other network element of a communications network. Similarly, modulated signals occupying uplink frequency channels in an uplink spectral segment 1210 that are frequency converted to their original/native frequency bands by the transceiver 1232 are supplied to the duplexer/diplexer assembly 1224 for transfer to the base station interface 1222 to be sent to the macro base station 1102 or other network element of a communications network.


Turning now to FIG. 12C, a block diagram 1235 illustrating an example, non-limiting embodiment of a communication node is shown. In particular, the communication node device such as communication node 1104B, 1104C, 1104D or 1104E of a radio distributed antenna system includes transceiver 1233, duplexer/diplexer assembly 1224, an amplifier 1238 and two transceivers 1236A and 1236B.


In various embodiments, the transceiver 1236A receives, from a communication node 1104A or an upstream communication node 1104B-E, a first modulated signal at a first carrier frequency corresponding to the placement of the channels of the first modulated signal in the converted spectrum of the distributed antenna system (e.g., frequency channels of one or more downlink spectral segments 1206). The first modulated signal includes first communications data provided by a base station and directed to a mobile communication device. The transceiver 1236A is further configured to receive, from a communication node 1104A one or more control channels and one or more corresponding reference signals, such as pilot signals or other reference signals, and/or one or more clock signals associated with the first modulated signal at the first carrier frequency. The first modulated signal can include one or more downlink communication channels conforming to a signaling protocol such as a LTE or other 4G wireless protocol, a 5G wireless communication protocol, an ultra-wideband protocol, a WiMAX protocol, a 802.11 or other wireless local area network protocol and/or other communication protocol.


As previously discussed, the reference signal enables the network element to reduce a phase error (and/or other forms of signal distortion) during processing of the first modulated signal from the first carrier frequency to the first spectral segment (i.e., original/native spectrum). The control channel includes instructions to direct the communication node of the distributed antenna system to convert the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment, to control frequency selections and reuse patterns, handoff and/or other control signaling. The clock signals can synchronize timing of digital control channel processing by the downstream communication nodes 1104B-E to recover the instructions from the control channel and/or to provide other timing signals.


The amplifier 1238 can be a bidirectional amplifier that amplifies the first modulated signal at the first carrier frequency together with the reference signals, control channels and/or clock signals for coupling via the duplexer/diplexer assembly 1224 to transceiver 1236B, which in this illustration, serves as a repeater for retransmission of the amplified the first modulated signal at the first carrier frequency together with the reference signals, control channels and/or clock signals to one or more others of the communication nodes 1104B-E that are downstream from the communication node 1104B-E that is shown and that operate in a similar fashion.


The amplified first modulated signal at the first carrier frequency together with the reference signals, control channels and/or clock signals are also coupled via the duplexer/diplexer assembly 1224 to the transceiver 1233. The transceiver 1233 performs digital signal processing on the control channel to recover the instructions, such as in the form of digital data, from the control channel. The clock signal is used to synchronize timing of the digital control channel processing. The transceiver 1233 then performs frequency conversion of the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment in accordance with the instructions and based on an analog (and/or digital) signal processing of the first modulated signal and utilizing the reference signal to reduce distortion during the converting process. The transceiver 1233 wirelessly transmits the first modulated signal in the first spectral segment for direct communication with one or more mobile communication devices in range of the communication node 1104B-E as free space wireless signals.


In various embodiments, the transceiver 1236B receives a second modulated signal at a second carrier frequency in an uplink spectral segment 1210 from other network elements such as one or more other communication nodes 1104B-E that are downstream from the communication node 1104B-E that is shown. The second modulated signal can include one or more uplink communication channels conforming to a signaling protocol such as a LTE or other 4G wireless protocol, a 5G wireless communication protocol, an ultra-wideband protocol, a 802.11 or other wireless local area network protocol and/or other communication protocol. In particular, one or more mobile communication devices generate the second modulated signal in a second spectral segment such as an original/native frequency band and the downstream network element performs frequency conversion on the second modulated signal in the second spectral segment to the second modulated signal at the second carrier frequency and transmits the second modulated signal at the second carrier frequency in an uplink spectral segment 1210 as received by the communication node 1104B-E shown. The transceiver 1236B operates to send the second modulated signal at the second carrier frequency to amplifier 1238, via the duplexer/diplexer assembly 1224, for amplification and retransmission via the transceiver 1236A back to the communication node 1104A or upstream communication nodes 1104B-E for further retransmission back to a base station, such as macro base station 1102, for processing.


The transceiver 1233 may also receive a second modulated signal in the second spectral segment from one or more mobile communication devices in range of the communication node 1104B-E. The transceiver 1233 operates to perform frequency conversion on the second modulated signal in the second spectral segment to the second modulated signal at the second carrier frequency, for example, under control of the instructions received via the control channel, inserts the reference signals, control channels and/or clock signals for use by communication node 1104A in reconverting the second modulated signal back to the original/native spectral segments and sends the second modulated signal at the second carrier frequency, via the duplexer/diplexer assembly 1224 and amplifier 1238, to the transceiver 1236A for amplification and retransmission back to the communication node 1104A or upstream communication nodes 1104B-E for further retransmission back to a base station, such as macro base station 1102, for processing.


Turning now to FIG. 12D, a graphical diagram 1240 illustrating an example, non-limiting embodiment of a frequency spectrum is shown. In particular, a spectrum 1242 is shown for a distributed antenna system that conveys modulated signals that occupy frequency channels of a downlink segment 1206 or uplink spectral segment 1210 after they have been converted in frequency (e.g. via up-conversion or down-conversion) from one or more original/native spectral segments into the spectrum 1242.


In the example presented, the downstream (downlink) channel band 1244 includes a plurality of downstream frequency channels represented by separate downlink spectral segments 1206. Likewise the upstream (uplink) channel band 1246 includes a plurality of upstream frequency channels represented by separate uplink spectral segments 1210. The spectral shapes of the separate spectral segments are meant to be placeholders for the frequency allocation of each modulated signal along with associated reference signals, control channels and clock signals. The actual spectral response of each frequency channel in a downlink spectral segment 1206 or uplink spectral segment 1210 will vary based on the protocol and modulation employed and further as a function of time.


The number of the uplink spectral segments 1210 can be less than or greater than the number of the downlink spectral segments 1206 in accordance with an asymmetrical communication system. In this case, the upstream channel band 1246 can be narrower or wider than the downstream channel band 1244. In the alternative, the number of the uplink spectral segments 1210 can be equal to the number of the downlink spectral segments 1206 in the case where a symmetrical communication system is implemented. In this case, the width of the upstream channel band 1246 can be equal to the width of the downstream channel band 1244 and bit stuffing or other data filling techniques can be employed to compensate for variations in upstream traffic. While the downstream channel band 1244 is shown at a lower frequency than the upstream channel band 1246, in other embodiments, the downstream channel band 1144 can be at a higher frequency than the upstream channel band 1246. In addition, the number of spectral segments and their respective frequency positions in spectrum 1242 can change dynamically over time. For example, a general control channel can be provided in the spectrum 1242 (not shown) which can indicate to communication nodes 1104 the frequency position of each downlink spectral segment 1206 and each uplink spectral segment 1210. Depending on traffic conditions, or network requirements necessitating a reallocation of bandwidth, the number of downlink spectral segments 1206 and uplink spectral segments 1210 can be changed by way of the general control channel. Additionally, the downlink spectral segments 1206 and uplink spectral segments 1210 do not have to be grouped separately. For instance, a general control channel can identify a downlink spectral segment 1206 being followed by an uplink spectral segment 1210 in an alternating fashion, or in any other combination which may or may not be symmetric. It is further noted that instead of utilizing a general control channel, multiple control channels can be used, each identifying the frequency position of one or more spectral segments and the type of spectral segment (i.e., uplink or downlink).


Further, while the downstream channel band 1244 and upstream channel band 1246 are shown as occupying a single contiguous frequency band, in other embodiments, two or more upstream and/or two or more downstream channel bands can be employed, depending on available spectrum and/or the communication standards employed. Frequency channels of the uplink spectral segments 1210 and downlink spectral segments 1206 can be occupied by frequency converted signals modulated formatted in accordance with a DOCSIS 2.0 or higher standard protocol, a WiMAX standard protocol, an ultra-wideband protocol, a 802.11 standard protocol, a 4G or 5G voice and data protocol such as an LTE protocol and/or other standard communication protocol. In addition to protocols that conform with current standards, any of these protocols can be modified to operate in conjunction with the system shown. For example, a 802.11 protocol or other protocol can be modified to include additional guidelines and/or a separate data channel to provide collision detection/multiple access over a wider area (e.g. allowing devices that are communicating via a particular frequency channel to hear one another). In various embodiments all of the uplink frequency channels of the uplink spectral segments 1210 and downlink frequency channel of the downlink spectral segments 1206 are all formatted in accordance with the same communications protocol. In the alternative however, two or more differing protocols can be employed on both the uplink frequency channels of one or more uplink spectral segments 1210 and downlink frequency channels of one or more downlink spectral segments 1206 to, for example, be compatible with a wider range of client devices and/or operate in different frequency bands.


It should be noted that, the modulated signals can be gathered from differing original/native spectral segments for aggregation into the spectrum 1242. In this fashion, a first portion of uplink frequency channels of an uplink spectral segment 1210 may be adjacent to a second portion of uplink frequency channels of the uplink spectral segment 1210 that have been frequency converted from one or more differing original/native spectral segments. Similarly, a first portion of downlink frequency channels of a downlink spectral segment 1206 may be adjacent to a second portion of downlink frequency channels of the downlink spectral segment 1206 that have been frequency converted from one or more differing original/native spectral segments. For example, one or more 2.4 GHz 802.11 channels that have been frequency converted may be adjacent to one or more 5.8 GHz 802.11 channels that have also been frequency converted to a spectrum 1242 that is centered at 80 GHz. It should be noted that each spectral segment can have an associated reference signal such as a pilot signal that can be used in generating a local oscillator signal at a frequency and phase that provides the frequency conversion of one or more frequency channels of that spectral segment from its placement in the spectrum 1242 back into it original/native spectral segment.


Turning now to FIG. 12E, a graphical diagram 1250 illustrating an example, non-limiting embodiment of a frequency spectrum is shown. In particular a spectral segment selection is presented as discussed in conjunction with signal processing performed on the selected spectral segment by transceivers 1230 of communication node 1140A or transceiver 1232 of communication node 1104B-E. As shown, a particular uplink frequency portion 1258 including one of the uplink spectral segments 1210 of uplink frequency channel band 1246 and a particular downlink frequency portion 1256 including one of the downlink spectral segments 1206 of downlink channel frequency band 1244 is selected to be passed by channel selection filtration, with the remaining portions of uplink frequency channel band 1246 and downlink channel frequency band 1244 being filtered out—i.e. attenuated so as to mitigate adverse effects of the processing of the desired frequency channels that are passed by the transceiver. It should be noted that while a single particular uplink spectral segment 1210 and a particular downlink spectral segment 1206 are shown as being selected, two or more uplink and/or downlink spectral segments may be passed in other embodiments.


While the transceivers 1230 and 1232 can operate based on static channel filters with the uplink and downlink frequency portions 1258 and 1256 being fixed, as previously discussed, instructions sent to the transceivers 1230 and 1232 via the control channel can be used to dynamically configure the transceivers 1230 and 1232 to a particular frequency selection. In this fashion, upstream and downstream frequency channels of corresponding spectral segments can be dynamically allocated to various communication nodes by the macro base station 1102 or other network element of a communication network to optimize performance by the distributed antenna system.


Turning now to FIG. 12F, a graphical diagram 1260 illustrating an example, non-limiting embodiment of a frequency spectrum is shown. In particular, a spectrum 1262 is shown for a distributed antenna system that conveys modulated signals occupying frequency channels of uplink or downlink spectral segments after they have been converted in frequency (e.g. via up-conversion or down-conversion) from one or more original/native spectral segments into the spectrum 1262.


As previously discussed two or more different communication protocols can be employed to communicate upstream and downstream data. When two or more differing protocols are employed, a first subset of the downlink frequency channels of a downlink spectral segment 1206 can be occupied by frequency converted modulated signals in accordance with a first standard protocol and a second subset of the downlink frequency channels of the same or a different downlink spectral segment 1210 can be occupied by frequency converted modulated signals in accordance with a second standard protocol that differs from the first standard protocol. Likewise a first subset of the uplink frequency channels of an uplink spectral segment 1210 can be received by the system for demodulation in accordance with the first standard protocol and a second subset of the uplink frequency channels of the same or a different uplink spectral segment 1210 can be received in accordance with a second standard protocol for demodulation in accordance with the second standard protocol that differs from the first standard protocol.


In the example shown, the downstream channel band 1244 includes a first plurality of downstream spectral segments represented by separate spectral shapes of a first type representing the use of a first communication protocol. The downstream channel band 1244′ includes a second plurality of downstream spectral segments represented by separate spectral shapes of a second type representing the use of a second communication protocol. Likewise the upstream channel band 1246 includes a first plurality of upstream spectral segments represented by separate spectral shapes of the first type representing the use of the first communication protocol. The upstream channel band 1246′ includes a second plurality of upstream spectral segments represented by separate spectral shapes of the second type representing the use of the second communication protocol. These separate spectral shapes are meant to be placeholders for the frequency allocation of each individual spectral segment along with associated reference signals, control channels and/or clock signals. While the individual channel bandwidth is shown as being roughly the same for channels of the first and second type, it should be noted that upstream and downstream channel bands 1244, 1244′, 1246 and 1246′ may be of differing bandwidths. Additionally, the spectral segments in these channel bands of the first and second type may be of differing bandwidths, depending on available spectrum and/or the communication standards employed.


Turning now to FIG. 12G, a graphical diagram 1270 illustrating an example, non-limiting embodiment of a frequency spectrum is shown. In particular a portion of the spectrum 1242 or 1262 of FIGS. 12D-12F is shown for a distributed antenna system that conveys modulated signals in the form of channel signals that have been converted in frequency (e.g. via up-conversion or down-conversion) from one or more original/native spectral segments.


The portion 1272 includes a portion of a downlink or uplink spectral segment 1206 and 1210 that is represented by a spectral shape and that represents a portion of the bandwidth set aside for a control channel, reference signal, and/or clock signal. The spectral shape 1274, for example, represents a control channel that is separate from reference signal 1279 and a clock signal 1278. It should be noted that the clock signal 1278 is shown with a spectral shape representing a sinusoidal signal that may require conditioning into the form of a more traditional clock signal. In other embodiments however, a traditional clock signal could be sent as a modulated carrier wave such by modulating the reference signal 1279 via amplitude modulation or other modulation technique that preserves the phase of the carrier for use as a phase reference. In other embodiments, the clock signal could be transmitted by modulating another carrier wave or as another signal. Further, it is noted that both the clock signal 1278 and the reference signal 1279 are shown as being outside the frequency band of the control channel 1274.


In another example, the portion 1275 includes a portion of a downlink or uplink spectral segment 1206 and 1210 that is represented by a portion of a spectral shape that represents a portion of the bandwidth set aside for a control channel, reference signal, and/or clock signal. The spectral shape 1276 represents a control channel having instructions that include digital data that modulates the reference signal, via amplitude modulation, amplitude shift keying or other modulation technique that preserves the phase of the carrier for use as a phase reference. The clock signal 1278 is shown as being outside the frequency band of the spectral shape 1276. The reference signal, being modulated by the control channel instructions, is in effect a subcarrier of the control channel and is in-band to the control channel. Again, the clock signal 1278 is shown with a spectral shape representing a sinusoidal signal, in other embodiments however, a traditional clock signal could be sent as a modulated carrier wave or other signal. In this case, the instructions of the control channel can be used to modulate the clock signal 1278 instead of the reference signal.


Consider the following example, where the control channel 1276 is carried via modulation of a reference signal in the form of a continuous wave (CW) from which the phase distortion in the receiver is corrected during frequency conversion of the downlink or uplink spectral segment back to its original/native spectral segment. The control channel 1276 can be modulated with a robust modulation such as pulse amplitude modulation, binary phase shift keying, amplitude shift keying or other modulation scheme to carry instructions between network elements of the distributed antenna system such as network operations, administration and management traffic and other control data. In various embodiments, the control data can include:

    • Status information that indicates online status, offline status, and network performance parameters of each network element.
    • Network device information such as module names and addresses, hardware and software versions, device capabilities, etc.
    • Spectral information such as frequency conversion factors, channel spacing, guard bands, uplink/downlink allocations, uplink and downlink channel selections, etc.
    • Environmental measurements such as weather conditions, image data, power outage information, line of sight blockages, etc.


In a further example, the control channel data can be sent via ultra-wideband (UWB) signaling. The control channel data can be transmitted by generating radio energy at specific time intervals and occupying a larger bandwidth, via pulse-position or time modulation, by encoding the polarity or amplitude of the UWB pulses and/or by using orthogonal pulses. In particular, UWB pulses can be sent sporadically at relatively low pulse rates to support time or position modulation, but can also be sent at rates up to the inverse of the UWB pulse bandwidth. In this fashion, the control channel can be spread over an UWB spectrum with relatively low power, and without interfering with CW transmissions of the reference signal and/or clock signal that may occupy in-band portions of the UWB spectrum of the control channel.


Turning now to FIG. 12H, a block diagram 1280 illustrating an example, non-limiting embodiment of a transmitter is shown. In particular, a transmitter 1282 is shown for use with, for example, a receiver 1281 and a digital control channel processor 1295 in a transceiver, such as transceiver 1233 presented in conjunction with FIG. 12C. As shown, the transmitter 1282 includes an analog front-end 1286, clock signal generator 1289, a local oscillator 1292, a mixer 1296, and a transmitter front end 1284.


The amplified first modulated signal at the first carrier frequency together with the reference signals, control channels and/or clock signals are coupled from the amplifier 1238 to the analog front-end 1286. The analog front end 1286 includes one or more filters or other frequency selection to separate the control channel signal 1287, a clock reference signal 1278, a pilot signal 1291 and one or more selected channels signals 1294.


The digital control channel processor 1295 performs digital signal processing on the control channel to recover the instructions, such as via demodulation of digital control channel data, from the control channel signal 1287. The clock signal generator 1289 generates the clock signal 1290, from the clock reference signal 1278, to synchronize timing of the digital control channel processing by the digital control channel processor 1295. In embodiments where the clock reference signal 1278 is a sinusoid, the clock signal generator 1289 can provide amplification and limiting to create a traditional clock signal or other timing signal from the sinusoid. In embodiments where the clock reference signal 1278 is a modulated carrier signal, such as a modulation of the reference or pilot signal or other carrier wave, the clock signal generator 1289 can provide demodulation to create a traditional clock signal or other timing signal.


In various embodiments, the control channel signal 1287 can be either a digitally modulated signal in a range of frequencies separate from the pilot signal 1291 and the clock reference 1288 or as modulation of the pilot signal 1291. In operation, the digital control channel processor 1295 provides demodulation of the control channel signal 1287 to extract the instructions contained therein in order to generate a control signal 1293. In particular, the control signal 1293 generated by the digital control channel processor 1295 in response to instructions received via the control channel can be used to select the particular channel signals 1294 along with the corresponding pilot signal 1291 and/or clock reference 1288 to be used for converting the frequencies of channel signals 1294 for transmission via wireless interface 1111. It should be noted that in circumstances where the control channel signal 1287 conveys the instructions via modulation of the pilot signal 1291, the pilot signal 1291 can be extracted via the digital control channel processor 1295 rather than the analog front-end 1286 as shown.


The digital control channel processor 1295 may be implemented via a processing module such as a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, digital circuitry, an analog to digital converter, a digital to analog converter and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions. The processing module may be, or further include, memory and/or an integrated memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of another processing module, module, processing circuit, and/or processing unit. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. Note that if the processing module includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, digital circuitry, an analog to digital converter, a digital to analog converter or other device. Still further note that, the memory element may store, and the processing module executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions described herein and such a memory device or memory element can be implemented as an article of manufacture.


The local oscillator 1292 generates the local oscillator signal 1297 utilizing the pilot signal 1291 to reduce distortion during the frequency conversion process. In various embodiments the pilot signal 1291 is at the correct frequency and phase of the local oscillator signal 1297 to generate the local oscillator signal 1297 at the proper frequency and phase to convert the channel signals 1294 at the carrier frequency associated with their placement in the spectrum of the distributed antenna system to their original/native spectral segments for transmission to fixed or mobile communication devices. In this case, the local oscillator 1292 can employ bandpass filtration and/or other signal conditioning to generate a sinusoidal local oscillator signal 1297 that preserves the frequency and phase of the pilot signal 1291. In other embodiments, the pilot signal 1291 has a frequency and phase that can be used to derive the local oscillator signal 1297. In this case, the local oscillator 1292 employs frequency division, frequency multiplication or other frequency synthesis, based on the pilot signal 1291, to generate the local oscillator signal 1297 at the proper frequency and phase to convert the channel signals 1294 at the carrier frequency associated with their placement in the spectrum of the distributed antenna system to their original/native spectral segments for transmission to fixed or mobile communication devices.


The mixer 1296 operates based on the local oscillator signal 1297 to shift the channel signals 1294 in frequency to generate frequency converted channel signals 1298 at their corresponding original/native spectral segments. While a single mixing stage is shown, multiple mixing stages can be employed to shift the channel signals to baseband and/or one or more intermediate frequencies as part of the total frequency conversion. The transmitter (Xmtr) front-end 1284 includes a power amplifier and impedance matching to wirelessly transmit the frequency converted channel signals 1298 as a free space wireless signals via one or more antennas, such as antennas 1124, to one or more mobile or fixed communication devices in range of the communication node 1104B-E.


Turning now to FIG. 12I, a block diagram 1285 illustrating an example, non-limiting embodiment of a receiver is shown. In particular, a receiver 1281 is shown for use with, for example, transmitter 1282 and digital control channel processor 1295 in a transceiver, such as transceiver 1233 presented in conjunction with FIG. 12C. As shown, the receiver 1281 includes an analog receiver (RCVR) front-end 1283, local oscillator 1292, and mixer 1296. The digital control channel processor 1295 operates under control of instructions from the control channel to generate the pilot signal 1291, control channel signal 1287 and clock reference signal 1278.


The control signal 1293 generated by the digital control channel processor 1295 in response to instructions received via the control channel can also be used to select the particular channel signals 1294 along with the corresponding pilot signal 1291 and/or clock reference 1288 to be used for converting the frequencies of channel signals 1294 for reception via wireless interface 1111. The analog receiver front end 1283 includes a low noise amplifier and one or more filters or other frequency selection to receive one or more selected channels signals 1294 under control of the control signal 1293.


The local oscillator 1292 generates the local oscillator signal 1297 utilizing the pilot signal 1291 to reduce distortion during the frequency conversion process. In various embodiments the local oscillator employs bandpass filtration and/or other signal conditioning, frequency division, frequency multiplication or other frequency synthesis, based on the pilot signal 1291, to generate the local oscillator signal 1297 at the proper frequency and phase to frequency convert the channel signals 1294, the pilot signal 1291, control channel signal 1287 and clock reference signal 1278 to the spectrum of the distributed antenna system for transmission to other communication nodes 1104A-E. In particular, the mixer 1296 operates based on the local oscillator signal 1297 to shift the channel signals 1294 in frequency to generate frequency converted channel signals 1298 at the desired placement within spectrum spectral segment of the distributed antenna system for coupling to the amplifier 1238, to transceiver 1236A for amplification and retransmission via the transceiver 1236A back to the communication node 1104A or upstream communication nodes 1104B-E for further retransmission back to a base station, such as macro base station 1102, for processing. Again, while a single mixing stage is shown, multiple mixing stages can be employed to shift the channel signals to baseband and/or one or more intermediate frequencies as part of the total frequency conversion.


Turning now to FIG. 13A, a flow diagram of an example, non-limiting embodiment of a method 1300, is shown. Method 1300 can be used with one or more functions and features presented in conjunction with FIGS. 1-12. Method 1300 can begin with step 1302 in which a base station, such as the macro base station 1102 of FIG. 11A, determines a rate of travel of a communication device. The communication device can be a mobile communication device such as one of the mobile devices 1106 illustrated in FIG. 11B, or stationary communication device (e.g., a communication device in a residence, or commercial establishment). The base station can communicate directly with the communication device utilizing wireless cellular communications technology (e.g., LTE), which enables the base station to monitor the movement of the communication device by receiving location information from the communication device, and/or to provide the communication device wireless communication services such as voice and/or data services. During a communication session, the base station and the communication device exchange wireless signals that operate at a certain native/original carrier frequency (e.g., a 900 MHz band, 1.9 GHz band, a 2.4 GHz band, and/or a 5.8 GHz band, etc.) utilizing one or more spectral segments (e.g., resource blocks) of a certain bandwidth (e.g., 10-20 MHz). In some embodiments, the spectral segments are used according to a time slot schedule assigned to the communication device by the base station.


The rate of travel of the communication device can be determined at step 1302 from GPS coordinates provided by the communication device to the base station by way of cellular wireless signals. If the rate of travel is above a threshold (e.g., 25 miles per hour) at step 1304, the base station can continue to provide wireless services to the communication device at step 1306 utilizing the wireless resources of the base station. If, on the other hand, the communication device has a rate of travel below the threshold, the base station can be configured to further determine whether the communication device can be redirected to a communication node to make available the wireless resources of the base station for other communication devices.


For example, suppose the base station detects that the communication device has a slow rate of travel (e.g., 3 mph or near stationary). Under certain circumstances, the base station may also determine that a current location of the communication device places the communication device in a communication range of a particular communication node 1104. The base station may also determine that the slow rate of travel of the communication device will maintain the communication device within the communication range of the particular communication node 1104 for a sufficiently long enough time (another threshold test that can be used by the base station) to justify redirecting the communication device to the particular communication node 1104. Once such a determination is made, the base station can proceed to step 1308 and select the communication node 1104 that is in the communication range of the communication device for providing communication services thereto.


Accordingly, the selection process performed at step 1308 can be based on a location of the communication device determined from GPS coordinates provided to the base station by the communication device. The selection process can also be based on a trajectory of travel of the communication device, which may be determined from several instances of GPS coordinates provided by the communication device. In some embodiments, the base station may determine that the trajectory of the communication device will eventually place the communication device in a communication range of a subsequent communication node 1104 neighboring the communication node selected at step 1308. In this embodiment, the base station can inform multiple communication nodes 1104 of this trajectory to enable the communication nodes 1104 coordinate a handoff of communication services provided to the communication device.


Once one or more communication nodes 1104 have been selected at step 1308, the base station can proceed to step 1310 where it assigns one or more spectral segments (e.g., resource blocks) for use by the communication device at a first carrier frequency (e.g., 1.9 GHz). It is not necessary for the first carrier frequency and/or spectral segments selected by the base station to be the same as the carrier frequency and/or spectral segments in use between the base station and the communication device. For example, suppose the base station and the communication device are utilizing a carrier frequency at 1.9 GHz for wireless communications between each other. The base station can select a different carrier frequency (e.g., 900 MHz) at step 1310 for the communication node selected at step 1308 to communicate with the communication device. Similarly, the base station can assign spectral segment(s) (e.g., resource blocks) and/or a timeslot schedule of the spectral segment(s) to the communication node that differs from the spectral segment(s) and/or timeslot schedule in use between the base station and the communication device.


At step 1312, the base station can generate first modulated signal(s) in the spectral segment(s) assigned in step 1310 at the first carrier frequency. The first modulated signal(s) can include data directed to the communication device, the data representative of a voice communication session, a data communication session, or a combination thereof. At step 1314, the base station can up-convert (with a mixer, bandpass filter and other circuitry) the first modulated signal(s) at the first native carrier frequency (e.g., 1.9 GHz) to a second carrier frequency (e.g., 80 GHz) for transport of such signals in one or more frequency channels of a downlink spectral segment 1206 which is directed to the communication node 1104 selected at step 1308. Alternatively, the base station can provide the first modulated signal(s) at the first carrier frequency to the first communication node 1104A (illustrated in FIG. 11A) for up-conversion to the second carrier frequency for transport in one or more frequency channels of a downlink spectral segment 1206 directed to the communication node 1104 selected at step 1308.


At step 1316, the base station can also transmit instructions to transition the communication device to the communication node 1104 selected at step 1308. The instructions can be directed to the communication device while the communication device is in direct communications with the base station utilizing the wireless resources of the base station. Alternatively, the instructions can be communicated to the communication node 1104 selected at step 1308 by way of a control channel 1202 of the downlink spectral segment 1206 illustrated in FIG. 12A. Step 1316 can occur before, after or contemporaneously with steps 1312-1314.


Once the instructions have been transmitted, the base station can proceed to step 1318 where it transmits in one or more frequency channels of a downlink spectral segment 1206 the first modulated signal at the second carrier frequency (e.g., 80 GHz) for transmission by the first communication node 1104A (illustrated in FIG. 11A). Alternatively, the first communication node 1104A can perform the up-conversion at step 1314 for transport of the first modulated signal at the second carrier frequency in one or more frequency channels of a downlink spectral segment 1206 upon receiving from the base station the first modulated signal(s) at the first native carrier frequency. The first communication node 1104A can serve as a master communication node for distributing downlink signals generated by the base station to downstream communication nodes 1104 according to the downlink spectral segments 1206 assigned to each communication node 1104 at step 1310. The assignment of the downlink spectral segments 1206 can be provided to the communication nodes 1104 by way of instructions transmitted by the first communication node 1104A in the control channel 1202 illustrated in FIG. 12A. At step 1318, the communication node 1104 receiving the first modulated signal(s) at the second carrier frequency in one or more frequency channels of a downlink spectral segment 1206 can be configured to down-convert it to the first carrier frequency, and utilize the pilot signal supplied with the first modulated signal(s) to remove distortions (e.g., phase distortion) caused by the distribution of the downlink spectral segments 1206 over communication hops between the communication nodes 1104B-D. In particular, the pilot signal can be derived from the local oscillator signal used to generate the frequency up-conversion (e.g. via frequency multiplication and/or division). When down conversion is required the pilot signal can be used to recreate a frequency and phase correct version of the local oscillator signal (e.g. via frequency multiplication and/or division) to return the modulated signal to its original portion of the frequency band with minimal phase error. In this fashion, the frequency channels of a communication system can be converted in frequency for transport via the distributed antenna system and then returned to their original position in the spectrum for transmission to wireless client device.


Once the down-conversion process is completed, the communication node 1104 can transmit at step 1322 the first modulated signal at the first native carrier frequency (e.g., 1.9 GHz) to the communication device utilizing the same spectral segment assigned to the communication node 1104. Step 1322 can be coordinated so that it occurs after the communication device has transitioned to the communication node 1104 in accordance with the instructions provided at step 1316. To make such a transition seamless, and so as to avoid interrupting an existing wireless communication session between the base station and the communication device, the instructions provided in step 1316 can direct the communication device and/or the communication node 1104 to transition to the assigned spectral segment(s) and/or time slot schedule as part of and/or subsequent to a registration process between the communication device and the communication node 1104 selected at step 1308. In some instances such a transition may require that the communication device to have concurrent wireless communications with the base station and the communication node 1104 for a short period of time.


Once the communication device successfully transitions to the communication node 1104, the communication device can terminate wireless communications with the base station, and continue the communication session by way of the communication node 1104. Termination of wireless services between the base station and the communication device makes certain wireless resources of the base station available for use with other communication devices. It should be noted that although the base station has in the foregoing steps delegated wireless connectivity to a select communication node 1104, the communication session between base station and the communication device continues as before by way of the network of communication nodes 1104 illustrated in FIG. 11A. The difference is, however, that the base station no longer needs to utilize its own wireless resources to communicate with the communication device.


In order to provide bidirectional communications between the base station and the communication device, by way of the network of communication nodes 1104, the communication node 1104 and/or the communication device can be instructed to utilize one or more frequency channels of one or more uplink spectral segments 1210 on the uplink illustrated in FIG. 12A. Uplink instructions can be provided to the communication node 1104 and/or communication device at step 1316 as part of and/or subsequent to the registration process between the communication device and the communication node 1104 selected at step 1308. Accordingly, when the communication device has data it needs to transmit to the base station, it can wirelessly transmit second modulated signal(s) at the first native carrier frequency which can be received by the communication node 1104 at step 1324. The second modulated signal(s) can be included in one or more frequency channels of one or more uplink spectral segments 1210 specified in the instructions provided to the communication device and/or communication node at step 1316.


To convey the second modulated signal(s) to the base station, the communication node 1104 can up-convert these signals at step 1326 from the first native carrier frequency (e.g., 1.9 GHz) to the second carrier frequency (e.g., 80 GHz). To enable upstream communication nodes and/or the base station to remove distortion, the second modulated signal(s) at the second carrier frequency can be transmitted at step 1328 by the communication node 1104 with one or more uplink pilot signals 1208. Once the base station receives the second modulated signal(s) at the second carrier frequency via communication node 1104A, it can down-convert these signals at step 1330 from the second carrier frequency to the first native carrier frequency to obtain data provided by the communication device at step 1332. Alternatively, the first communication node 1104A can perform the down-conversion of the second modulated signal(s) at the second carrier frequency to the first native carrier frequency and provide the resulting signals to the base station. The base station can then process the second modulated signal(s) at the first native carrier frequency to retrieve data provided by the communication device in a manner similar or identical to how the base station would have processed signals from the communication device had the base station been in direct wireless communications with the communication device.


The foregoing steps method 1300 provide a way for a base station 1102 to make available wireless resources (e.g., sector antennas, spectrum) for fast moving communication devices and in some embodiments increase bandwidth utilization by redirecting slow moving communication devices to one or more communication nodes 1104 communicatively coupled to the base station 1102. For example, suppose a base station 1102 has ten (10) communication nodes 1104 that it can redirect mobile and/or stationary communication devices to. Further suppose that the 10 communication nodes 1104 have substantially non-overlapping communication ranges.


Further suppose, the base station 1102 has set aside certain spectral segments (e.g., resource blocks 5, 7 and 9) during particular timeslots and at a particular carrier frequency, which it assigns to all 10 communication nodes 1104. During operations, the base station 1102 can be configured not to utilize resource blocks 5, 7 and 9 during the timeslot schedule and carrier frequency set aside for the communication nodes 1104 to avoid interference. As the base station 1102 detects slow moving or stationary communication devices, it can redirect the communication devices to different ones of the 10 communication nodes 1104 based on the location of the communication devices. When, for example, the base station 1102 redirects communications of a particular communication device to a particular communication node 1104, the base station 1102 can up-convert resource blocks 5, 7 and 9 during the assigned timeslots and at the carrier frequency to one or more spectral range(s) on the downlink (see FIG. 12A) assigned to the communication node 1104 in question.


The communication node 1104 in question can also be assigned to one or more frequency channels of one or more uplink spectral segments 1210 on the uplink which it can use to redirect communication signals provided by the communication device to the base station 1102. Such communication signals can be up-converted by the communication node 1104 according to the assigned uplink frequency channels in one or more corresponding uplink spectral segments 1210 and transmitted to the base station 1102 for processing. The downlink and uplink frequency channel assignments can be communicated by the base station 1102 to each communication node 1104 by way of a control channel as depicted in FIG. 12A. The foregoing downlink and uplink assignment process can also be used for the other communication nodes 1104 for providing communication services to other communication devices redirected by the base station 1102 thereto.


In this illustration, the reuse of resource blocks 5, 7 and 9 during a corresponding timeslot schedule and carrier frequency by the 10 communication nodes 1104 can effectively increase bandwidth utilization by the base station 1102 up to a factor of 10. Although the base station 1102 can no longer use resource blocks 5, 7 and 9 it set aside for the 10 communication nodes 1104 for wirelessly communicating with other communication devices, its ability to redirect communication devices to 10 different communication nodes 1104 reusing these resource blocks effectively increases the bandwidth capabilities of the base station 1102. Accordingly, method 1300 in certain embodiments can increase bandwidth utilization of a base station 1102 and make available resources of the base station 1102 for other communication devices.


It will be appreciated that in some embodiments, the base station 1102 can be configured to reuse spectral segments assigned to communication nodes 1104 by selecting one or more sectors of an antenna system of the base station 1102 that point away from the communication nodes 1104 assigned to the same spectral segments. Accordingly, the base station 1102 can be configured in some embodiments to avoid reusing certain spectral segments assigned to certain communication nodes 1104 and in other embodiments reuse other spectral segments assigned to other communication nodes 1104 by selecting specific sectors of the antenna system of the base station 1102. Similar concepts can be applied to sectors of the antenna system 1124 employed by the communication nodes 1104. Certain reuse schemes can be employed between the base station 1102 and one or more communication nodes 1104 based on sectors utilized by the base station 1102 and/or the one or more communication nodes 1104.


Method 1300 also enables the reuse of legacy systems when communication devices are redirected to one or more communication nodes. For example, the signaling protocol (e.g., LTE) utilized by the base station to wirelessly communicate with the communication device can be preserved in the communication signals exchanged between the base station and the communication nodes 1104. Accordingly, when assigning spectral segments to the communication nodes 1104, the exchange of modulated signals in these segments between the base station and the communication nodes 1104 can be the same signals that would have been used by the base station to perform direct wireless communications with the communication device. Thus, legacy base stations can be updated to perform the up and down-conversion process previously described, with the added feature of distortion mitigation, while all other functions performed in hardware and/or software for processing modulated signals at the first native carrier frequency can remain substantially unaltered. It should also be noted that, in further embodiments, channels from an original frequency band can be converted to another frequency band utilizing by the same protocol. For example, LTE channels in the 2.5 GHz band can be up-converted into a 80 GHZ band for transport and then down-converted as 5.8 GHz LTE channels if required for spectral diversity.


It is further noted that method 1300 can be adapted without departing from the scope of the subject disclosure. For example, when the base station detects that a communication device has a trajectory that will result in a transition from the communication range of one communication node to another, the base station (or the communication nodes in question) can monitor such a trajectory by way of periodic GPS coordinates provided by the communication device, and accordingly coordinate a handoff of the communication device to the other communication node. Method 1300 can also be adapted so that when the communication device is near a point of transitioning from the communication range of one communication node to another, instructions can be transmitted by the base station (or the active communication node) to direct the communication device and/or the other communication node to utilize certain spectral segments and/or timeslots in the downlink and uplink channels to successfully transition communications without interrupting an existing communication session.


It is further noted that method 1300 can also be adapted to coordinate a handoff of wireless communications between the communication device and a communication node 1104 back to the base station when the base station or the active communication node 1104 detects that the communication device will at some point transition outside of a communication range of the communication node and no other communication node is in a communication range of the communication device. Other adaptations of method 1300 are contemplated by the subject disclosure. It is further noted that when a carrier frequency of a downlink or uplink spectral segment is lower than a native frequency band of a modulated signal, a reverse process of frequency conversion would be required. That is, when transporting a modulated signal in a downlink or uplink spectral segment frequency down-conversion will be used instead of up-conversion. And when extracting a modulated signal in a downlink or uplink spectral segment frequency up-conversion will be used instead of down-conversion. Method 1300 can further be adapted to use the clock signal referred to above for synchronizing the processing of digital data in a control channel. Method 1300 can also be adapted to use a reference signal that is modulated by instructions in the control channel or a clock signal that is modulated by instructions in the control channel.


Method 1300 can further be adapted to avoid tracking of movement of a communication device and instead direct multiple communication nodes 1104 to transmit the modulated signal of a particular communication device at its native frequency without knowledge of which communication node is in a communication range of the particular communication device. Similarly, each communication node can be instructed to receive modulated signals from the particular communication device and transport such signals in certain frequency channels of one or more uplink spectral segments 1210 without knowledge as to which communication node will receive modulated signals from the particular communication device. Such an implementation can help reduce the implementation complexity and cost of the communication nodes 1104.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 13A, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Turning now to FIG. 13B, a flow diagram of an example, non-limiting embodiment of a method 1335, is shown. Method 1335 can be used with one or more functions and features presented in conjunction with FIGS. 1-12. Step 1336 includes receiving, by a system including circuitry, a first modulated signal in a first spectral segment directed to a mobile communication device, wherein the first modulated signal conforms to a signaling protocol. Step 1337 includes converting, by the system, the first modulated signal in the first spectral segment to the first modulated signal at a first carrier frequency based on a signal processing of the first modulated signal and without modifying the signaling protocol of the first modulated signal, wherein the first carrier frequency is outside the first spectral segment. Step 1338 includes transmitting, by the system, a reference signal with the first modulated signal at the first carrier frequency to a network element of a distributed antenna system, the reference signal enabling the network element to reduce a phase error when reconverting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment for wireless distribution of the first modulated signal to the mobile communication device in the first spectral segment.


In various embodiments, the signal processing does not require either analog to digital conversion or digital to analog conversion. The transmitting can comprise transmitting to the network element the first modulated signal at the first carrier frequency as a free space wireless signal. The first carrier frequency can be in a millimeter-wave frequency band.


The first modulated signal can be generated by modulating signals in a plurality of frequency channels according to the signaling protocol to generate the first modulated signal in the first spectral segment. The signaling protocol can comprise a Long-Term Evolution (LTE) wireless protocol or a fifth generation cellular communications protocol.


Converting by the system can comprise up-converting the first modulated signal in the first spectral segment to the first modulated signal at the first carrier frequency or down-converting the first modulated signal in the first spectral segment to the first modulated signal at the first carrier frequency. Converting by the network element can comprises down-converting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment or up-converting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment.


The method can further include receiving, by the system, a second modulated signal at a second carrier frequency from the network element, wherein the mobile communication device generates the second modulated signal in a second spectral segment, and wherein the network element converts the second modulated signal in the second spectral segment to the second modulated signal at the second carrier frequency and transmits the second modulated signal at the second carrier frequency. The method can further include converting, by the system, the second modulated signal at the second carrier frequency to the second modulated signal in the second spectral segment; and sending, by the system, the second modulated signal in the second spectral segment to a base station for processing.


The second spectral segment can differ from the first spectral segment, and wherein the first carrier frequency can differ from the second carrier frequency. The system can be mounted to a first utility pole and the network element can be mounted to a second utility pole.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 13B, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Turning now to FIG. 13C, a flow diagram of an example, non-limiting embodiment of a method 1340, is shown. Method 1335 can be used with one or more functions and features presented in conjunction with FIGS. 1-12. Step 1341 include receiving, by a network element of a distributed antenna system, a reference signal and a first modulated signal at a first carrier frequency, the first modulated signal including first communications data provided by a base station and directed to a mobile communication device. Step 1342 includes converting, by the network element, the first modulated signal at the first carrier frequency to the first modulated signal in a first spectral segment based on a signal processing of the first modulated signal and utilizing the reference signal to reduce distortion during the converting. Step 1343 includes wirelessly transmitting, by the network element, the first modulated signal at the first spectral segment to the mobile communication device.


In various embodiments the first modulated signal conforms to a signaling protocol, and the signal processing converts the first modulated signal in the first spectral segment to the first modulated signal at the first carrier frequency without modifying the signaling protocol of the first modulated signal. The converting by the network element can include converting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment without modifying the signaling protocol of the first modulated signal. The method can further include receiving, by the network element, a second modulated signal in a second spectral segment generated by the mobile communication device, converting, by the network element, the second modulated signal in the second spectral segment to the second modulated signal at a second carrier frequency; and transmitting, by the network element, to an other network element of the distributed antenna system the second modulated signal at the second carrier frequency. The other network element of the distributed antenna system can receive the second modulated signal at the second carrier frequency, converts the second modulated signal at the second carrier frequency to the second modulated signal in the second spectral segment, and provides the second modulated signal in the second spectral segment to the base station for processing. The second spectral segment can differs from the first spectral segment, and the first carrier frequency can differ from the second carrier frequency.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 13C, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Turning now to FIG. 13D, a flow diagram of an example, non-limiting embodiment of a method 1345, is shown. Method 1345 can be used with one or more functions and features presented in conjunction with FIGS. 1-12. Step 1346 includes receiving, by a system including circuitry, a first modulated signal in a first spectral segment directed to a mobile communication device, wherein the first modulated signal conforms to a signaling protocol. Step 1347 includes converting, by the system, the first modulated signal in the first spectral segment to the first modulated signal at a first carrier frequency based on a signal processing of the first modulated signal and without modifying the signaling protocol of the first modulated signal, wherein the first carrier frequency is outside the first spectral segment. Step 1348 includes transmitting, by the system, instructions in a control channel to direct a network element of the distributed antenna system to convert the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment. Step 1349 includes transmitting, by the system, a reference signal with the first modulated signal at the first carrier frequency to the network element of a distributed antenna system, the reference signal enabling the network element to reduce a phase error when reconverting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment for wireless distribution of the first modulated signal to the mobile communication device in the first spectral segment, wherein the reference signal is transmitted at an out of band frequency relative to the control channel.


In various embodiments, the control channel is transmitted at a frequency adjacent to the first modulated signal at the first carrier frequency and/or at a frequency adjacent to the reference signal. The first carrier frequency can be in a millimeter-wave frequency band. The first modulated signal can be generated by modulating signals in a plurality of frequency channels according to the signaling protocol to generate the first modulated signal in the first spectral segment. The signaling protocol can comprise a Long-Term Evolution (LTE) wireless protocol or a fifth generation cellular communications protocol.


The converting by the system can comprises up-converting the first modulated signal in the first spectral segment to the first modulated signal at the first carrier frequency or down-converting the first modulated signal in the first spectral segment to the first modulated signal at the first carrier frequency. The converting by the network element can comprise down-converting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment or up-converting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment.


The method can further include receiving, by the system, a second modulated signal at a second carrier frequency from the network element, wherein the mobile communication device generates the second modulated signal in a second spectral segment, and wherein the network element converts the second modulated signal in the second spectral segment to the second modulated signal at the second carrier frequency and transmits the second modulated signal at the second carrier frequency. The method can further include converting, by the system, the second modulated signal at the second carrier frequency to the second modulated signal in the second spectral segment; and sending, by the system, the second modulated signal in the second spectral segment to a base station for processing.


The second spectral segment can differ from the first spectral segment, and wherein the first carrier frequency can differ from the second carrier frequency. The system can be mounted to a first utility pole and the network element can be mounted to a second utility pole.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 13D, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Turning now to FIG. 13E, a flow diagram of an example, non-limiting embodiment of a method 1350, is shown. Method 1350 can be used with one or more functions and features presented in conjunction with FIGS. 1-12. Step 1351 includes receiving, by a network element of a distributed antenna system, a reference signal, a control channel and a first modulated signal at a first carrier frequency, the first modulated signal including first communications data provided by a base station and directed to a mobile communication device, wherein instructions in the control channel direct the network element of the distributed antenna system to convert the first modulated signal at the first carrier frequency to the first modulated signal in a first spectral segment, wherein the reference signal is received at an out of band frequency relative to the control channel. Step 1352 includes converting, by the network element, the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment in accordance with the instructions and based on a signal processing of the first modulated signal and utilizing the reference signal to reduce distortion during the converting. Step 1353 includes wirelessly transmitting, by the network element, the first modulated signal at the first spectral segment to the mobile communication device.


In various embodiments, the control channel can be received at a frequency adjacent to the first modulated signal at the first carrier frequency and/or adjacent to the reference signal.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 13E, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Turning now to FIG. 13F, a flow diagram of an example, non-limiting embodiment of a method 1355, is shown. Method 1355 can be used with one or more functions and features presented in conjunction with FIGS. 1-12. Step 1356 includes receiving, by a system including circuitry, a first modulated signal in a first spectral segment directed to a mobile communication device, wherein the first modulated signal conforms to a signaling protocol. Step 1357 includes converting, by the system, the first modulated signal in the first spectral segment to the first modulated signal at a first carrier frequency based on a signal processing of the first modulated signal and without modifying the signaling protocol of the first modulated signal, wherein the first carrier frequency is outside the first spectral segment. Step 1358 includes transmitting, by the system, instructions in a control channel to direct a network element of the distributed antenna system to convert the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment. Step 1359 includes transmitting, by the system, a reference signal with the first modulated signal at the first carrier frequency to the network element of a distributed antenna system, the reference signal enabling the network element to reduce a phase error when reconverting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment for wireless distribution of the first modulated signal to the mobile communication device in the first spectral segment, wherein the reference signal is transmitted at an in-band frequency relative to the control channel.


In various embodiments, the instructions are transmitted via modulation of the reference signal. The instructions can be transmitted as digital data via an amplitude modulation of the reference signal. The first carrier frequency can be in a millimeter-wave frequency band. The first modulated signal can be generated by modulating signals in a plurality of frequency channels according to the signaling protocol to generate the first modulated signal in the first spectral segment. The signaling protocol can comprise a Long-Term Evolution (LTE) wireless protocol or a fifth generation cellular communications protocol.


The converting by the system can comprises up-converting the first modulated signal in the first spectral segment to the first modulated signal at the first carrier frequency or down-converting the first modulated signal in the first spectral segment to the first modulated signal at the first carrier frequency. The converting by the network element can comprise down-converting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment or up-converting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment.


The method can further include receiving, by the system, a second modulated signal at a second carrier frequency from the network element, wherein the mobile communication device generates the second modulated signal in a second spectral segment, and wherein the network element converts the second modulated signal in the second spectral segment to the second modulated signal at the second carrier frequency and transmits the second modulated signal at the second carrier frequency. The method can further include converting, by the system, the second modulated signal at the second carrier frequency to the second modulated signal in the second spectral segment; and sending, by the system, the second modulated signal in the second spectral segment to a base station for processing.


The second spectral segment can differ from the first spectral segment, and wherein the first carrier frequency can differ from the second carrier frequency. The system can be mounted to a first utility pole and the network element can be mounted to a second utility pole.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 13F, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Turning now to FIG. 13G, a flow diagram of an example, non-limiting embodiment of a method 1360, is shown. Method 1360 can be used with one or more functions and features presented in conjunction with FIGS. 1-12. Step 1361 includes receiving, by a network element of a distributed antenna system, a reference signal, a control channel and a first modulated signal at a first carrier frequency, the first modulated signal including first communications data provided by a base station and directed to a mobile communication device, wherein instructions in the control channel direct the network element of the distributed antenna system to convert the first modulated signal at the first carrier frequency to the first modulated signal in a first spectral segment, and wherein the reference signal is received at an in-band frequency relative to the control channel. Step 1362 includes converting, by the network element, the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment in accordance with the instructions and based on a signal processing of the first modulated signal and utilizing the reference signal to reduce distortion during the converting. Step 1363 includes wirelessly transmitting, by the network element, the first modulated signal at the first spectral segment to the mobile communication device.


In various embodiments, the instructions are received via demodulation of the reference signal and/or as digital data via an amplitude demodulation of the reference signal.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 13G, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Turning now to FIG. 13H, a flow diagram of an example, non-limiting embodiment of a method 1365, is shown. Method 1365 can be used with one or more functions and features presented in conjunction with FIGS. 1-12. Step 1366 includes receiving, by a system including circuitry, a first modulated signal in a first spectral segment directed to a mobile communication device, wherein the first modulated signal conforms to a signaling protocol. Step 1367 includes converting, by the system, the first modulated signal in the first spectral segment to the first modulated signal at a first carrier frequency based on a signal processing of the first modulated signal and without modifying the signaling protocol of the first modulated signal, wherein the first carrier frequency is outside the first spectral segment. Step 1368 includes transmitting, by the system, instructions in a control channel to direct a network element of the distributed antenna system to convert the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment. Step 1369 includes transmitting, by the system, a clock signal with the first modulated signal at the first carrier frequency to the network element of a distributed antenna system, wherein the clock signal synchronizes timing of digital control channel processing of the network element to recover the instructions from the control channel.


In various embodiments, the method further includes transmitting, by the system, a reference signal with the first modulated signal at the first carrier frequency to a network element of a distributed antenna system, the reference signal enabling the network element to reduce a phase error when reconverting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment for wireless distribution of the first modulated signal to the mobile communication device in the first spectral segment. The instructions can be transmitted as digital data via the control channel.


In various embodiments, the first carrier frequency can be in a millimeter-wave frequency band. The first modulated signal can be generated by modulating signals in a plurality of frequency channels according to the signaling protocol to generate the first modulated signal in the first spectral segment. The signaling protocol can comprise a Long-Term Evolution (LTE) wireless protocol or a fifth generation cellular communications protocol.


The converting by the system can comprises up-converting the first modulated signal in the first spectral segment to the first modulated signal at the first carrier frequency or down-converting the first modulated signal in the first spectral segment to the first modulated signal at the first carrier frequency. The converting by the network element can comprise down-converting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment or up-converting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment.


The method can further include receiving, by the system, a second modulated signal at a second carrier frequency from the network element, wherein the mobile communication device generates the second modulated signal in a second spectral segment, and wherein the network element converts the second modulated signal in the second spectral segment to the second modulated signal at the second carrier frequency and transmits the second modulated signal at the second carrier frequency. The method can further include converting, by the system, the second modulated signal at the second carrier frequency to the second modulated signal in the second spectral segment; and sending, by the system, the second modulated signal in the second spectral segment to a base station for processing.


The second spectral segment can differ from the first spectral segment, and wherein the first carrier frequency can differ from the second carrier frequency. The system can be mounted to a first utility pole and the network element can be mounted to a second utility pole.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 13H, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Turning now to FIG. 13I, a flow diagram of an example, non-limiting embodiment of a method 1370, is shown. Method 1370 can be used with one or more functions and features presented in conjunction with FIGS. 1-12. Step 1371 includes receiving, by a network element of a distributed antenna system, a clock signal, a control channel and a first modulated signal at a first carrier frequency, the first modulated signal including first communications data provided by a base station and directed to a mobile communication device, wherein the clock signal synchronizes timing of digital control channel processing by the network element to recover instructions from the control channel, wherein the instructions in the control channel direct the network element of the distributed antenna system to convert the first modulated signal at the first carrier frequency to the first modulated signal in a first spectral segment. Step 1372 includes converting, by the network element, the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment in accordance with the instructions and based on a signal processing of the first modulated signal. Step 1373 includes wirelessly transmitting, by the network element, the first modulated signal at the first spectral segment to the mobile communication device. In various embodiments, the instructions are received as digital data via the control channel.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 13I, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Turning now to FIG. 13J, a flow diagram of an example, non-limiting embodiment of a method 1375, is shown. Method 1375 can be used with one or more functions and features presented in conjunction with FIGS. 1-12. Step 1376 includes receiving, by a system including circuitry, a first modulated signal in a first spectral segment directed to a mobile communication device, wherein the first modulated signal conforms to a signaling protocol. Step 1377 includes converting, by the system, the first modulated signal in the first spectral segment to the first modulated signal at a first carrier frequency based on a signal processing of the first modulated signal and without modifying the signaling protocol of the first modulated signal, wherein the first carrier frequency is outside the first spectral segment. Step 1378 includes transmitting, by the system, instructions in an ultra-wideband control channel to direct a network element of the distributed antenna system to convert the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment. Step 1359 includes transmitting, by the system, a reference signal with the first modulated signal at the first carrier frequency to the network element of a distributed antenna system, the reference signal enabling the network element to reduce a phase error when reconverting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment for wireless distribution of the first modulated signal to the mobile communication device in the first spectral segment.


In various embodiments, wherein the first reference signal is transmitted at an in-band frequency relative to the ultra-wideband control channel. The method can further include receiving, via the ultra-wideband control channel from the network element of a distributed antenna system, control channel data that includes include: status information that indicates network status of the network element, network device information that indicates device information of the network element or an environmental measurement indicating an environmental condition in proximity to the network element. The instructions can further include a channel spacing, a guard band parameter, an uplink/downlink allocation, or an uplink channel selection.


The first modulated signal can be generated by modulating signals in a plurality of frequency channels according to the signaling protocol to generate the first modulated signal in the first spectral segment. The signaling protocol can comprise a Long-Term Evolution (LTE) wireless protocol or a fifth generation cellular communications protocol.


The converting by the system can comprises up-converting the first modulated signal in the first spectral segment to the first modulated signal at the first carrier frequency or down-converting the first modulated signal in the first spectral segment to the first modulated signal at the first carrier frequency. The converting by the network element can comprise down-converting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment or up-converting the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment.


The method can further include receiving, by the system, a second modulated signal at a second carrier frequency from the network element, wherein the mobile communication device generates the second modulated signal in a second spectral segment, and wherein the network element converts the second modulated signal in the second spectral segment to the second modulated signal at the second carrier frequency and transmits the second modulated signal at the second carrier frequency. The method can further include converting, by the system, the second modulated signal at the second carrier frequency to the second modulated signal in the second spectral segment; and sending, by the system, the second modulated signal in the second spectral segment to a base station for processing.


The second spectral segment can differ from the first spectral segment, and wherein the first carrier frequency can differ from the second carrier frequency. The system can be mounted to a first utility pole and the network element can be mounted to a second utility pole.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 13J, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


Turning now to FIG. 13K, a flow diagram of an example, non-limiting embodiment of a method 1380, is shown. Method 1380 can be used with one or more functions and features presented in conjunction with FIGS. 1-12. Step 1381 includes receiving, by a network element of a distributed antenna system, a reference signal, an ultra-wideband control channel and a first modulated signal at a first carrier frequency, the first modulated signal including first communications data provided by a base station and directed to a mobile communication device, wherein instructions in the ultra-wideband control channel direct the network element of the distributed antenna system to convert the first modulated signal at the first carrier frequency to the first modulated signal in a first spectral segment, and wherein the reference signal is received at an in-band frequency relative to the control channel. Step 1382 includes converting, by the network element, the first modulated signal at the first carrier frequency to the first modulated signal in the first spectral segment in accordance with the instructions and based on a signal processing of the first modulated signal and utilizing the reference signal to reduce distortion during the converting. Step 1383 includes wirelessly transmitting, by the network element, the first modulated signal at the first spectral segment to the mobile communication device.


In various embodiments, wherein the first reference signal is received at an in-band frequency relative to the ultra-wideband control channel. The method can further include transmitting, via the ultra-wideband control channel from the network element of a distributed antenna system, control channel data that includes include: status information that indicates network status of the network element, network device information that indicates device information of the network element or an environmental measurement indicating an environmental condition in proximity to the network element. The instructions can further include a channel spacing, a guard band parameter, an uplink/downlink allocation, or an uplink channel selection.


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIG. 13K, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein.


In the subject specification, terms such as “store,” “storage,” “data store,” data storage,” “database,” and substantially any other information storage component relevant to operation and functionality of a component, refer to “memory components,” or entities embodied in a “memory” or components comprising the memory. It will be appreciated that the memory components described herein can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory, by way of illustration, and not limitation, volatile memory 1320 (see below), non-volatile memory 1322 (see below), disk storage 1324 (see below), and memory storage 1346 (see below). Further, nonvolatile memory can be included in read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory can include random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Additionally, the disclosed memory components of systems or methods herein are intended to comprise, without being limited to comprising, these and any other suitable types of memory.


Moreover, it will be noted that the disclosed subject matter can be practiced with other computer system configurations, including single-processor or multiprocessor computer systems, mini-computing devices, mainframe computers, as well as personal computers, hand-held computing devices (e.g., PDA, phone, watch, tablet computers, netbook computers, . . . ), microprocessor-based or programmable consumer or industrial electronics, and the like. The illustrated aspects can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network; however, some if not all aspects of the subject disclosure can be practiced on stand-alone computers. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.


The embodiments described herein can employ artificial intelligence (AI) to facilitate automating one or more features described herein. The embodiments (e.g., in connection with automatically identifying acquired cell sites that provide a maximum value/benefit after addition to an existing communication network) can employ various AI-based schemes for carrying out various embodiments thereof. Moreover, the classifier can be employed to determine a ranking or priority of the each cell site of the acquired network. A classifier is a function that maps an input attribute vector, x=(x1, x2, x3, x4, . . . , xn), to a confidence that the input belongs to a class, that is, f(x)=confidence(class). Such classification can employ a probabilistic and/or statistical-based analysis (e.g., factoring into the analysis utilities and costs) to prognose or infer an action that a user desires to be automatically performed. A support vector machine (SVM) is an example of a classifier that can be employed. The SVM operates by finding a hypersurface in the space of possible inputs, which the hypersurface attempts to split the triggering criteria from the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical to training data. Other directed and undirected model classification approaches include, e.g., naïve Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence can be employed. Classification as used herein also is inclusive of statistical regression that is utilized to develop models of priority.


As will be readily appreciated, one or more of the embodiments can employ classifiers that are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing UE behavior, operator preferences, historical information, receiving extrinsic information). For example, SVMs can be configured via a learning or training phase within a classifier constructor and feature selection module. Thus, the classifier(s) can be used to automatically learn and perform a number of functions, including but not limited to determining according to a predetermined criteria which of the acquired cell sites will benefit a maximum number of subscribers and/or which of the acquired cell sites will add minimum value to the existing communication network coverage, etc.


As used in this application, in some embodiments, the terms “component,” “system” and the like are intended to refer to, or include, a computer-related entity or an entity related to an operational apparatus with one or more specific functionalities, wherein the entity can be either hardware, a combination of hardware and software, software, or software in execution. As an example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, computer-executable instructions, a program, and/or a computer. By way of illustration and not limitation, both an application running on a server and the server can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components may communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems via the signal). As another example, a component can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic circuitry, which is operated by a software or firmware application executed by a processor, wherein the processor can be internal or external to the apparatus and executes at least a part of the software or firmware application. As yet another example, a component can be an apparatus that provides specific functionality through electronic components without mechanical parts, the electronic components can include a processor therein to execute software or firmware that confers at least in part the functionality of the electronic components. While various components have been illustrated as separate components, it will be appreciated that multiple components can be implemented as a single component, or a single component can be implemented as multiple components, without departing from example embodiments.


Further, the various embodiments can be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device or computer-readable storage/communications media. For example, computer readable storage media can include, but are not limited to, magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips), optical disks (e.g., compact disk (CD), digital versatile disk (DVD)), smart cards, and flash memory devices (e.g., card, stick, key drive). Of course, those skilled in the art will recognize many modifications can be made to this configuration without departing from the scope or spirit of the various embodiments.


In addition, the words “example” and “exemplary” are used herein to mean serving as an instance or illustration. Any embodiment or design described herein as “example” or “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the word example or exemplary is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.


Moreover, terms such as “user equipment,” “mobile station,” “mobile,” subscriber station,” “access terminal,” “terminal,” “handset,” “mobile device” (and/or terms representing similar terminology) can refer to a wireless device utilized by a subscriber or user of a wireless communication service to receive or convey data, control, voice, video, sound, gaming or substantially any data-stream or signaling-stream. The foregoing terms are utilized interchangeably herein and with reference to the related drawings.


Furthermore, the terms “user,” “subscriber,” “customer,” “consumer” and the like are employed interchangeably throughout, unless context warrants particular distinctions among the terms. It should be appreciated that such terms can refer to human entities or automated components supported through artificial intelligence (e.g., a capacity to make inference based, at least, on complex mathematical formalisms), which can provide simulated vision, sound recognition and so forth.


As employed herein, the term “processor” can refer to substantially any computing processing unit or device comprising, but not limited to comprising, single-core processors; single-processors with software multithread execution capability; multi-core processors; multi-core processors with software multithread execution capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms with distributed shared memory. Additionally, a processor can refer to an integrated circuit, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a field programmable gate array (FPGA), a programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor logic, discrete hardware components or any combination thereof designed to perform the functions described herein. Processors can exploit nano-scale architectures such as, but not limited to, molecular and quantum-dot based transistors, switches and gates, in order to optimize space usage or enhance performance of user equipment. A processor can also be implemented as a combination of computing processing units.


As used herein, terms such as “data storage,” data storage,” “database,” and substantially any other information storage component relevant to operation and functionality of a component, refer to “memory components,” or entities embodied in a “memory” or components comprising the memory. It will be appreciated that the memory components or computer-readable storage media, described herein can be either volatile memory or nonvolatile memory or can include both volatile and nonvolatile memory.


Memory disclosed herein can include volatile memory or nonvolatile memory or can include both volatile and nonvolatile memory. By way of illustration, and not limitation, nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable PROM (EEPROM) or flash memory. Volatile memory can include random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). The memory (e.g., data storages, databases) of the embodiments are intended to comprise, without being limited to, these and any other suitable types of memory.


What has been described above includes mere examples of various embodiments. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing these examples, but one of ordinary skill in the art can recognize that many further combinations and permutations of the present embodiments are possible. Accordingly, the embodiments disclosed and/or claimed herein are intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.

Claims
  • 1. A system, comprising: communication circuitry that facilitates operations, comprising:receiving a plurality of signals operating in a plurality of cellular bands, the plurality of signals modulated according to a plurality of signaling protocols;frequency shifting the plurality of signals without modifying the plurality of signaling protocols by mixing a plurality of carrier wave signals with the plurality of signals to generate a plurality of frequency-shifted signals;combining the plurality of frequency-shifted signals with at least one reference signal;generating a transmission based on the plurality of frequency-shifted signals and the at least one reference signal; anddirecting the transmission wirelessly to a first remote antenna system of a distributed antenna system, the at least one reference signal enabling the first remote antenna system to reduce signal distortion when reconverting a first frequency-shifted signal of the plurality of frequency-shifted signals to a first signal of the plurality of signals in a first cellular band of the plurality of cellular bands.
  • 2. The system of claim 1, wherein the plurality of signals is provided by a plurality of base station devices.
  • 3. The system of claim 1, wherein each of the plurality of signaling protocols differs from each other.
  • 4. The system of claim 1, wherein the signal distortion comprises phase distortion.
  • 5. The system of claim 1, wherein the combining further comprises combining the plurality of frequency-shifted signals with the at least one reference signal and with a control channel comprising instructions to direct the first remote antenna system to reconvert the first frequency-shifted signal to the first signal in the first cellular band.
  • 6. The system of claim 5, wherein the at least one reference signal is modulated with the instructions in the control channel.
  • 7. The system of claim 5, wherein the at least one reference signal is modulated with a clock signal to enable the first remote antenna system to receive the instructions in the control channel.
  • 8. The system of claim 1, wherein the first signal conforms to a first signaling protocol of the plurality of signaling protocols, and wherein the first signaling protocol comprises a Long-Term Evolution (LTE) wireless protocol or a fifth generation cellular communications protocol.
  • 9. The system of claim 1, wherein each carrier wave signal of the plurality of carrier wave signals is utilized to frequency shift a corresponding one the plurality of signals into a corresponding frequency channel of at least one downlink spectral segment.
  • 10. The system of claim 1, wherein the frequency shifting comprises up-converting the plurality of signals to the plurality of frequency-shifted signals.
  • 11. The system of claim 1, wherein the reconverting by the first remote antenna system comprises down-converting the first frequency-shifted signal to the first signal in the first cellular band.
  • 12. The system of claim 1, wherein the frequency shifting comprises down-converting the plurality of signals to the plurality of frequency-shifted signals.
  • 13. The system of claim 1, wherein the reconverting by the first remote antenna system comprises up-converting the first frequency-shifted signal to the first signal in the first cellular band.
  • 14. The system of claim 1, wherein the receiving the plurality of signals comprises receiving the first signal originally in a second cellular band that differs from the first cellular band, and wherein the first remote antenna system wirelessly distributes the first signal in the first cellular band to a communication device.
  • 15. The system of claim 1, wherein the first remote antenna system facilitates retransmission of at least a portion of the at least one reference signal and at least a portion of the plurality of frequency-shifted signals to a second remote antenna system, at least the portion of the at least one reference signal enabling the second remote antenna system to reduce signal distortion when reconverting a second frequency-shifted signal of at least the portion of the plurality of frequency-shifted signals to a second signal of the plurality of signals in a second cellular band of the plurality of cellular bands for wireless delivery to a communication device.
  • 16. A method, comprising: receiving, by a circuit, a plurality of signals operating in a plurality of frequency bands, the plurality of signals modulated according to a plurality of signaling protocols;frequency shifting, by the circuit, the plurality of signals without modifying the plurality of signaling protocols by mixing a plurality of carrier wave signals with the plurality of signals to generate a plurality of frequency-shifted signals;combining, by the circuit, the plurality of frequency-shifted signals with at least one reference signal to generate a combined signal; andgenerating, by the circuit, a wireless transmission based on the combined signal, the at least one reference signal enabling a remote antenna system of a distributed antenna system to reduce signal distortion when reconverting a frequency-shifted signal of the plurality of frequency-shifted signals to a signal of the plurality of signals in a first frequency band of the plurality of frequency bands.
  • 17. The method of claim 16, wherein the plurality of signals is provided by at least one base station device, and wherein the at least one base station device provides the signal of the plurality of signals in a second frequency band that differs from the first frequency band.
  • 18. The method of claim 17, wherein the wireless transmission further includes a control channel including instructions that direct the remote antenna system to reconvert the frequency-shifted signal to the signal in the first frequency band for wireless delivery to a communication device.
  • 19. A first system of a distributed antenna system, comprising: an antenna system; andcommunication circuitry that facilitates operations, comprising:wirelessly receiving, by the antenna system, a plurality of frequency-shifted signals and at least one reference signal from a second system of the distributed antenna system, the second system facilitating frequency shifting a plurality of signals operating in a plurality of frequency bands to the plurality of frequency-shifted signals without modifying a plurality of signaling protocols used to modulate the plurality of signals;frequency shifting a first frequency-shifted signal of the plurality of frequency-shifted signals to a first signal of the plurality of signals in a first frequency band of the plurality of frequency bands for wireless delivery to a first communication device, utilizing the at least one reference signal to reduce signal distortion during the frequency shifting; andretransmitting, by the antenna system, at least a portion of the at least one reference signal and at least a portion of the plurality of frequency-shifted signals to a third system of the distributed antenna system, at least the portion of the at least one reference signal enabling the third system to reduce signal distortion when reconverting a second frequency-shifted signal of at least the portion of the plurality of frequency-shifted signals to a second signal of the plurality of signals in a second frequency band of the plurality of frequency bands for wireless delivery to a second communication device.
  • 20. The first system of claim 19, wherein the wirelessly receiving the plurality of frequency-shifted signals further includes receiving a control channel comprising instructions that direct the first system to retransmit at least the portion of the at least one reference signal and at least the portion of the plurality of frequency-shifted signals to the third system.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority and is a continuation-in-part of U.S. patent application Ser. No. 13/907,246 filed May 31, 2013 by Barzegar et al., entitled “REMOTE DISTRIBUTED ANTENNA SYSTEM.” All sections of the aforementioned application(s) are incorporated herein by reference in its entirety.

US Referenced Citations (2585)
Number Name Date Kind
395814 Henry et al. Jan 1889 A
529290 Harry et al. Nov 1894 A
1721785 Meyer Jul 1929 A
1798613 Manson et al. Mar 1931 A
1860123 Yagi May 1932 A
2058611 Merkle et al. Oct 1936 A
2106770 Southworth et al. Feb 1938 A
2129711 Southworth Sep 1938 A
2129714 Southworth et al. Sep 1938 A
2147717 Schelkunoff Feb 1939 A
2187908 McCreary Jan 1940 A
2199083 Schelkunoff Apr 1940 A
2232179 King Feb 1941 A
2283935 King May 1942 A
2398095 Katzin Apr 1946 A
2402622 Hansen Jun 1946 A
2405242 Southworth et al. Aug 1946 A
2407068 Fiske et al. Sep 1946 A
2407069 Fiske Sep 1946 A
2410113 Edwin, Jr. Oct 1946 A
2411338 Roberts Nov 1946 A
2415089 Feldman et al. Feb 1947 A
2415807 Barrow et al. Feb 1947 A
2419205 Feldman et al. Apr 1947 A
2420007 Olden May 1947 A
2422058 Whinnery Jun 1947 A
2432134 Bagnall Dec 1947 A
2461005 Southworth Feb 1949 A
2471021 Bradley May 1949 A
2488400 Harder Nov 1949 A
2513205 Roberts et al. Jun 1950 A
2514679 Southworth Jul 1950 A
2519603 Reber Aug 1950 A
2540839 Southworth Feb 1951 A
2541843 Tiley et al. Feb 1951 A
2542980 Barrow Feb 1951 A
2557110 Jaynes Jun 1951 A
2562281 Mumford Jul 1951 A
2596190 Wiley May 1952 A
2599864 Robertson-Shersby-Ha et al. Jun 1952 A
2659817 Cutler et al. Nov 1953 A
2667578 Carlson et al. Jan 1954 A
2677055 Allen Apr 1954 A
2685068 Goubau Jul 1954 A
2688732 Kock Sep 1954 A
2691766 Clapp Oct 1954 A
2706279 Aron Apr 1955 A
2711514 Rines Jun 1955 A
2723378 Clavier et al. Nov 1955 A
2727232 Pryga Dec 1955 A
2735092 Brown Feb 1956 A
2737632 Grieg et al. Mar 1956 A
2740826 Bondon Apr 1956 A
2745101 Marie May 1956 A
2748350 Miller et al. May 1956 A
2749545 Kostriza Jun 1956 A
2754513 Goubau Jul 1956 A
2761137 Atta et al. Aug 1956 A
2769147 Black et al. Oct 1956 A
2769148 Clogston et al. Oct 1956 A
2770783 Thomas et al. Nov 1956 A
2794959 Fox Jun 1957 A
2805415 Berkowitz Sep 1957 A
2806177 Haeff et al. Sep 1957 A
2806972 Sensiper Sep 1957 A
2810111 Cohn Oct 1957 A
2819451 Sims et al. Jan 1958 A
2820083 Hendrix Jan 1958 A
2825060 Ruze et al. Feb 1958 A
2835871 Raabe May 1958 A
2851686 Hagaman et al. Sep 1958 A
2867776 Wilkinson, Jr. Jan 1959 A
2883135 Smalley et al. Apr 1959 A
2883136 Smalley et al. Apr 1959 A
2900558 Watkins et al. Aug 1959 A
2910261 Ward et al. Oct 1959 A
2912695 Cutler Nov 1959 A
2914741 Unger Nov 1959 A
2915270 Gladsden et al. Dec 1959 A
2921277 Goubau Jan 1960 A
2925458 Lester et al. Feb 1960 A
2933701 Lanctot et al. Apr 1960 A
2946970 Hafner et al. Jul 1960 A
2949589 Hafner Aug 1960 A
2960670 Marcatili et al. Nov 1960 A
2970800 Smalley et al. Feb 1961 A
2972148 Rupp et al. Feb 1961 A
2974297 Ros Mar 1961 A
2981949 Elliott et al. Apr 1961 A
2990151 Phillips et al. Jun 1961 A
2993205 Cooper et al. Jul 1961 A
3016520 Adam et al. Jan 1962 A
3025478 Marcatili et al. Mar 1962 A
3028565 Walker et al. Apr 1962 A
3040278 Griemsmann et al. Jun 1962 A
3045238 Cheston et al. Jul 1962 A
3046550 Schlaud et al. Jul 1962 A
3047822 Lakatos et al. Jul 1962 A
3065945 Newsome et al. Nov 1962 A
3072870 Walker Jan 1963 A
3077569 Ikrath et al. Feb 1963 A
3096462 Joseph et al. Jul 1963 A
3101472 Goubau Aug 1963 A
3109175 Lloyd Oct 1963 A
3129356 Phillips Apr 1964 A
3134951 Huber et al. May 1964 A
3146297 Hahne Aug 1964 A
3146453 Hagaman Aug 1964 A
3201724 Hafner Aug 1965 A
3205462 Meinke Sep 1965 A
3218384 Shaw Nov 1965 A
3219954 Rutelli Nov 1965 A
3234559 Bartholoma et al. Feb 1966 A
3255454 Walter et al. Jun 1966 A
3296364 Jefferson et al. Jan 1967 A
3296685 Menahem et al. Jan 1967 A
3310808 Friis et al. Mar 1967 A
3316344 Toms et al. Apr 1967 A
3316345 Toms et al. Apr 1967 A
3318561 Robertson, Jr. et al. May 1967 A
3321763 Ikrath et al. May 1967 A
3329958 Anderson et al. Jul 1967 A
3351947 Hart et al. Nov 1967 A
3355738 Algeo et al. Nov 1967 A
3369788 Eisele Feb 1968 A
3389394 Lewis et al. Jun 1968 A
3392388 Tsuneo et al. Jul 1968 A
3392395 Hannan Jul 1968 A
3411112 Honig et al. Nov 1968 A
3413637 Goebels, Jr. et al. Nov 1968 A
3413642 Cook Nov 1968 A
3414903 Bartlett et al. Dec 1968 A
3420596 Osterberg Jan 1969 A
3427573 White et al. Feb 1969 A
3448455 Alfandari et al. Jun 1969 A
3453617 Brickey et al. Jul 1969 A
3459873 Harris et al. Aug 1969 A
3465346 Patterson et al. Sep 1969 A
3474995 Amidon et al. Oct 1969 A
3482251 Bowes Dec 1969 A
3487158 Killian Dec 1969 A
3495262 Robert et al. Feb 1970 A
3500422 Grady et al. Mar 1970 A
3509463 Woodward et al. Apr 1970 A
3522560 Hayany Aug 1970 A
3524192 Sakiotis et al. Aug 1970 A
3529205 Miller Sep 1970 A
3530481 Tanaka et al. Sep 1970 A
3531803 Hudspeth et al. Sep 1970 A
3536800 Hubbard Oct 1970 A
3555553 Boyns Jan 1971 A
3557341 Sochilin et al. Jan 1971 A
3566317 Hafner Feb 1971 A
3568204 Blaisdell Mar 1971 A
3569979 Munk et al. Mar 1971 A
3573838 Ajioka Apr 1971 A
3588754 Hafner Jun 1971 A
3588755 Kunio et al. Jun 1971 A
3589121 Mulvey Jun 1971 A
3594494 Ross et al. Jul 1971 A
3599219 Hansen et al. Aug 1971 A
3603904 Hafner Sep 1971 A
3603951 Bracken et al. Sep 1971 A
3609247 Halstead Sep 1971 A
3623114 Seaton Nov 1971 A
3624655 Yamada et al. Nov 1971 A
3638224 Bailey et al. Jan 1972 A
3653622 Farmer Apr 1972 A
3666902 Owen et al. May 1972 A
3668459 Symons et al. Jun 1972 A
3668574 Barlow Jun 1972 A
3672202 Barber et al. Jun 1972 A
3686596 Thomas Aug 1972 A
3693922 Gueguen Sep 1972 A
3699574 Plunk et al. Oct 1972 A
3703690 Ravenscroft et al. Nov 1972 A
3704001 Sloop Nov 1972 A
3725937 Schreiber Apr 1973 A
3753086 Shoemaker et al. Aug 1973 A
3760127 Grossi et al. Sep 1973 A
3765021 Chiron et al. Oct 1973 A
3772528 Anderson et al. Nov 1973 A
3775769 Heeren et al. Nov 1973 A
3787872 Kauffman Jan 1974 A
3796970 Snell Mar 1974 A
3806931 Wright Apr 1974 A
3833909 Schaufelberger Sep 1974 A
3835407 Yariv et al. Sep 1974 A
3845426 Barlow Oct 1974 A
3858214 Jones Dec 1974 A
3877032 Rosa Apr 1975 A
3888446 O'Brien et al. Jun 1975 A
3896380 Martin Jul 1975 A
3906508 Foldes Sep 1975 A
3911415 Whyte Oct 1975 A
3921949 Coon Nov 1975 A
3925763 Wadhwani Dec 1975 A
3935577 Hansen et al. Jan 1976 A
3936836 Wheeler et al. Feb 1976 A
3936838 Foldes et al. Feb 1976 A
3952984 Dimitry et al. Apr 1976 A
3956751 Herman May 1976 A
3959794 Chrepta et al. May 1976 A
3973087 Fong et al. Aug 1976 A
3973240 Fong et al. Aug 1976 A
3976358 Thompson et al. Aug 1976 A
3983560 MacDougall et al. Sep 1976 A
4010799 Kern et al. Mar 1977 A
4012743 Maciejewski et al. Mar 1977 A
4020431 Saunders et al. Apr 1977 A
4026632 Hill et al. May 1977 A
4030048 Foldes et al. Jun 1977 A
4030953 Rutschow et al. Jun 1977 A
4031536 Alford et al. Jun 1977 A
4035054 Lattanzi et al. Jul 1977 A
4047180 Kuo et al. Sep 1977 A
4079361 Woode et al. Mar 1978 A
4080600 Toman et al. Mar 1978 A
4099184 Rapshys et al. Jul 1978 A
4114121 Barlow et al. Sep 1978 A
4115782 Han et al. Sep 1978 A
4123759 Hines et al. Oct 1978 A
4125768 Jackson et al. Nov 1978 A
4129872 Toman et al. Dec 1978 A
4141015 Wong et al. Feb 1979 A
4149170 Campbell et al. Apr 1979 A
4155108 Tuttle et al. May 1979 A
4156241 Mobley et al. May 1979 A
4166669 Leonberger et al. Sep 1979 A
4175257 Smith et al. Nov 1979 A
4188595 Cronson et al. Feb 1980 A
4190137 Shimada et al. Feb 1980 A
4191953 Woode et al. Mar 1980 A
4195302 Leupelt et al. Mar 1980 A
4210357 Adachi et al. Jul 1980 A
4216449 Kach Aug 1980 A
4220957 Britt et al. Sep 1980 A
4231042 Turrin et al. Oct 1980 A
4234753 Clutter Nov 1980 A
4238974 Fawcett et al. Dec 1980 A
4246584 Noerpel et al. Jan 1981 A
4247858 Eichweber et al. Jan 1981 A
4250489 Dudash et al. Feb 1981 A
4268804 Spinner et al. May 1981 A
4274097 Krall et al. Jun 1981 A
4274112 Leysieffer et al. Jun 1981 A
4278955 Lunden et al. Jul 1981 A
4293833 Popa et al. Oct 1981 A
4298877 Sletten et al. Nov 1981 A
4300242 Nava et al. Nov 1981 A
4307938 Dyott et al. Dec 1981 A
4316646 Siebens et al. Feb 1982 A
4319074 Yaste et al. Mar 1982 A
4329690 Parker et al. May 1982 A
4333082 Susman et al. Jun 1982 A
4335613 Luukkala et al. Jun 1982 A
4336719 Lynnworth Jun 1982 A
4345256 Rainwater et al. Aug 1982 A
4366565 Herskowitz Dec 1982 A
4367446 Hall et al. Jan 1983 A
4378143 Winzer et al. Mar 1983 A
4384289 Fernandes et al. May 1983 A
4398058 Gerth et al. Aug 1983 A
4398121 Chodorow et al. Aug 1983 A
4413263 Amitay et al. Nov 1983 A
4447811 Hamid et al. May 1984 A
4458250 Bodnar et al. Jul 1984 A
4463329 Suzuki et al. Jul 1984 A
4468672 Dragone et al. Aug 1984 A
4475209 Udren Oct 1984 A
4477814 Brumbaugh et al. Oct 1984 A
4482899 Dragone et al. Nov 1984 A
4488156 DuFort et al. Dec 1984 A
4491386 Negishi et al. Jan 1985 A
4495498 Petrelis et al. Jan 1985 A
4516130 Dragone May 1985 A
4525432 Saito et al. Jun 1985 A
4525693 Suzuki et al. Jun 1985 A
4533875 Lau et al. Aug 1985 A
4541303 Kuzunishi et al. Sep 1985 A
4550271 Lau et al. Oct 1985 A
4553112 Saad et al. Nov 1985 A
4556271 Hubbard Dec 1985 A
4558325 Stroem et al. Dec 1985 A
4565348 Larsen Jan 1986 A
4566012 Choung et al. Jan 1986 A
4567401 Barnett et al. Jan 1986 A
4568943 Bowman Feb 1986 A
4573215 Oates et al. Feb 1986 A
4589424 Vaguine et al. May 1986 A
4598262 Chen et al. Jul 1986 A
4599598 Komoda et al. Jul 1986 A
4604624 Amitay et al. Aug 1986 A
4604627 Saad et al. Aug 1986 A
4618867 Gans et al. Oct 1986 A
4636753 Geller et al. Jan 1987 A
4638322 Lamberty et al. Jan 1987 A
4641916 Oestreich et al. Feb 1987 A
4642651 Kuhn et al. Feb 1987 A
4644365 Horning et al. Feb 1987 A
4647329 Oono et al. Mar 1987 A
4660050 Phillips et al. Apr 1987 A
4665660 Krall et al. May 1987 A
4672384 Roy et al. Jun 1987 A
4673943 Hannan Jun 1987 A
4680558 Ghosh et al. Jul 1987 A
4694599 Hart et al. Sep 1987 A
4704611 Edwards et al. Nov 1987 A
4715695 Nishimura et al. Dec 1987 A
4717974 Baumeister et al. Jan 1988 A
4730172 Bengeult Mar 1988 A
4730888 Darcie et al. Mar 1988 A
4731810 Watkins Mar 1988 A
4735097 Lynnworth et al. Apr 1988 A
4743915 Rammos et al. May 1988 A
4743916 Bengeult May 1988 A
4745377 Stern et al. May 1988 A
4746241 Burbank, III et al. May 1988 A
4749244 Luh Jun 1988 A
4755830 Plunk et al. Jul 1988 A
4757324 Dhanjal et al. Jul 1988 A
4758962 Fernandes Jul 1988 A
4764738 Fried et al. Aug 1988 A
4772891 Svy Sep 1988 A
4777457 Ghosh et al. Oct 1988 A
4785304 Stern et al. Nov 1988 A
4786913 Barendregt et al. Nov 1988 A
4788553 Phillips et al. Nov 1988 A
4792771 Siu et al. Dec 1988 A
4792812 Rinehart et al. Dec 1988 A
4799031 Lang et al. Jan 1989 A
4800350 Bridges et al. Jan 1989 A
4801937 Fernandes Jan 1989 A
4818963 Green et al. Apr 1989 A
4818990 Fernandes Apr 1989 A
4825221 Suzuki et al. Apr 1989 A
4829310 Losee et al. May 1989 A
4829314 Barbier et al. May 1989 A
4831346 Brooker et al. May 1989 A
4832148 Becker et al. May 1989 A
4835517 Van et al. May 1989 A
4839659 Stern et al. Jun 1989 A
4845508 Krall et al. Jul 1989 A
4847610 Ozawa et al. Jul 1989 A
4849611 Whitney et al. Jul 1989 A
4851788 Ives et al. Jul 1989 A
4855749 DeFonzo et al. Aug 1989 A
4866454 Droessler et al. Sep 1989 A
4873534 Wohlleben et al. Oct 1989 A
4879544 Maki et al. Nov 1989 A
4881028 Bright et al. Nov 1989 A
4886980 Fernandes et al. Dec 1989 A
4897663 Kusano et al. Jan 1990 A
4904996 Fernandes Feb 1990 A
4915468 Kim et al. Apr 1990 A
4916460 Powell et al. Apr 1990 A
4922180 Saffer et al. May 1990 A
4929962 Begout et al. May 1990 A
4931808 Munson et al. Jun 1990 A
4932620 Foy Jun 1990 A
4946202 Perricone et al. Aug 1990 A
4965856 Swanic Oct 1990 A
4977593 Ballance Dec 1990 A
4977618 Allen Dec 1990 A
4989011 Rosen et al. Jan 1991 A
4998095 Shields Mar 1991 A
5003318 Hall et al. Mar 1991 A
5006846 Granville et al. Apr 1991 A
5006859 Wong et al. Apr 1991 A
5015914 Ives et al. May 1991 A
5017936 Massey et al. May 1991 A
5017937 Newham et al. May 1991 A
5018180 Shoulders May 1991 A
5019832 Ekdahl et al. May 1991 A
5036335 Jairam et al. Jul 1991 A
H956 Reindel Aug 1991 H
5042903 Jakubowski et al. Aug 1991 A
5043538 Hughey et al. Aug 1991 A
5043629 Doane et al. Aug 1991 A
5044722 Voser et al. Sep 1991 A
5045820 Oehlerking et al. Sep 1991 A
5057106 Kasevich et al. Oct 1991 A
5065760 Krause et al. Nov 1991 A
5065969 McLean et al. Nov 1991 A
5072228 Kuwahara et al. Dec 1991 A
5082349 Cordova-Plaza et al. Jan 1992 A
5086467 Malek Feb 1992 A
5107231 Knox et al. Apr 1992 A
5109232 Monte et al. Apr 1992 A
5113197 Luh et al. May 1992 A
5117237 Legg May 1992 A
5121129 Lee et al. Jun 1992 A
5126750 Wang et al. Jun 1992 A
5132968 Cephus Jul 1992 A
5134251 Martin et al. Jul 1992 A
5134423 Haupt et al. Jul 1992 A
5134965 Tokuda et al. Aug 1992 A
5136671 Dragone et al. Aug 1992 A
5142767 Adams et al. Sep 1992 A
5148509 Kannabiran et al. Sep 1992 A
5152861 Hann Oct 1992 A
5153676 Bergh et al. Oct 1992 A
5166698 Ashbaugh et al. Nov 1992 A
5174164 Wilheim et al. Dec 1992 A
5175560 Lucas et al. Dec 1992 A
5182427 McGaffigan et al. Jan 1993 A
5187409 Ito et al. Feb 1993 A
5193774 Rogers et al. Mar 1993 A
5198823 Litchford et al. Mar 1993 A
5212755 Holmberg et al. May 1993 A
5214394 Wong et al. May 1993 A
5214438 Smith et al. May 1993 A
5216616 Masters Jun 1993 A
5218657 Tokudome et al. Jun 1993 A
5235662 Prince et al. Aug 1993 A
5239537 Sakauchi Aug 1993 A
5241321 Tsao et al. Aug 1993 A
5241701 Andoh et al. Aug 1993 A
5248876 Kerstens et al. Sep 1993 A
5254809 Martin Oct 1993 A
5265266 Trinh Nov 1993 A
5266961 Milroy et al. Nov 1993 A
5276455 Fitzsimmons et al. Jan 1994 A
5278687 Jannson et al. Jan 1994 A
5280297 Profera et al. Jan 1994 A
5291211 Tropper et al. Mar 1994 A
5298911 Li et al. Mar 1994 A
5299773 Bertrand et al. Apr 1994 A
5304999 Roberts et al. Apr 1994 A
5311596 Scott et al. May 1994 A
5327149 Kuffer et al. Jul 1994 A
5329285 McCandless et al. Jul 1994 A
5341088 David Aug 1994 A
5345522 Vali et al. Sep 1994 A
5347287 Speciale et al. Sep 1994 A
5352984 Piesinger et al. Oct 1994 A
5353036 Baldry Oct 1994 A
5359338 Hatcher et al. Oct 1994 A
5371623 Eastmond et al. Dec 1994 A
5379455 Koschek et al. Jan 1995 A
5380224 Dicicco Jan 1995 A
5381160 Landmeier Jan 1995 A
5389442 Kathiresan et al. Feb 1995 A
5400040 Lane et al. Mar 1995 A
5402140 Rodeffer et al. Mar 1995 A
5402151 Duwaer Mar 1995 A
5404146 Rutledge et al. Apr 1995 A
5410318 Wong et al. Apr 1995 A
5412654 Perkins May 1995 A
5428364 Lee et al. Jun 1995 A
5428818 Meidan et al. Jun 1995 A
5434575 Jelinek et al. Jul 1995 A
5440660 Dombrowski et al. Aug 1995 A
5451969 Toth et al. Sep 1995 A
5457469 Diamond et al. Oct 1995 A
5479176 Zavrel et al. Dec 1995 A
5481268 Higgins Jan 1996 A
5482525 Kajioka et al. Jan 1996 A
5486839 Rodeffer et al. Jan 1996 A
5488380 Harvey et al. Jan 1996 A
5495546 Bottoms et al. Feb 1996 A
5499308 Arai et al. Mar 1996 A
5499311 DeCusatis et al. Mar 1996 A
5502392 Arjavalingam et al. Mar 1996 A
5512906 Speciale et al. Apr 1996 A
5513176 Dean et al. Apr 1996 A
5514965 Westwood et al. May 1996 A
5515059 How et al. May 1996 A
5519408 Schnetzer et al. May 1996 A
5528208 Kobayashi et al. Jun 1996 A
5539421 Hong et al. Jul 1996 A
5543000 Lique Aug 1996 A
5557283 Sheen Sep 1996 A
5559359 Reyes Sep 1996 A
5566022 Segev Oct 1996 A
5566196 Scifres Oct 1996 A
5576721 Hwang et al. Nov 1996 A
5586054 Jensen et al. Dec 1996 A
5592183 Henf Jan 1997 A
5600630 Takahashi et al. Feb 1997 A
5603089 Searle et al. Feb 1997 A
5619015 Kirma Apr 1997 A
5621421 Kolz et al. Apr 1997 A
5627879 Russell et al. May 1997 A
5628050 McGraw et al. May 1997 A
5630223 Bahu et al. May 1997 A
5637521 Rhodes et al. Jun 1997 A
5640168 Heger et al. Jun 1997 A
5646936 Shah et al. Jul 1997 A
5650788 Jha Jul 1997 A
5652554 Krieg et al. Jul 1997 A
5663693 Doughty et al. Sep 1997 A
5671304 Duguay Sep 1997 A
5677699 Strickland Oct 1997 A
5677909 Heide Oct 1997 A
5680139 Huguenin et al. Oct 1997 A
5682256 Motley et al. Oct 1997 A
5684495 Dyott et al. Nov 1997 A
5686930 Brydon Nov 1997 A
5724168 Oschmann et al. Mar 1998 A
5726980 Rickard et al. Mar 1998 A
5748153 McKinzie et al. May 1998 A
5750941 Ishikawa et al. May 1998 A
5757323 Spencer et al. May 1998 A
5767807 Pritchett et al. Jun 1998 A
5768689 Borg Jun 1998 A
5769879 Levay et al. Jun 1998 A
5784033 Boldissar, Jr. et al. Jul 1998 A
5784034 Konishi et al. Jul 1998 A
5784683 Sistanizadeh et al. Jul 1998 A
5787673 Noble Aug 1998 A
5793334 Harrison et al. Aug 1998 A
5800494 Campbell et al. Sep 1998 A
5805983 Naidu et al. Sep 1998 A
5809395 Hamilton-Piercy et al. Sep 1998 A
5812524 Moran et al. Sep 1998 A
5818390 Hill Oct 1998 A
5818396 Harrison et al. Oct 1998 A
5818512 Fuller Oct 1998 A
5845391 Miklosko et al. Dec 1998 A
5848054 Mosebrook et al. Dec 1998 A
5850199 Wan et al. Dec 1998 A
5854608 Leisten Dec 1998 A
5859618 Miller, II et al. Jan 1999 A
5861843 Sorace et al. Jan 1999 A
5867763 Dean et al. Feb 1999 A
5870060 Chen et al. Feb 1999 A
5872544 Schay et al. Feb 1999 A
5872547 Martek Feb 1999 A
5873324 Kaddas et al. Feb 1999 A
5886666 Schellenberg et al. Mar 1999 A
5889449 Fiedziuszko Mar 1999 A
5890055 Chu et al. Mar 1999 A
5892480 Killen et al. Apr 1999 A
5898133 Bleich et al. Apr 1999 A
5898830 Wesinger, Jr. et al. Apr 1999 A
5900847 Ishikawa et al. May 1999 A
5903373 Welch et al. May 1999 A
5905438 Weiss et al. May 1999 A
5905949 Hawkes et al. May 1999 A
5910790 Ohmuro et al. Jun 1999 A
5917977 Barrett et al. Jun 1999 A
5922081 Seewig et al. Jul 1999 A
5926128 Brash et al. Jul 1999 A
5933422 Suzuki et al. Aug 1999 A
5936589 Kawahata Aug 1999 A
5948044 Varley et al. Sep 1999 A
5948108 Lu et al. Sep 1999 A
5952964 Chan Sep 1999 A
5952972 Ittipiboon et al. Sep 1999 A
5952984 Kuramoto et al. Sep 1999 A
5955992 Shattil Sep 1999 A
5959578 Kreutel et al. Sep 1999 A
5959590 Sanford et al. Sep 1999 A
5973641 Smith et al. Oct 1999 A
5977650 Rickard et al. Nov 1999 A
5978738 Brown et al. Nov 1999 A
5982276 Stewart Nov 1999 A
5986331 Letavic et al. Nov 1999 A
5987099 O'Neill et al. Nov 1999 A
5990848 Annamaa et al. Nov 1999 A
5994984 Stancil et al. Nov 1999 A
5994998 Fisher et al. Nov 1999 A
6005694 Liu Dec 1999 A
6005758 Spencer et al. Dec 1999 A
6009124 Smith Dec 1999 A
6011520 Howell et al. Jan 2000 A
6011524 Jervis et al. Jan 2000 A
6014110 Bridges et al. Jan 2000 A
6018659 Ayyagari et al. Jan 2000 A
6023619 Kaminsky Feb 2000 A
6026173 Svenson et al. Feb 2000 A
6026208 Will et al. Feb 2000 A
6026331 Feldberg et al. Feb 2000 A
6031455 Grube et al. Feb 2000 A
6034638 Thiel et al. Mar 2000 A
6037894 Pfizenmaier et al. Mar 2000 A
6038425 Jeffrey et al. Mar 2000 A
6049647 Register et al. Apr 2000 A
6057802 Nealy May 2000 A
6061035 Kinasewitz et al. May 2000 A
6063234 Chen et al. May 2000 A
6075451 Lebowitz et al. Jun 2000 A
6075493 Sugawara et al. Jun 2000 A
6076044 Brown et al. Jun 2000 A
6078297 Kormanyos et al. Jun 2000 A
6088001 Burger et al. Jul 2000 A
6095820 Luxon et al. Aug 2000 A
6100846 Li et al. Aug 2000 A
6103031 Aeschbacher et al. Aug 2000 A
6107897 Hewett et al. Aug 2000 A
6111553 Steenbuck et al. Aug 2000 A
6114998 Schefte et al. Sep 2000 A
6121885 Masone et al. Sep 2000 A
6122753 Masuo et al. Sep 2000 A
6140911 Fisher et al. Oct 2000 A
6140976 Locke et al. Oct 2000 A
6142434 Brinkman et al. Nov 2000 A
6146330 Tujino et al. Nov 2000 A
6150612 Grandy et al. Nov 2000 A
6151145 Srivastava et al. Nov 2000 A
6154488 Hunt Nov 2000 A
6158383 Watanabe et al. Dec 2000 A
6163296 Lier et al. Dec 2000 A
6166694 Ying et al. Dec 2000 A
6167055 Ganek et al. Dec 2000 A
6175917 Arrow et al. Jan 2001 B1
6177801 Chong et al. Jan 2001 B1
6184828 Shoki et al. Feb 2001 B1
6195058 Nakamura et al. Feb 2001 B1
6195395 Frodsham et al. Feb 2001 B1
6198440 Krylov et al. Mar 2001 B1
6208161 Suda et al. Mar 2001 B1
6208308 Lemons et al. Mar 2001 B1
6208903 Richards et al. Mar 2001 B1
6211836 Manasson et al. Apr 2001 B1
6211837 Crouch et al. Apr 2001 B1
6215443 Komatsu et al. Apr 2001 B1
6219006 Rudish et al. Apr 2001 B1
6222503 Gietema et al. Apr 2001 B1
6225960 Collins et al. May 2001 B1
6229327 Boll et al. May 2001 B1
6236365 Karr et al. May 2001 B1
6239377 Nishikawa et al. May 2001 B1
6239379 Cotter et al. May 2001 B1
6239761 Guo et al. May 2001 B1
6241045 Reeve et al. Jun 2001 B1
6243049 Chandler et al. Jun 2001 B1
6246821 Hemken et al. Jun 2001 B1
6252553 Solomon et al. Jun 2001 B1
6259337 Wen et al. Jul 2001 B1
6266016 Bergstedt et al. Jul 2001 B1
6266025 Popa et al. Jul 2001 B1
6268835 Toland et al. Jul 2001 B1
6271790 Smith et al. Aug 2001 B2
6271799 Rief et al. Aug 2001 B1
6271952 Epworth et al. Aug 2001 B1
6278357 Croushore et al. Aug 2001 B1
6278370 Underwood et al. Aug 2001 B1
6281855 Aoki et al. Aug 2001 B1
6282354 Jones et al. Aug 2001 B1
6283425 Liljevik Sep 2001 B1
6285325 Nalbandian et al. Sep 2001 B1
6292139 Yamamoto et al. Sep 2001 B1
6292143 Romanofsky et al. Sep 2001 B1
6292153 Aiello et al. Sep 2001 B1
6300898 Schneider et al. Oct 2001 B1
6300906 Rawnick et al. Oct 2001 B1
6301420 Greenaway et al. Oct 2001 B1
6308085 Shoki et al. Oct 2001 B1
6311288 Heeren et al. Oct 2001 B1
6317028 Valiulis et al. Nov 2001 B1
6317092 de Schweinitz et al. Nov 2001 B1
6320509 Brady et al. Nov 2001 B1
6320553 Ergene et al. Nov 2001 B1
6323819 Ergene et al. Nov 2001 B1
6329959 Varadan et al. Dec 2001 B1
6348683 Verghese et al. Feb 2002 B1
6351247 Linstrom et al. Feb 2002 B1
6357709 Parduhn et al. Mar 2002 B1
6362788 Louzir Mar 2002 B1
6362789 Trumbull et al. Mar 2002 B1
6366238 DeMore et al. Apr 2002 B1
6373436 Chen et al. Apr 2002 B1
6373441 Porath et al. Apr 2002 B1
6376824 Michenfelder et al. Apr 2002 B1
6388564 Piercy et al. May 2002 B1
6396440 Chen et al. May 2002 B1
6404773 Williams et al. Jun 2002 B1
6404775 Leslie Jun 2002 B1
6421021 Rupp et al. Jul 2002 B1
6433736 Timothy et al. Aug 2002 B1
6433741 Tanizaki et al. Aug 2002 B2
6436536 Peruzzotti et al. Aug 2002 B2
6441723 Mansfield, Jr. et al. Aug 2002 B1
6445351 Baker et al. Sep 2002 B1
6445774 Kidder et al. Sep 2002 B1
6452467 McEwan Sep 2002 B1
6452569 Park et al. Sep 2002 B1
6452923 Gerszberg et al. Sep 2002 B1
6455769 Belli et al. Sep 2002 B1
6456251 Rao et al. Sep 2002 B1
6462700 Schmidt et al. Oct 2002 B1
6463295 Yun et al. Oct 2002 B1
6469676 Fehrenbach et al. Oct 2002 B1
6473049 Takeuchi et al. Oct 2002 B2
6480168 Lam et al. Nov 2002 B1
6483470 Hohnstein et al. Nov 2002 B1
6489928 Sakurada Dec 2002 B2
6489931 Liu et al. Dec 2002 B2
6492957 Carillo, Jr. et al. Dec 2002 B2
6501433 Popa et al. Dec 2002 B2
6507573 Brandt et al. Jan 2003 B1
6510152 Gerszberg et al. Jan 2003 B1
6515635 Chiang et al. Feb 2003 B2
6522305 Sharman et al. Feb 2003 B2
6531991 Adachi et al. Mar 2003 B2
6532215 Muntz et al. Mar 2003 B1
6534996 Amrany et al. Mar 2003 B1
6535169 Fourdeux et al. Mar 2003 B2
6542739 Garner Apr 2003 B1
6549106 Martin et al. Apr 2003 B2
6549173 King et al. Apr 2003 B1
6552693 Leisten et al. Apr 2003 B1
6559811 Cash et al. May 2003 B1
6563981 Weisberg et al. May 2003 B2
6567573 Domash et al. May 2003 B1
6573803 Ziegner et al. Jun 2003 B1
6573813 Joannopoulos et al. Jun 2003 B1
6580295 Takekuma et al. Jun 2003 B2
6584084 Barany et al. Jun 2003 B1
6584252 Schier et al. Jun 2003 B1
6587077 Vail et al. Jul 2003 B2
6593893 Hou et al. Jul 2003 B2
6594238 Wallentin et al. Jul 2003 B1
6596944 Clark et al. Jul 2003 B1
6600456 Gothard et al. Jul 2003 B2
6606057 Chiang et al. Aug 2003 B2
6606066 Fawcett et al. Aug 2003 B1
6606077 Ebling et al. Aug 2003 B2
6611252 DuFaux et al. Aug 2003 B1
6614237 Ademian et al. Sep 2003 B2
6631229 Norris et al. Oct 2003 B1
6634225 Reime et al. Oct 2003 B1
6639484 Tzuang et al. Oct 2003 B2
6639566 Knop et al. Oct 2003 B2
6642887 Owechko et al. Nov 2003 B2
6643254 Abe et al. Nov 2003 B1
6650296 Wong et al. Nov 2003 B2
6653598 Sullivan et al. Nov 2003 B2
6653848 Adamian et al. Nov 2003 B2
6657437 LeCroy et al. Dec 2003 B1
6659655 Dair et al. Dec 2003 B2
6661391 Ohara et al. Dec 2003 B2
6668104 Mueller-Fiedler et al. Dec 2003 B1
6670921 Sievenpiper et al. Dec 2003 B2
6671824 Hyland et al. Dec 2003 B1
6677899 Lee et al. Jan 2004 B1
6680903 Moriguchi et al. Jan 2004 B1
6683580 Kuramoto Jan 2004 B2
6686832 Abraham et al. Feb 2004 B2
6686873 Patel et al. Feb 2004 B2
6686875 Wolfson et al. Feb 2004 B1
6697027 Mahon et al. Feb 2004 B2
6697030 Gleener Feb 2004 B2
6703981 Meitzler et al. Mar 2004 B2
6714165 Verstraeten Mar 2004 B2
6720935 Lamensdorf et al. Apr 2004 B2
6725035 Jochim et al. Apr 2004 B2
6727470 Reichle et al. Apr 2004 B2
6727891 Moriya et al. Apr 2004 B2
6728439 Weisberg et al. Apr 2004 B2
6728552 Chatain et al. Apr 2004 B2
6731210 Swanson et al. May 2004 B2
6731649 Silverman May 2004 B1
6741705 Nelson et al. May 2004 B1
6747557 Petite et al. Jun 2004 B1
6750827 Manasson et al. Jun 2004 B2
6754470 Hendrickson et al. Jun 2004 B2
6755312 Dziedzic et al. Jun 2004 B2
6756538 Murga-Gonzalez et al. Jun 2004 B1
6765479 Stewart et al. Jul 2004 B2
6768454 Kingsley et al. Jul 2004 B2
6768456 Lalezari et al. Jul 2004 B1
6768471 Bostwick et al. Jul 2004 B2
6768474 Hunt et al. Jul 2004 B2
6771216 Patel et al. Aug 2004 B2
6771225 Tits et al. Aug 2004 B2
6771739 Beamon et al. Aug 2004 B1
6774859 Schantz et al. Aug 2004 B2
6788865 Kawanishi et al. Sep 2004 B2
6788951 Aoki et al. Sep 2004 B2
6789119 Zhu et al. Sep 2004 B1
6792290 Proctor, Jr. et al. Sep 2004 B2
6798223 Huang et al. Sep 2004 B2
6806710 Renz et al. Oct 2004 B1
6809633 Cern et al. Oct 2004 B2
6809695 Le Bayon et al. Oct 2004 B2
6812895 Anderson et al. Nov 2004 B2
6819744 Galli et al. Nov 2004 B1
6822615 Quan et al. Nov 2004 B2
6839032 Teshirogi et al. Jan 2005 B2
6839160 Tsuda et al. Jan 2005 B2
6839846 Mangold et al. Jan 2005 B2
6842157 Phelan et al. Jan 2005 B2
6842430 Melnik et al. Jan 2005 B1
6850128 Park Feb 2005 B2
6853351 Mohuchy et al. Feb 2005 B1
6856273 Bognar et al. Feb 2005 B1
6859185 Royalty et al. Feb 2005 B2
6859187 Ohlsson et al. Feb 2005 B2
6859590 Zaccone Feb 2005 B1
6861998 Louzir Mar 2005 B2
6864851 McGrath et al. Mar 2005 B2
6864853 Judd et al. Mar 2005 B2
6867744 Toncich et al. Mar 2005 B2
6868258 Hayata et al. Mar 2005 B2
6870465 Song et al. Mar 2005 B1
6873265 Bleier et al. Mar 2005 B2
6885674 Hunt et al. Apr 2005 B2
6886065 Sides et al. Apr 2005 B2
6888623 Clements May 2005 B2
6901064 Billhartz et al. May 2005 B2
6904218 Sun et al. Jun 2005 B2
6906676 Killen et al. Jun 2005 B2
6906681 Hoppenstein et al. Jun 2005 B2
6909893 Aoki et al. Jun 2005 B2
6917974 Stytz et al. Jul 2005 B1
6920289 Zimmerman et al. Jul 2005 B2
6920315 Wilcox et al. Jul 2005 B1
6920407 Phillips et al. Jul 2005 B2
6922135 Abraham et al. Jul 2005 B2
6924732 Yokoo et al. Aug 2005 B2
6924776 Le et al. Aug 2005 B2
6928194 Mai et al. Aug 2005 B2
6933887 Regnier et al. Aug 2005 B2
6934655 Jones et al. Aug 2005 B2
6937595 Barzegar et al. Aug 2005 B2
6943553 Zimmermann et al. Sep 2005 B2
6944555 Blackett et al. Sep 2005 B2
6947147 Motamedi et al. Sep 2005 B2
6947376 Deng et al. Sep 2005 B1
6947635 Kohns et al. Sep 2005 B2
6948371 Tanaka et al. Sep 2005 B2
6950567 Kline et al. Sep 2005 B2
6952143 Kinayman et al. Oct 2005 B2
6952183 Yuanzhu et al. Oct 2005 B2
6956506 Koivumaeki et al. Oct 2005 B2
6958729 Metz et al. Oct 2005 B1
6965302 Mollenkopf et al. Nov 2005 B2
6965355 Durham et al. Nov 2005 B1
6965784 Kanamaluru et al. Nov 2005 B2
6967627 Roper et al. Nov 2005 B2
6970502 Kim et al. Nov 2005 B2
6970682 Crilly, Jr. et al. Nov 2005 B2
6972729 Wang et al. Dec 2005 B2
6980091 White, II et al. Dec 2005 B2
6982611 Cope et al. Jan 2006 B2
6982679 Kralovec et al. Jan 2006 B2
6983174 Hoppenstein et al. Jan 2006 B2
6985118 Killen et al. Jan 2006 B2
6992639 Lier et al. Jan 2006 B1
6999667 Jang et al. Feb 2006 B2
7008120 Zaborsky et al. Mar 2006 B2
7009471 Elmore Mar 2006 B2
7012489 Fisher et al. Mar 2006 B2
7012572 Schaffner et al. Mar 2006 B1
7016585 Diggle, III et al. Mar 2006 B2
7019704 Weiss et al. Mar 2006 B2
7023400 Hill et al. Apr 2006 B2
7026917 Berkman et al. Apr 2006 B2
7027003 Sasaki et al. Apr 2006 B2
7027454 Dent et al. Apr 2006 B2
7032016 Cerami et al. Apr 2006 B2
7038636 Larouche et al. May 2006 B2
7039048 Monta et al. May 2006 B1
7042403 Sievenpiper et al. May 2006 B2
7042416 Kingsley et al. May 2006 B2
7042420 Ebling et al. May 2006 B2
7054286 Ertel et al. May 2006 B2
7054376 Rubinstain et al. May 2006 B1
7054513 Herz et al. May 2006 B2
7055148 Marsh et al. May 2006 B2
7057558 Yasuho et al. Jun 2006 B2
7057573 Ohira et al. Jun 2006 B2
7058524 Hayes et al. Jun 2006 B2
7061370 Cern et al. Jun 2006 B2
7061891 Kilfoyle et al. Jun 2006 B1
7064726 Kitamori et al. Jun 2006 B2
7068998 Zavidniak et al. Jun 2006 B2
7069163 Gunther et al. Jun 2006 B2
7075414 Giannini et al. Jul 2006 B2
7075485 Song et al. Jul 2006 B2
7075496 Hidai et al. Jul 2006 B2
7082321 kuwahara et al. Jul 2006 B2
7084742 Haines et al. Aug 2006 B2
7088221 Chan Aug 2006 B2
7088306 Chiang et al. Aug 2006 B2
7098405 Glew et al. Aug 2006 B2
7098773 Berkman et al. Aug 2006 B2
7102581 West et al. Sep 2006 B1
7106265 Robertson et al. Sep 2006 B2
7106270 Iigusa et al. Sep 2006 B2
7106273 Brunson et al. Sep 2006 B1
7109939 Lynch et al. Sep 2006 B2
7113002 Otsuka et al. Sep 2006 B2
7113134 Berkman et al. Sep 2006 B1
7119755 Harvey et al. Oct 2006 B2
7120338 Gunn, III et al. Oct 2006 B2
7120345 Naitou et al. Oct 2006 B2
7122012 Bouton et al. Oct 2006 B2
7123191 Goldberg et al. Oct 2006 B2
7123801 Fitz et al. Oct 2006 B2
7125512 Crump et al. Oct 2006 B2
7126557 Warnagiris et al. Oct 2006 B2
7126711 Fruth Oct 2006 B2
7127348 Smitherman et al. Oct 2006 B2
7130516 Wu et al. Oct 2006 B2
7132950 Stewart et al. Nov 2006 B2
7133930 Sabio et al. Nov 2006 B2
7134012 Doyle et al. Nov 2006 B2
7134135 Cerami et al. Nov 2006 B2
7136397 Sharma et al. Nov 2006 B2
7136772 Duchi et al. Nov 2006 B2
7137605 Guertler et al. Nov 2006 B1
7138767 Chen et al. Nov 2006 B2
7138958 Syed et al. Nov 2006 B2
7139328 Thomas et al. Nov 2006 B2
7145440 Gerszberg et al. Dec 2006 B2
7145552 Hollingsworth et al. Dec 2006 B2
7151497 Crystal et al. Dec 2006 B2
7151508 Schaffner et al. Dec 2006 B2
7155238 Katz et al. Dec 2006 B2
7161934 Buchsbaum et al. Jan 2007 B2
7164354 Panzer et al. Jan 2007 B1
7167139 Kim et al. Jan 2007 B2
7171087 Takahashi et al. Jan 2007 B2
7171308 Campbell et al. Jan 2007 B2
7171493 Shu et al. Jan 2007 B2
7176589 Rouquette et al. Feb 2007 B2
7180459 Damini et al. Feb 2007 B2
7180467 Fabrega-Sanchez Feb 2007 B2
7183922 Mendolia et al. Feb 2007 B2
7183991 Bhattacharyya et al. Feb 2007 B2
7183998 Wilhelm et al. Feb 2007 B2
7193562 Kish et al. Mar 2007 B2
7194528 Davidow et al. Mar 2007 B1
7199680 Fukunaga et al. Apr 2007 B2
7200391 Chung et al. Apr 2007 B2
7200658 Goeller et al. Apr 2007 B2
7205950 Imai et al. Apr 2007 B2
7212163 Huang et al. May 2007 B2
7215220 Jia et al. May 2007 B1
7215928 Gage et al. May 2007 B2
7218285 Davis et al. May 2007 B2
7224170 Graham et al. May 2007 B2
7224243 Cope et al. May 2007 B2
7224272 White, II et al. May 2007 B2
7224320 Cook et al. May 2007 B2
7224985 Caci et al. May 2007 B2
7228123 Moursund et al. Jun 2007 B2
7234413 Suzuki et al. Jun 2007 B2
7234895 Richardson et al. Jun 2007 B2
7239284 Staal et al. Jul 2007 B1
7243610 Ishii et al. Jul 2007 B2
7248148 Kline et al. Jul 2007 B2
7250772 Furse et al. Jul 2007 B2
7255821 Priedeman, Jr. et al. Aug 2007 B2
7259657 Mollenkopf et al. Aug 2007 B2
7260424 Schmidt et al. Aug 2007 B2
7266154 Gundrum et al. Sep 2007 B2
7266275 Hansen et al. Sep 2007 B2
7272281 Stahulak et al. Sep 2007 B2
7272362 Jeong et al. Sep 2007 B2
7274305 Luttrell Sep 2007 B1
7274936 Stern-Berkowitz et al. Sep 2007 B2
7276990 Sievenpiper et al. Oct 2007 B2
7280033 Berkman et al. Oct 2007 B2
7280803 Nelson et al. Oct 2007 B2
7282922 Lo et al. Oct 2007 B2
7286099 Lier et al. Oct 2007 B1
7289449 Rubinstein et al. Oct 2007 B1
7289704 Wagman et al. Oct 2007 B1
7289828 Cha et al. Oct 2007 B2
7292125 Mansour et al. Nov 2007 B2
7292196 Waterhouse et al. Nov 2007 B2
7295161 Gaucher et al. Nov 2007 B2
7297869 Hiller et al. Nov 2007 B2
7301440 Mollenkopf Nov 2007 B2
7301508 O'Loughlin et al. Nov 2007 B1
7307357 Kopp et al. Dec 2007 B2
7307596 West et al. Dec 2007 B1
7308264 Stern-Berkowitz et al. Dec 2007 B2
7308370 Mason, Jr. et al. Dec 2007 B2
7309873 Ishikawa Dec 2007 B2
7310065 Anguera et al. Dec 2007 B2
7310335 Garcia-Luna-Aceves et al. Dec 2007 B1
7311605 Moser Dec 2007 B2
7312686 Bruno Dec 2007 B2
7313087 Patil et al. Dec 2007 B2
7313312 Kimball et al. Dec 2007 B2
7315224 Gurovich et al. Jan 2008 B2
7315678 Siegel Jan 2008 B2
7318564 Marshall Jan 2008 B1
7319717 Zitting et al. Jan 2008 B2
7321291 Gidge et al. Jan 2008 B2
7321707 Noda et al. Jan 2008 B2
7324046 Wu et al. Jan 2008 B1
7324817 Iacono et al. Jan 2008 B2
7329815 Johnston et al. Feb 2008 B2
7333064 Timothy et al. Feb 2008 B1
7333593 Beamon et al. Feb 2008 B2
7339466 Mansfield et al. Mar 2008 B2
7339897 Larsson et al. Mar 2008 B2
7340768 Rosenberger et al. Mar 2008 B2
7345623 McEwan et al. Mar 2008 B2
7346244 Gowan et al. Mar 2008 B2
7346359 Damarla et al. Mar 2008 B2
7353293 Hipfinger Apr 2008 B2
7355560 Nagai et al. Apr 2008 B2
7358808 Berkman et al. Apr 2008 B2
7358921 Snyder et al. Apr 2008 B2
7369085 Jacomb-Hood et al. May 2008 B1
7369095 Thudor et al. May 2008 B2
7376191 Melick et al. May 2008 B2
7380272 Sharp et al. May 2008 B2
7381089 Hosler, Sr. Jun 2008 B2
7382232 Gidge et al. Jun 2008 B2
7383577 Hrastar et al. Jun 2008 B2
7388450 Camiade et al. Jun 2008 B2
7397422 Tekawy et al. Jul 2008 B2
7398946 Marshall Jul 2008 B1
7400304 Lewis et al. Jul 2008 B2
7403169 Svensson et al. Jul 2008 B2
7406337 Kim et al. Jul 2008 B2
7408426 Broyde et al. Aug 2008 B2
7408507 Paek et al. Aug 2008 B1
7408923 Khan et al. Aug 2008 B1
7410606 Atkinson et al. Aug 2008 B2
7417587 Iskander et al. Aug 2008 B2
7418178 Kudou et al. Aug 2008 B2
7418273 Suyama et al. Aug 2008 B2
7420474 Elks et al. Sep 2008 B1
7420525 Colburn et al. Sep 2008 B2
7423604 Nagai et al. Sep 2008 B2
7426554 Kennedy et al. Sep 2008 B2
7427927 Borleske et al. Sep 2008 B2
7430257 Shattil et al. Sep 2008 B1
7430932 Mekhanoshin et al. Oct 2008 B2
7443334 Rees et al. Oct 2008 B2
7444404 Wetherall et al. Oct 2008 B2
7446567 Otsuka et al. Nov 2008 B2
7450000 Gidge et al. Nov 2008 B2
7450001 Berkman Nov 2008 B2
7453352 Kline et al. Nov 2008 B2
7453393 Duivenvoorden et al. Nov 2008 B2
7456650 Lee et al. Nov 2008 B2
7459834 Knowles et al. Dec 2008 B2
7460834 Johnson et al. Dec 2008 B2
7463877 Iwamura Dec 2008 B2
7465879 Glew et al. Dec 2008 B2
7466225 White, II et al. Dec 2008 B2
7468657 Yaney Dec 2008 B2
7477285 Johnson et al. Jan 2009 B1
7479776 Renken et al. Jan 2009 B2
7479841 Stenger et al. Jan 2009 B2
7486247 Ridgway et al. Feb 2009 B2
7490275 Zerbe et al. Feb 2009 B2
7492317 Tinsley et al. Feb 2009 B2
7496674 Jorgensen et al. Feb 2009 B2
7498822 Lee et al. Mar 2009 B2
7502619 Katz et al. Mar 2009 B1
7504938 Eiza et al. Mar 2009 B2
7509009 Suzuki et al. Mar 2009 B2
7509675 Aaron et al. Mar 2009 B2
7511662 Mathews et al. Mar 2009 B2
7512090 Benitez Pelaez et al. Mar 2009 B2
7515041 Eisold et al. Apr 2009 B2
7516487 Szeto et al. Apr 2009 B1
7518529 O'Sullivan et al. Apr 2009 B2
7518952 Padden et al. Apr 2009 B1
7519323 Mohebbi et al. Apr 2009 B2
7522115 Waltman et al. Apr 2009 B2
7522812 Zitting Apr 2009 B2
7525501 Black et al. Apr 2009 B2
7525504 Song et al. Apr 2009 B1
7531803 Mittleman et al. May 2009 B2
7532792 Skovgaard et al. May 2009 B2
7535867 Kilfoyle et al. May 2009 B1
7539381 Li et al. May 2009 B2
7541981 Piskun et al. Jun 2009 B2
7545818 Chen et al. Jun 2009 B2
7546214 Rivers, Jr. et al. Jun 2009 B2
7548212 Chekroun et al. Jun 2009 B2
7551921 Petermann et al. Jun 2009 B2
7554998 Simonsson et al. Jun 2009 B2
7555182 Martin et al. Jun 2009 B2
7555186 De et al. Jun 2009 B2
7555187 Bickham et al. Jun 2009 B2
7557563 Cowan et al. Jul 2009 B2
7561025 Gerszberg et al. Jul 2009 B2
7567154 Elmore Jul 2009 B2
7567740 Bayindir et al. Jul 2009 B2
7570137 Kintis et al. Aug 2009 B2
7570470 Holley Aug 2009 B2
7577398 Tennant et al. Aug 2009 B2
7580643 Moore et al. Aug 2009 B2
7581702 Wheeler et al. Sep 2009 B2
7583074 Lynch et al. Sep 2009 B1
7583233 Goldberg et al. Sep 2009 B2
7584470 Barker et al. Sep 2009 B2
7589630 Drake et al. Sep 2009 B2
7589686 Balzovsky et al. Sep 2009 B2
7590404 Johnson Sep 2009 B1
7591020 Kammer et al. Sep 2009 B2
7591792 Bouton et al. Sep 2009 B2
7593067 Taguchi et al. Sep 2009 B2
7596222 Jonas et al. Sep 2009 B2
7598844 Corcoran et al. Oct 2009 B2
7602333 Hiramatsu et al. Oct 2009 B2
7602815 Houghton et al. Oct 2009 B2
7605768 Ebling et al. Oct 2009 B2
7620370 Barak et al. Nov 2009 B2
7625131 Zienkewicz et al. Dec 2009 B2
7626489 Berkman et al. Dec 2009 B2
7626542 Kober et al. Dec 2009 B2
7627300 Abramov et al. Dec 2009 B2
7633442 Lynch et al. Dec 2009 B2
7634250 Prasad et al. Dec 2009 B1
7639201 Marklein et al. Dec 2009 B2
7640562 Bouilloux-Lafont et al. Dec 2009 B2
7640581 Brenton et al. Dec 2009 B1
7653363 Karr et al. Jan 2010 B2
RE41147 Pang et al. Feb 2010 E
7656167 McLean et al. Feb 2010 B1
7656358 Haziza et al. Feb 2010 B2
7660244 Kadaba et al. Feb 2010 B2
7660252 Huang et al. Feb 2010 B1
7660328 Oz et al. Feb 2010 B1
7664117 Lou et al. Feb 2010 B2
7669049 Wang et al. Feb 2010 B2
7671701 Radtke Mar 2010 B2
7671820 Tokoro et al. Mar 2010 B2
7672271 Lee et al. Mar 2010 B2
7676679 Weis et al. Mar 2010 B2
7680478 Willars et al. Mar 2010 B2
7680516 Lovberg et al. Mar 2010 B2
7680561 Rodgers et al. Mar 2010 B2
7683848 Musch et al. Mar 2010 B2
7684383 Thompson et al. Mar 2010 B1
7693079 Cerami et al. Apr 2010 B2
7693162 McKenna et al. Apr 2010 B2
7693939 Wu et al. Apr 2010 B2
7697417 Chen et al. Apr 2010 B2
7701931 Kajiwara Apr 2010 B2
7705747 Twitchell, Jr. Apr 2010 B2
7710346 Bloss et al. May 2010 B2
7714536 Silberg et al. May 2010 B1
7714709 Daniel et al. May 2010 B1
7714725 Medve et al. May 2010 B2
7715672 Dong et al. May 2010 B2
7716660 Mackay et al. May 2010 B2
7724782 Wang et al. May 2010 B2
7728772 Mortazawi et al. Jun 2010 B2
7729285 Yoon et al. Jun 2010 B2
7733094 Bright et al. Jun 2010 B2
7734717 Saarimäki et al. Jun 2010 B2
7737903 Rao et al. Jun 2010 B1
7739402 Graham et al. Jun 2010 B2
7743403 McCarty et al. Jun 2010 B2
7747356 Andarawis et al. Jun 2010 B2
7747774 Aaron et al. Jun 2010 B2
7750244 Melding et al. Jul 2010 B1
7750763 Praβmayer et al. Jul 2010 B2
7751054 Backes et al. Jul 2010 B2
7760978 Fishteyn et al. Jul 2010 B2
7761079 Mollenkopf et al. Jul 2010 B2
7764943 Radtke et al. Jul 2010 B2
7773664 Myers et al. Aug 2010 B2
7782156 Woods et al. Aug 2010 B2
7783195 Riggsby et al. Aug 2010 B2
7786894 Polk et al. Aug 2010 B2
7786945 Baldauf et al. Aug 2010 B2
7786946 Diaz et al. Aug 2010 B2
7791549 Clymer et al. Sep 2010 B2
7792016 Arai et al. Sep 2010 B2
7795877 Radtke et al. Sep 2010 B2
7795994 Radtke et al. Sep 2010 B2
7796025 Berkman et al. Sep 2010 B2
7796122 Shih et al. Sep 2010 B2
7796890 Johnson Sep 2010 B1
7797367 Girod et al. Sep 2010 B1
7805029 Bayindir et al. Sep 2010 B2
7808441 Parsche et al. Oct 2010 B2
7809223 Miyabe et al. Oct 2010 B2
7812686 Woods et al. Oct 2010 B2
7812778 Hasegawa et al. Oct 2010 B2
7813344 Cheswick Oct 2010 B2
7817063 Hawkins et al. Oct 2010 B2
7825793 Spillman et al. Nov 2010 B1
7825867 Tuttle et al. Nov 2010 B2
7826602 Hunyady et al. Nov 2010 B1
7827610 Wang et al. Nov 2010 B2
7830228 Evans et al. Nov 2010 B2
7835128 Divan et al. Nov 2010 B2
7835600 Yap et al. Nov 2010 B1
7843375 Rennie et al. Nov 2010 B1
7844081 McMakin et al. Nov 2010 B2
7848517 Britz et al. Dec 2010 B2
7852752 Kano Dec 2010 B2
7852837 Au et al. Dec 2010 B1
7853267 Jensen et al. Dec 2010 B2
7855612 Zienkewicz et al. Dec 2010 B2
7856007 Corcoran et al. Dec 2010 B2
7869391 Lee et al. Jan 2011 B2
7872610 Motzer et al. Jan 2011 B2
7873249 Kachmar et al. Jan 2011 B2
7876174 Radtke et al. Jan 2011 B2
7884285 Spencer Feb 2011 B2
7884648 Broyde et al. Feb 2011 B2
7885542 Riggsby et al. Feb 2011 B2
7889129 Fox et al. Feb 2011 B2
7889148 Diaz et al. Feb 2011 B2
7889149 Peebles et al. Feb 2011 B2
7890053 Washiro Feb 2011 B2
7893789 Paynter et al. Feb 2011 B2
7894770 Washiro et al. Feb 2011 B2
7898480 Rebeiz et al. Mar 2011 B2
7899403 Aaron Mar 2011 B2
7903918 Bickham et al. Mar 2011 B1
7903972 Riggsby et al. Mar 2011 B2
7906973 Orr et al. Mar 2011 B1
7907097 Syed et al. Mar 2011 B2
7915980 Hardacker et al. Mar 2011 B2
7916081 Lakkis et al. Mar 2011 B2
7928750 Miller et al. Apr 2011 B2
7929940 Dianda et al. Apr 2011 B1
7930750 Gauvin et al. Apr 2011 B1
7937699 Schneider et al. May 2011 B2
7940207 Kienzle et al. May 2011 B1
7940731 Gao et al. May 2011 B2
7956818 Hsu et al. Jun 2011 B1
7958120 Muntz et al. Jun 2011 B2
7961710 Lee et al. Jun 2011 B2
7962957 Keohane et al. Jun 2011 B2
7965842 Whelan et al. Jun 2011 B2
7970365 Martin et al. Jun 2011 B2
7970937 Shuster et al. Jun 2011 B2
7971053 Gibson, Sr. et al. Jun 2011 B2
7973296 Quick et al. Jul 2011 B2
7974387 Lutz et al. Jul 2011 B2
7983740 Culver et al. Jul 2011 B2
7986711 Horvath et al. Jul 2011 B2
7990146 Lazar et al. Aug 2011 B2
7990329 Deng et al. Aug 2011 B2
7991877 Keohane et al. Aug 2011 B2
7992014 Langgood et al. Aug 2011 B2
7994996 Rebeiz et al. Aug 2011 B2
7994999 Maeda et al. Aug 2011 B2
7997546 Andersen et al. Aug 2011 B1
8010116 Scheinert Aug 2011 B2
8013694 Sagala et al. Sep 2011 B2
8019288 Yu et al. Sep 2011 B2
8022885 Smoyer et al. Sep 2011 B2
8022887 Zarnaghi et al. Sep 2011 B1
8023410 O'Neill et al. Sep 2011 B2
8027391 Matsubara et al. Sep 2011 B2
8036207 Chen et al. Oct 2011 B2
8049576 Broyde et al. Nov 2011 B2
8054199 Addy et al. Nov 2011 B2
8059576 Vavik et al. Nov 2011 B2
8059593 Shih et al. Nov 2011 B2
8060308 Breed et al. Nov 2011 B2
8063832 Weller et al. Nov 2011 B1
8064744 Atkins et al. Nov 2011 B2
8064944 Yun et al. Nov 2011 B2
8065099 Gibala et al. Nov 2011 B2
8069483 Matlock et al. Nov 2011 B1
8072323 Kodama et al. Dec 2011 B2
8072386 Lier et al. Dec 2011 B2
8073810 Maes Dec 2011 B2
8077049 Yaney et al. Dec 2011 B2
8077113 Renilson et al. Dec 2011 B2
8081854 Yoon et al. Dec 2011 B2
8089356 Moore et al. Jan 2012 B2
8089404 Nichols et al. Jan 2012 B2
8089952 Spade et al. Jan 2012 B2
8090258 DeLew et al. Jan 2012 B2
8090379 Lambert et al. Jan 2012 B2
8094081 Boone et al. Jan 2012 B1
8094985 Imamura et al. Jan 2012 B2
8095093 Takinami et al. Jan 2012 B2
8098198 Thiesen et al. Jan 2012 B2
8102324 Tuau et al. Jan 2012 B2
8102779 Kim et al. Jan 2012 B2
8106749 Ina et al. Jan 2012 B2
8106849 Suddath et al. Jan 2012 B2
RE43163 Anderson Feb 2012 E
8111148 Parker et al. Feb 2012 B2
8112649 Potkonjak et al. Feb 2012 B2
8116598 Shutter et al. Feb 2012 B2
8120488 Bloy et al. Feb 2012 B2
8121624 Cai et al. Feb 2012 B2
8125282 Bao et al. Feb 2012 B2
8125399 McKinzie et al. Feb 2012 B2
8126393 Wu et al. Feb 2012 B2
8129817 Jou et al. Mar 2012 B2
8131125 Molin et al. Mar 2012 B2
8131266 Cai et al. Mar 2012 B2
8132239 Wahl Mar 2012 B2
8134424 Kato et al. Mar 2012 B2
8134458 Lund Mar 2012 B2
8135050 Stadler et al. Mar 2012 B1
8140113 Rofougaran et al. Mar 2012 B2
8150311 Hart et al. Apr 2012 B2
8151306 Rakib Apr 2012 B2
8156520 Casagrande et al. Apr 2012 B2
8159316 Miyazato et al. Apr 2012 B2
8159342 Medina, III et al. Apr 2012 B1
8159385 Farneth et al. Apr 2012 B2
8159394 Hayes et al. Apr 2012 B2
8159742 McKay et al. Apr 2012 B2
8159933 Henry Apr 2012 B2
8159955 Larsson et al. Apr 2012 B2
8160064 Kokernak et al. Apr 2012 B2
8160530 Corman et al. Apr 2012 B2
8160825 Roe, Jr. et al. Apr 2012 B1
8164531 Lier et al. Apr 2012 B2
8171146 Chen et al. May 2012 B2
8172173 Carlson et al. May 2012 B2
8173943 Vilo et al. May 2012 B2
8175535 Mu et al. May 2012 B2
8175649 Harel et al. May 2012 B2
8179787 Knapp et al. May 2012 B2
8180917 Yan et al. May 2012 B1
8184015 Lilien et al. May 2012 B2
8184059 Bunch et al. May 2012 B2
8184311 Sakai et al. May 2012 B2
8185062 Rofougaran et al. May 2012 B2
8188855 Sharma et al. May 2012 B2
8199762 Michelson et al. Jun 2012 B2
8203501 Kim et al. Jun 2012 B2
8212635 Miller, II et al. Jul 2012 B2
8212722 Ngo et al. Jul 2012 B2
8213758 Dong et al. Jul 2012 B2
8218929 Bickham et al. Jul 2012 B2
8222919 Broyde et al. Jul 2012 B2
8222977 Oyama et al. Jul 2012 B2
8225379 van et al. Jul 2012 B2
8233905 Vaswani et al. Jul 2012 B2
8237617 Johnson Aug 2012 B1
8238824 Washiro Aug 2012 B2
8238840 Iio et al. Aug 2012 B2
8242358 Park et al. Aug 2012 B2
8243603 Gossain et al. Aug 2012 B2
8249028 Porras et al. Aug 2012 B2
8251307 Goossen et al. Aug 2012 B2
8253516 Miller, II et al. Aug 2012 B2
8255952 Boylan, III et al. Aug 2012 B2
8258743 Tyler et al. Sep 2012 B2
8259028 Hills et al. Sep 2012 B2
8264417 Snow et al. Sep 2012 B2
8269583 Miller, II et al. Sep 2012 B2
8284102 Hayes et al. Oct 2012 B2
8287323 Kiesow et al. Oct 2012 B2
8295301 Yonge, III et al. Oct 2012 B2
8300538 Kim et al. Oct 2012 B2
8300640 Al-Banna et al. Oct 2012 B2
8316228 Winslow et al. Nov 2012 B2
8316364 Stein et al. Nov 2012 B2
8324990 Vouloumanos Dec 2012 B2
8325034 Moore et al. Dec 2012 B2
8325636 Binder Dec 2012 B2
8325693 Binder et al. Dec 2012 B2
8330259 Soler et al. Dec 2012 B2
8335596 Raman et al. Dec 2012 B2
8340438 Anderson et al. Dec 2012 B2
8343145 Brannan et al. Jan 2013 B2
8344829 Miller, II et al. Jan 2013 B2
8354970 Armbrecht et al. Jan 2013 B2
8359124 Zhou et al. Jan 2013 B2
8362775 Speckner et al. Jan 2013 B2
8363313 Nakaguma et al. Jan 2013 B2
8369667 Rose et al. Feb 2013 B2
8373095 Huynh et al. Feb 2013 B2
8373597 Schadler et al. Feb 2013 B2
8374821 Rousselle et al. Feb 2013 B2
8384600 Huang et al. Feb 2013 B2
8385978 Leung et al. Feb 2013 B2
8386198 Lancaster Feb 2013 B2
8390307 Slupsky et al. Mar 2013 B2
8390402 Kunes et al. Mar 2013 B2
8405567 Park et al. Mar 2013 B2
8406239 Hurwitz et al. Mar 2013 B2
8406593 Molin et al. Mar 2013 B2
8407687 Moshir et al. Mar 2013 B2
8412130 Suematsu et al. Apr 2013 B2
8414326 Bowman Apr 2013 B2
8415884 Chen et al. Apr 2013 B2
8428033 Hettstedt et al. Apr 2013 B2
8433168 Filippov et al. Apr 2013 B2
8433338 Flynn et al. Apr 2013 B1
8434103 Tsuchida et al. Apr 2013 B2
8437383 Wiwel et al. May 2013 B2
8452101 Ishikawa et al. May 2013 B2
8452555 Hayward et al. May 2013 B2
8457027 Dougherty et al. Jun 2013 B2
8458453 Mahalingaiah et al. Jun 2013 B1
8462063 Gummalla et al. Jun 2013 B2
8467363 Lea et al. Jun 2013 B2
8468244 Redlich et al. Jun 2013 B2
8471513 Han Jun 2013 B2
8472327 DelRegno et al. Jun 2013 B2
8484137 Johnson et al. Jul 2013 B2
8484511 Tidwell et al. Jul 2013 B2
8495718 Han et al. Jul 2013 B2
8497749 Elmore Jul 2013 B2
8503845 Winzer et al. Aug 2013 B2
8504135 Bourqui et al. Aug 2013 B2
8505057 Rogers Aug 2013 B2
8509114 Szajdecki Aug 2013 B1
8514980 Kuhtz Aug 2013 B2
8515383 Prince et al. Aug 2013 B2
8516129 Skene et al. Aug 2013 B1
8516470 Joshi et al. Aug 2013 B1
8516474 Lamba et al. Aug 2013 B2
8519892 Ding et al. Aug 2013 B2
8520578 Rayment et al. Aug 2013 B2
8520636 Xu Aug 2013 B2
8520931 Tateno et al. Aug 2013 B2
8528059 Saluzzo et al. Sep 2013 B1
8532023 Buddhikot et al. Sep 2013 B2
8532046 Hu et al. Sep 2013 B2
8532492 Sadowski et al. Sep 2013 B2
8536857 Nero, Jr. et al. Sep 2013 B2
8537068 Call et al. Sep 2013 B2
8537705 Afkhamie et al. Sep 2013 B2
8538428 Bartlett et al. Sep 2013 B2
8539540 Zenoni Sep 2013 B2
8539569 Mansour Sep 2013 B2
8542968 Dong et al. Sep 2013 B2
8545322 George et al. Oct 2013 B2
8548294 Toge et al. Oct 2013 B2
8553646 Kumar Oct 2013 B2
8561104 Dow et al. Oct 2013 B1
8561181 Sobel et al. Oct 2013 B1
8565568 Bigot-Astruc et al. Oct 2013 B2
8566058 Pupalaikis et al. Oct 2013 B2
8572247 Larson et al. Oct 2013 B2
8572639 Ficco Oct 2013 B2
8572661 Strong et al. Oct 2013 B2
8578076 van der Linden et al. Nov 2013 B2
8578486 Lifliand et al. Nov 2013 B2
8582502 Conte et al. Nov 2013 B2
8584195 Sherlock et al. Nov 2013 B2
8587490 Niver et al. Nov 2013 B2
8587492 Runyon et al. Nov 2013 B2
8588567 Kamps et al. Nov 2013 B2
8588840 Truong et al. Nov 2013 B2
8588991 Forbes, Jr. Nov 2013 B1
8593238 Miller, II et al. Nov 2013 B2
8594956 McBee et al. Nov 2013 B2
8595141 Hao et al. Nov 2013 B2
8599150 Philipp Dec 2013 B2
8600602 Watson et al. Dec 2013 B1
8604982 Gummalla et al. Dec 2013 B2
8604999 Abumrad et al. Dec 2013 B2
8605361 Batchko et al. Dec 2013 B2
8605579 Abraham et al. Dec 2013 B2
8612550 Yoo et al. Dec 2013 B2
8613020 Knudson et al. Dec 2013 B2
8615190 Lu Dec 2013 B2
8625547 Miller et al. Jan 2014 B1
8629811 Gaynor et al. Jan 2014 B2
8639260 Fox et al. Jan 2014 B2
8639390 Tamarkin et al. Jan 2014 B2
8639934 Kruglick Jan 2014 B2
8644219 Nishizaka et al. Feb 2014 B2
8653906 Mahon et al. Feb 2014 B2
8655396 Malladi et al. Feb 2014 B2
8656458 Heffez et al. Feb 2014 B2
8660526 Heiderscheit et al. Feb 2014 B1
8660698 Phillips et al. Feb 2014 B2
8665102 Salewske et al. Mar 2014 B2
8666553 Phillips et al. Mar 2014 B2
8670946 Salazar et al. Mar 2014 B2
8674630 Cornelius et al. Mar 2014 B1
8676186 Niu Mar 2014 B2
8680450 Pritchard et al. Mar 2014 B2
8680706 Zyren et al. Mar 2014 B2
8681463 Franks et al. Mar 2014 B2
8686911 Kim et al. Apr 2014 B2
8687650 King Apr 2014 B2
8688153 Komori et al. Apr 2014 B2
8699454 Hapsari et al. Apr 2014 B2
8699461 Qian et al. Apr 2014 B2
8705925 Terada et al. Apr 2014 B2
8706026 Truong et al. Apr 2014 B2
8707432 Rathi et al. Apr 2014 B1
8711538 Woodworth et al. Apr 2014 B2
8711732 Johnson et al. Apr 2014 B2
8711806 Lim et al. Apr 2014 B2
8711857 Jackson et al. Apr 2014 B2
8712200 Abernathy et al. Apr 2014 B1
8719938 Demeter et al. May 2014 B2
8723730 Lu et al. May 2014 B2
8724102 Urban et al. May 2014 B2
8729857 Stählin et al. May 2014 B2
8731358 Pare et al. May 2014 B2
8732476 Van et al. May 2014 B1
8736502 Mehr et al. May 2014 B1
8737793 Imamura et al. May 2014 B2
8738318 Spillane May 2014 B2
8742997 McPeak et al. Jun 2014 B2
8743004 Haziza Jun 2014 B2
8749449 Caldwell et al. Jun 2014 B2
8750097 Maenpaa et al. Jun 2014 B2
8750664 Huang et al. Jun 2014 B2
8754852 Lee et al. Jun 2014 B2
8755659 Imamura et al. Jun 2014 B2
8760354 Flannery et al. Jun 2014 B2
8761792 Sennett et al. Jun 2014 B2
8763097 Bhatnagar et al. Jun 2014 B2
8766657 DeJean et al. Jul 2014 B2
8767071 Marshall Jul 2014 B1
8769622 Chang et al. Jul 2014 B2
8773312 Diaz et al. Jul 2014 B1
8780012 Llombart Juan et al. Jul 2014 B2
8782195 Foti Jul 2014 B2
8786284 Sirigiri et al. Jul 2014 B2
8786514 Dickie et al. Jul 2014 B2
8789091 Eldering et al. Jul 2014 B2
8792760 Choi et al. Jul 2014 B2
8792933 Chen et al. Jul 2014 B2
8793363 Sater et al. Jul 2014 B2
8793742 Macrae et al. Jul 2014 B2
8797207 Kienzle et al. Aug 2014 B2
8804667 Wang Aug 2014 B2
8806202 Shoemake et al. Aug 2014 B2
8810404 Bertoncini et al. Aug 2014 B2
8810421 Deaver, Sr. et al. Aug 2014 B2
8810468 Cannon et al. Aug 2014 B2
8811278 Hori et al. Aug 2014 B2
8811912 Austin et al. Aug 2014 B2
8812050 Bencheikh et al. Aug 2014 B1
8812154 Vian et al. Aug 2014 B2
8817741 Shaheen Aug 2014 B2
8824380 Jetcheva et al. Sep 2014 B2
8825239 Cooper et al. Sep 2014 B2
8829934 Sellathamby et al. Sep 2014 B2
8830112 Buehler et al. Sep 2014 B1
8831506 Claret et al. Sep 2014 B2
8836503 Girod et al. Sep 2014 B2
8836607 Cook et al. Sep 2014 B2
8839350 Shapcott et al. Sep 2014 B1
8847840 Diaz et al. Sep 2014 B1
8847846 Diaz et al. Sep 2014 B1
8856239 Oliver et al. Oct 2014 B1
8856530 Lamberg et al. Oct 2014 B2
8863245 Abhyanker Oct 2014 B1
8866691 Montgomery et al. Oct 2014 B2
8866695 Jefferson et al. Oct 2014 B2
8867226 Colomb et al. Oct 2014 B2
8867798 Shuster Oct 2014 B2
8872032 Su et al. Oct 2014 B2
8875224 Gross et al. Oct 2014 B2
8878740 Coupland et al. Nov 2014 B2
8880765 Seal et al. Nov 2014 B2
8881588 Baer et al. Nov 2014 B2
8885689 Blasco et al. Nov 2014 B2
8886229 Agrawal et al. Nov 2014 B2
8887212 Dua Nov 2014 B2
8890759 Pantea et al. Nov 2014 B2
8893246 El-Moussa et al. Nov 2014 B2
8897215 Hazani et al. Nov 2014 B2
8897499 Rekimoto Nov 2014 B2
8897697 Bennett Nov 2014 B1
8901916 Rodriguez et al. Dec 2014 B2
8903214 Alkeskjold Dec 2014 B2
8907222 Stranskky Dec 2014 B2
8907845 Jones Dec 2014 B2
8908502 Hayashitani Dec 2014 B2
8908573 Wang et al. Dec 2014 B1
8913862 Emmerich et al. Dec 2014 B1
8917210 Shamim et al. Dec 2014 B2
8917215 Pohl Dec 2014 B2
8917964 Blew et al. Dec 2014 B2
8918108 Van et al. Dec 2014 B2
8918135 Kang et al. Dec 2014 B2
8922447 Gao et al. Dec 2014 B2
8925079 Miyake et al. Dec 2014 B2
8929841 Rofougaran et al. Jan 2015 B2
8934747 Smith et al. Jan 2015 B2
8937577 Gerini et al. Jan 2015 B2
8938144 Hennink et al. Jan 2015 B2
8938255 Dalla et al. Jan 2015 B2
8941912 Ichii et al. Jan 2015 B2
8947258 Reid et al. Feb 2015 B2
8948235 Proctor, Jr. et al. Feb 2015 B2
8948690 Duerksen et al. Feb 2015 B2
8952678 Giboney et al. Feb 2015 B2
8955051 Marzii Feb 2015 B2
8955075 Smith et al. Feb 2015 B2
8957818 Chen et al. Feb 2015 B2
8957821 Matyas et al. Feb 2015 B1
8958356 Lu et al. Feb 2015 B2
8958665 Ziari et al. Feb 2015 B2
8958812 Weiguo Feb 2015 B2
8958980 Hagan et al. Feb 2015 B2
8963790 Brown et al. Feb 2015 B2
8964433 Hai-Maharsi Feb 2015 B2
8966609 Lee et al. Feb 2015 B2
8968287 Shroff et al. Mar 2015 B2
8970438 Hager et al. Mar 2015 B2
8984113 Li et al. Mar 2015 B2
8989788 Kim et al. Mar 2015 B2
8994473 Levi et al. Mar 2015 B2
8994474 Mahon et al. Mar 2015 B2
8996188 Frader-Thompson et al. Mar 2015 B2
8996728 Cochinwala et al. Mar 2015 B2
9000353 Seo et al. Apr 2015 B2
9001689 Ponnampalam et al. Apr 2015 B1
9001717 Chun et al. Apr 2015 B2
9003492 Katar Apr 2015 B2
9008208 Khandani Apr 2015 B2
9008513 Kim et al. Apr 2015 B2
9009460 Chen Apr 2015 B2
9013361 Lam et al. Apr 2015 B1
9014621 Mohebbi Apr 2015 B2
9015139 Wong Apr 2015 B2
9015467 Buer Apr 2015 B2
9019164 Syed et al. Apr 2015 B2
9019595 Jain et al. Apr 2015 B2
9019846 Shetty et al. Apr 2015 B2
9019892 Zhou et al. Apr 2015 B2
9020555 Sheikh et al. Apr 2015 B2
9021251 Chawla Apr 2015 B2
9021575 Martini Apr 2015 B2
RE45514 Brown May 2015 E
9024831 Wang et al. May 2015 B2
9031725 Diesposti et al. May 2015 B1
9037516 Abhyanker May 2015 B2
9042245 Tzannes et al. May 2015 B2
9042812 Bennett et al. May 2015 B1
9065172 Lewry et al. Jun 2015 B2
9065177 Alexopoulos Jun 2015 B2
9066224 Schwengler Jun 2015 B2
9070962 Kobayashi Jun 2015 B2
9070964 Schuss et al. Jun 2015 B1
9079349 Slafer Jul 2015 B2
9082307 Sharawi Jul 2015 B2
9083083 Hills et al. Jul 2015 B2
9083425 Moussouris et al. Jul 2015 B1
9083581 Addepalli et al. Jul 2015 B1
9084124 Nickel et al. Jul 2015 B2
9092962 Merrill et al. Jul 2015 B1
9092963 Fetzer et al. Jul 2015 B2
9094407 Matthieu Jul 2015 B1
9094840 Liu et al. Jul 2015 B2
9098325 Reddin Aug 2015 B2
9099787 Blech Aug 2015 B2
9103864 Ali Aug 2015 B2
9105981 Syed Aug 2015 B2
9106617 Kshirsagar et al. Aug 2015 B2
9112281 Bresciani et al. Aug 2015 B2
9113347 Henry Aug 2015 B2
9119127 Henry Aug 2015 B1
9119179 Firoiu et al. Aug 2015 B1
9128941 Shulman Sep 2015 B2
9130641 Mohebbi Sep 2015 B2
9134945 Husain Sep 2015 B2
9137485 Bar-Niv et al. Sep 2015 B2
9142334 Muto et al. Sep 2015 B2
9143084 Perez et al. Sep 2015 B2
9143196 Schwengler Sep 2015 B2
9148186 Murphy et al. Sep 2015 B1
9154641 Shaw Oct 2015 B2
9157954 Nickel Oct 2015 B2
9158418 Oda et al. Oct 2015 B2
9158427 Wang Oct 2015 B1
9167535 Christoffersson et al. Oct 2015 B2
9171458 Salter Oct 2015 B2
9173217 Teng et al. Oct 2015 B2
9178282 Mittleman et al. Nov 2015 B2
9194930 Pupalaikis Nov 2015 B2
9201556 Free et al. Dec 2015 B2
9202371 Jain Dec 2015 B2
9203149 Henderson et al. Dec 2015 B2
9204112 Pasteris et al. Dec 2015 B2
9204418 Siomina et al. Dec 2015 B2
9207168 Lovely et al. Dec 2015 B2
9209902 Willis, III et al. Dec 2015 B2
9210192 Pathuri et al. Dec 2015 B1
9210586 Catovic et al. Dec 2015 B2
9213905 Lange et al. Dec 2015 B2
9219307 Takahashi et al. Dec 2015 B2
9219594 Khlat Dec 2015 B2
9225396 Maltsev et al. Dec 2015 B2
9229956 Ke et al. Jan 2016 B2
9235763 Brown et al. Jan 2016 B2
9240835 Cune et al. Jan 2016 B2
9244117 Khan et al. Jan 2016 B2
9246231 Ju Jan 2016 B2
9246334 Lo et al. Jan 2016 B2
9253588 Schmidt et al. Feb 2016 B2
9260244 Cohn Feb 2016 B1
9264204 Seo et al. Feb 2016 B2
9265078 Lim et al. Feb 2016 B2
9270013 Ley Feb 2016 B2
9271185 Abdelmonem et al. Feb 2016 B2
9276303 Chang et al. Mar 2016 B2
9276304 Behan Mar 2016 B2
9277331 Chao et al. Mar 2016 B2
9281564 Vincent Mar 2016 B2
9282144 Tebay et al. Mar 2016 B2
9285461 Townley et al. Mar 2016 B2
9287605 Daughenbaugh et al. Mar 2016 B2
9288844 Akhavan-saraf et al. Mar 2016 B1
9289177 Samsudin et al. Mar 2016 B2
9293798 Ye Mar 2016 B2
9293801 Courtney et al. Mar 2016 B2
9302770 Cohen et al. Apr 2016 B2
9306682 Singh Apr 2016 B2
9312929 Forenza et al. Apr 2016 B2
9315663 Appleby Apr 2016 B2
9319311 Wang et al. Apr 2016 B2
9324003 France et al. Apr 2016 B2
9324020 Nazarov Apr 2016 B2
9325067 Ali et al. Apr 2016 B2
9325516 Frei et al. Apr 2016 B2
9326316 Yonge et al. Apr 2016 B2
9334052 Ubhi et al. May 2016 B2
9338823 Saban et al. May 2016 B2
9346560 Wang May 2016 B2
9350063 Herbsommer et al. May 2016 B2
9351182 Elliott et al. May 2016 B2
9356358 Hu et al. May 2016 B2
9362629 Miller et al. Jun 2016 B2
9363333 Basso et al. Jun 2016 B2
9363690 Suthar et al. Jun 2016 B1
9363761 Venkatraman Jun 2016 B2
9366743 Doshi et al. Jun 2016 B2
9368275 McBee et al. Jun 2016 B2
9369177 Hui et al. Jun 2016 B2
9372228 Gavin et al. Jun 2016 B2
9379527 Jean et al. Jun 2016 B2
9379556 Haensgen et al. Jun 2016 B2
9380857 Davis et al. Jul 2016 B2
9391874 Corti et al. Jul 2016 B2
9393683 Kimberlin et al. Jul 2016 B2
9394716 Butler et al. Jul 2016 B2
9397380 Kudela et al. Jul 2016 B2
9400941 Meier et al. Jul 2016 B2
9401863 Hui et al. Jul 2016 B2
9404750 Rios et al. Aug 2016 B2
9413519 Khoshnood et al. Aug 2016 B2
9414126 Zinevich Aug 2016 B1
9417731 Premont et al. Aug 2016 B2
9419712 Heidler Aug 2016 B2
9421869 Ananthanarayanan et al. Aug 2016 B1
9422139 Bialkowski et al. Aug 2016 B1
9432478 Gibbon et al. Aug 2016 B2
9432865 Jadunandan et al. Aug 2016 B1
9439092 Chukka et al. Sep 2016 B1
9443417 Wang Sep 2016 B2
9458974 Townsend, Jr. et al. Oct 2016 B2
9459746 Zarraga et al. Oct 2016 B2
9461706 Bennett et al. Oct 2016 B1
9465397 Forbes, Jr. et al. Oct 2016 B2
9467219 Vilhar Oct 2016 B2
9467870 Bennett Oct 2016 B2
9476932 Furse et al. Oct 2016 B2
9478865 Willis et al. Oct 2016 B1
9479241 Pabla Oct 2016 B2
9479266 Henry et al. Oct 2016 B2
9479299 Kim et al. Oct 2016 B2
9479392 Anderson et al. Oct 2016 B2
9479535 Cohen et al. Oct 2016 B2
9490869 Henry Nov 2016 B1
9490913 Berlin Nov 2016 B2
9495037 King-Smith Nov 2016 B2
9496921 Corum Nov 2016 B1
9497572 Britt et al. Nov 2016 B2
9503170 Vu Nov 2016 B2
9503189 Henry et al. Nov 2016 B2
9509415 Henry et al. Nov 2016 B1
9510203 Jactat et al. Nov 2016 B2
9515367 Herbsommer et al. Dec 2016 B2
9544006 Henry et al. Jan 2017 B2
20010030789 Jiang et al. Oct 2001 A1
20020002040 Kline et al. Jan 2002 A1
20020008672 Gothard et al. Jan 2002 A1
20020011960 Yuanzhu et al. Jan 2002 A1
20020021716 Terk et al. Feb 2002 A1
20020024424 Burns et al. Feb 2002 A1
20020027481 Fiedziuszko et al. Mar 2002 A1
20020040439 Kellum et al. Apr 2002 A1
20020061217 Hillman et al. May 2002 A1
20020069417 Kliger et al. Jun 2002 A1
20020083194 Bak et al. Jun 2002 A1
20020091807 Goodman et al. Jul 2002 A1
20020099949 Fries et al. Jul 2002 A1
20020101852 Say et al. Aug 2002 A1
20020111997 Herlihy et al. Aug 2002 A1
20020156917 Nye et al. Oct 2002 A1
20020186694 Mahajan et al. Dec 2002 A1
20020197979 Vanderveen et al. Dec 2002 A1
20030002125 Fuse et al. Jan 2003 A1
20030002476 Chung et al. Jan 2003 A1
20030010528 Niles Jan 2003 A1
20030022694 Olsen et al. Jan 2003 A1
20030038753 Mahon et al. Feb 2003 A1
20030049003 Ahmad et al. Mar 2003 A1
20030054793 Manis et al. Mar 2003 A1
20030054811 Han et al. Mar 2003 A1
20030061346 Pekary et al. Mar 2003 A1
20030094976 Miyashita et al. May 2003 A1
20030095208 Chouraqui et al. May 2003 A1
20030137464 Foti et al. Jul 2003 A1
20030147655 Shattil Aug 2003 A1
20030151548 Kingsley et al. Aug 2003 A1
20030152331 Dair et al. Aug 2003 A1
20030164794 Haynes et al. Sep 2003 A1
20030188308 Kizuka Oct 2003 A1
20030190110 Kline et al. Oct 2003 A1
20030202756 Hurley et al. Oct 2003 A1
20030210197 Cencich et al. Nov 2003 A1
20030224784 Hunt et al. Dec 2003 A1
20040015725 Boneh et al. Jan 2004 A1
20040023640 Ballai et al. Feb 2004 A1
20040024913 Ikeda et al. Feb 2004 A1
20040048596 Wyrzykowska et al. Mar 2004 A1
20040054425 Elmore Mar 2004 A1
20040084582 Kralic et al. May 2004 A1
20040085153 Fukunaga et al. May 2004 A1
20040090312 Manis et al. May 2004 A1
20040091032 Duchi et al. May 2004 A1
20040100343 Tsu et al. May 2004 A1
20040104410 Gilbert et al. Jun 2004 A1
20040109608 Love et al. Jun 2004 A1
20040113756 Mollenkopf et al. Jun 2004 A1
20040113757 White, II et al. Jun 2004 A1
20040119564 Itoh et al. Jun 2004 A1
20040131310 Walker et al. Jul 2004 A1
20040163135 Giaccherini et al. Aug 2004 A1
20040165669 Otsuka et al. Aug 2004 A1
20040169572 Elmore et al. Sep 2004 A1
20040196784 Larsson et al. Oct 2004 A1
20040198228 Raghothaman et al. Oct 2004 A1
20040212481 Abraham et al. Oct 2004 A1
20040213147 Wiese et al. Oct 2004 A1
20040213189 Alspaugh et al. Oct 2004 A1
20040213294 Hughes et al. Oct 2004 A1
20040242185 Lee et al. Dec 2004 A1
20040250069 Kosamo et al. Dec 2004 A1
20050002408 Lee et al. Jan 2005 A1
20050005854 Suzuki et al. Jan 2005 A1
20050017825 Hansen Jan 2005 A1
20050031267 Sumimoto et al. Feb 2005 A1
20050063422 Lazar et al. Mar 2005 A1
20050068223 Vavik et al. Mar 2005 A1
20050069321 Sullivan et al. Mar 2005 A1
20050074208 Badcock et al. Apr 2005 A1
20050097396 Wood May 2005 A1
20050102185 Barker et al. May 2005 A1
20050111533 Berkman et al. May 2005 A1
20050141808 Cheben et al. Jun 2005 A1
20050143868 Whelan et al. Jun 2005 A1
20050151659 Donovan et al. Jul 2005 A1
20050159187 Mendolia et al. Jul 2005 A1
20050164666 Lang et al. Jul 2005 A1
20050168326 White et al. Aug 2005 A1
20050169056 Berkman et al. Aug 2005 A1
20050169401 Abraham et al. Aug 2005 A1
20050177463 Crutchfield et al. Aug 2005 A1
20050190101 Hiramatsu et al. Sep 2005 A1
20050208949 Chiueh et al. Sep 2005 A1
20050212626 Takamatsu et al. Sep 2005 A1
20050219126 Rebeiz et al. Oct 2005 A1
20050219135 Lee et al. Oct 2005 A1
20050220180 Barlev Oct 2005 A1
20050226353 Gebara et al. Oct 2005 A1
20050249245 Hazani et al. Nov 2005 A1
20050258920 Elmore Nov 2005 A1
20060034724 Hamano et al. Feb 2006 A1
20060038660 Doumuki et al. Feb 2006 A1
20060053486 Wesinger et al. Mar 2006 A1
20060071776 White et al. Apr 2006 A1
20060077906 Maegawa et al. Apr 2006 A1
20060082516 Strickland et al. Apr 2006 A1
20060085813 Giraldin et al. Apr 2006 A1
20060094439 Christian et al. May 2006 A1
20060106741 Janarthanan et al. May 2006 A1
20060111047 Louberg et al. May 2006 A1
20060113425 Rader et al. Jun 2006 A1
20060114925 Gerszberg et al. Jun 2006 A1
20060119528 Bhattacharyya et al. Jun 2006 A1
20060120399 Claret et al. Jun 2006 A1
20060128322 Igarashi et al. Jun 2006 A1
20060132380 Imai et al. Jun 2006 A1
20060153878 Savarino et al. Jul 2006 A1
20060172781 Mohebbi et al. Aug 2006 A1
20060176124 Mansour et al. Aug 2006 A1
20060181394 Clarke et al. Aug 2006 A1
20060187023 Iwamura et al. Aug 2006 A1
20060192672 Gidge et al. Aug 2006 A1
20060220833 Berkman et al. Oct 2006 A1
20060221995 Berkman et al. Oct 2006 A1
20060232493 Huang et al. Oct 2006 A1
20060238347 Parkinson et al. Oct 2006 A1
20060239501 Petrovic et al. Oct 2006 A1
20060244672 Avakian et al. Nov 2006 A1
20060249622 Steele et al. Nov 2006 A1
20060255930 Berkman et al. Nov 2006 A1
20060286927 Berkman et al. Dec 2006 A1
20070002771 Berkman et al. Jan 2007 A1
20070022475 Rossi et al. Jan 2007 A1
20070025265 Marcotullio et al. Feb 2007 A1
20070025386 Riedel et al. Feb 2007 A1
20070040628 Kanno et al. Feb 2007 A1
20070041464 Kim et al. Feb 2007 A1
20070041554 Newman Feb 2007 A1
20070054622 Berkman Mar 2007 A1
20070063914 Becker et al. Mar 2007 A1
20070090185 Lewkowitz et al. Apr 2007 A1
20070105508 Tong et al. May 2007 A1
20070135044 Rhodes et al. Jun 2007 A1
20070144779 Vicente et al. Jun 2007 A1
20070164908 Turchinetz et al. Jul 2007 A1
20070189182 Berkman et al. Aug 2007 A1
20070201540 Berkman et al. Aug 2007 A1
20070202913 Ban et al. Aug 2007 A1
20070211689 Campero et al. Sep 2007 A1
20070211786 Shattil et al. Sep 2007 A1
20070216596 Lewis et al. Sep 2007 A1
20070223381 Radtke et al. Sep 2007 A1
20070226779 Yokomitsu et al. Sep 2007 A1
20070229184 Liu et al. Oct 2007 A1
20070229231 Hurwitz et al. Oct 2007 A1
20070252998 Berthold et al. Nov 2007 A1
20070258484 Tolaio et al. Nov 2007 A1
20070268124 Berkman et al. Nov 2007 A1
20070300280 Turner et al. Dec 2007 A1
20080002652 Gupta et al. Jan 2008 A1
20080003872 Chen et al. Jan 2008 A1
20080007416 Cern et al. Jan 2008 A1
20080008116 Buga et al. Jan 2008 A1
20080043655 Lee et al. Feb 2008 A1
20080060832 Razavi et al. Mar 2008 A1
20080064331 Washiro et al. Mar 2008 A1
20080077336 Fernandes et al. Mar 2008 A1
20080080389 Hart et al. Apr 2008 A1
20080084937 Barthold et al. Apr 2008 A1
20080094298 Kralovec et al. Apr 2008 A1
20080120667 Zaltsman May 2008 A1
20080122723 Rofougaran et al. May 2008 A1
20080130639 Costa-Requena et al. Jun 2008 A1
20080143491 Deaver et al. Jun 2008 A1
20080150790 Voigtlaender et al. Jun 2008 A1
20080153416 Washiro et al. Jun 2008 A1
20080177678 Di Martini et al. Jul 2008 A1
20080191851 Koga et al. Aug 2008 A1
20080211727 Elmore et al. Sep 2008 A1
20080247716 Thomas et al. Oct 2008 A1
20080252522 Asbridge et al. Oct 2008 A1
20080253723 Stokes et al. Oct 2008 A1
20080255782 Bilac et al. Oct 2008 A1
20080258993 Gummalla et al. Oct 2008 A1
20080266060 Takei et al. Oct 2008 A1
20080267076 Laperi et al. Oct 2008 A1
20080279199 Park et al. Nov 2008 A1
20080280574 Rofougaran et al. Nov 2008 A1
20080313691 Cholas Dec 2008 A1
20090002137 Radtke et al. Jan 2009 A1
20090007189 Gutknecht Jan 2009 A1
20090007190 Weber et al. Jan 2009 A1
20090007194 Brady, Jr. et al. Jan 2009 A1
20090009408 Rofougaran et al. Jan 2009 A1
20090015239 Georgiou et al. Jan 2009 A1
20090054056 Gil et al. Feb 2009 A1
20090054737 Magar et al. Feb 2009 A1
20090061940 Scheinert et al. Mar 2009 A1
20090067441 Ansari et al. Mar 2009 A1
20090079660 Elmore Mar 2009 A1
20090085726 Radtke et al. Apr 2009 A1
20090088907 Lewis et al. Apr 2009 A1
20090093267 Ariyur et al. Apr 2009 A1
20090109981 Keselman Apr 2009 A1
20090125351 Davis, Jr. et al. May 2009 A1
20090129301 Belimpasakis et al. May 2009 A1
20090135848 Chan et al. May 2009 A1
20090138931 Lin et al. May 2009 A1
20090140852 Stolarczyk et al. Jun 2009 A1
20090144417 Kisel et al. Jun 2009 A1
20090171780 Aldrey et al. Jul 2009 A1
20090175195 Macauley et al. Jul 2009 A1
20090181664 Kuruvilla et al. Jul 2009 A1
20090201133 Bruns et al. Aug 2009 A1
20090202020 Hafeez et al. Aug 2009 A1
20090210901 Hawkins et al. Aug 2009 A1
20090212938 Swaim et al. Aug 2009 A1
20090250449 Petrenko et al. Oct 2009 A1
20090254971 Herz et al. Oct 2009 A1
20090258652 Lambert Oct 2009 A1
20090284435 Elmore et al. Nov 2009 A1
20090289863 Lier et al. Nov 2009 A1
20090304124 Graef et al. Dec 2009 A1
20090311960 Farahani et al. Dec 2009 A1
20090315668 Leete, III et al. Dec 2009 A1
20090320058 Wehmeyer et al. Dec 2009 A1
20090325479 Chakrabarti et al. Dec 2009 A1
20090325628 Becker et al. Dec 2009 A1
20100002618 Eichinger et al. Jan 2010 A1
20100002731 Kimura et al. Jan 2010 A1
20100013696 Schmitt et al. Jan 2010 A1
20100026607 Imai et al. Feb 2010 A1
20100039339 Kuroda et al. Feb 2010 A1
20100045447 Mollenkopf et al. Feb 2010 A1
20100052799 Watanabe et al. Mar 2010 A1
20100053019 Ikawa et al. Mar 2010 A1
20100057894 Glasser Mar 2010 A1
20100080203 Reynolds et al. Apr 2010 A1
20100085036 Banting et al. Apr 2010 A1
20100090887 Cooper et al. Apr 2010 A1
20100091712 Lu et al. Apr 2010 A1
20100100918 Egan, Jr. et al. Apr 2010 A1
20100111521 Kim et al. May 2010 A1
20100119234 Suematsu et al. May 2010 A1
20100121945 Gerber et al. May 2010 A1
20100127848 Mustapha et al. May 2010 A1
20100141527 Lalezari et al. Jun 2010 A1
20100142435 Kim et al. Jun 2010 A1
20100150215 Black et al. Jun 2010 A1
20100153990 Ress et al. Jun 2010 A1
20100169937 Atwal et al. Jul 2010 A1
20100175080 Yuen et al. Jul 2010 A1
20100176894 Tahara et al. Jul 2010 A1
20100177894 Yasuma et al. Jul 2010 A1
20100185614 O'Brien et al. Jul 2010 A1
20100201313 Vorenkamp et al. Aug 2010 A1
20100214183 Stoneback et al. Aug 2010 A1
20100214185 Sammoura et al. Aug 2010 A1
20100220024 Snow et al. Sep 2010 A1
20100224732 Olson et al. Sep 2010 A1
20100225426 Unger et al. Sep 2010 A1
20100232539 Han et al. Sep 2010 A1
20100243633 Huynh et al. Sep 2010 A1
20100253450 Kim et al. Oct 2010 A1
20100256955 Pupalaikis et al. Oct 2010 A1
20100265877 Foxworthy et al. Oct 2010 A1
20100266063 Harel et al. Oct 2010 A1
20100283693 Xie et al. Nov 2010 A1
20100284446 Mu et al. Nov 2010 A1
20100319068 Abbadessa et al. Dec 2010 A1
20100327880 Stein et al. Dec 2010 A1
20110018704 Burrows et al. Jan 2011 A1
20110040861 Van der Merwe et al. Feb 2011 A1
20110042120 Otsuka et al. Feb 2011 A1
20110043051 Meskens et al. Feb 2011 A1
20110053498 Nogueira-Nine Mar 2011 A1
20110068893 Lahiri et al. Mar 2011 A1
20110068988 Monte et al. Mar 2011 A1
20110080301 Chang et al. Apr 2011 A1
20110083399 Lettkeman et al. Apr 2011 A1
20110103274 Vavik et al. May 2011 A1
20110107364 Lajoie et al. May 2011 A1
20110109936 Coffee et al. May 2011 A1
20110110404 Washiro May 2011 A1
20110118888 White et al. May 2011 A1
20110132658 Miller, II et al. Jun 2011 A1
20110133865 Miller, II et al. Jun 2011 A1
20110133867 Miller, II et al. Jun 2011 A1
20110136432 Miller, II et al. Jun 2011 A1
20110140911 Pant et al. Jun 2011 A1
20110141555 Fermann et al. Jun 2011 A1
20110143673 Landesman et al. Jun 2011 A1
20110148578 Aloi et al. Jun 2011 A1
20110148687 Wright et al. Jun 2011 A1
20110164514 Afkhamie et al. Jul 2011 A1
20110165847 Kawasaki et al. Jul 2011 A1
20110169336 Yerazunis et al. Jul 2011 A1
20110172000 Quigley et al. Jul 2011 A1
20110173447 Zhang et al. Jul 2011 A1
20110187578 Farneth et al. Aug 2011 A1
20110199265 Lin et al. Aug 2011 A1
20110201269 Hobbs et al. Aug 2011 A1
20110208450 Salka et al. Aug 2011 A1
20110214176 Burch et al. Sep 2011 A1
20110219402 Candelore et al. Sep 2011 A1
20110220394 Szylakowski et al. Sep 2011 A1
20110225046 Eldering et al. Sep 2011 A1
20110228814 Washiro et al. Sep 2011 A1
20110235536 Nishizaka et al. Sep 2011 A1
20110268085 Barany et al. Nov 2011 A1
20110274396 Nakajima et al. Nov 2011 A1
20110286506 Libby et al. Nov 2011 A1
20110291878 McLaughlin et al. Dec 2011 A1
20110294509 Kim et al. Dec 2011 A1
20110311231 Ridgway et al. Dec 2011 A1
20110316645 Takeuchi et al. Dec 2011 A1
20120002973 Bruzzi et al. Jan 2012 A1
20120015382 Weitz et al. Jan 2012 A1
20120015654 Palanki et al. Jan 2012 A1
20120019420 Caimi et al. Jan 2012 A1
20120019427 Ishikawa et al. Jan 2012 A1
20120038520 Cornwell et al. Feb 2012 A1
20120039366 Wood et al. Feb 2012 A1
20120046891 Yaney et al. Feb 2012 A1
20120054571 Howard et al. Mar 2012 A1
20120068903 Thevenard et al. Mar 2012 A1
20120077485 Shin et al. Mar 2012 A1
20120078452 Daum et al. Mar 2012 A1
20120084807 Thompson et al. Apr 2012 A1
20120091820 Campanella et al. Apr 2012 A1
20120092161 West et al. Apr 2012 A1
20120093078 Perlman et al. Apr 2012 A1
20120102568 Tarbotton et al. Apr 2012 A1
20120105246 Sexton et al. May 2012 A1
20120105637 Yousefi et al. May 2012 A1
20120109545 Meynardi et al. May 2012 A1
20120109566 Adamian et al. May 2012 A1
20120117584 Gordon May 2012 A1
20120129566 Lee et al. May 2012 A1
20120133373 Ali et al. May 2012 A1
20120137332 Kumar et al. May 2012 A1
20120144420 Del Sordo et al. Jun 2012 A1
20120146861 Armbrecht et al. Jun 2012 A1
20120153087 Collette et al. Jun 2012 A1
20120154239 Bar-Sade et al. Jun 2012 A1
20120161543 Reuven et al. Jun 2012 A1
20120176906 Hartenstein et al. Jul 2012 A1
20120181258 Shan et al. Jul 2012 A1
20120190386 Anderson Jul 2012 A1
20120197558 Henig et al. Aug 2012 A1
20120201145 Ree et al. Aug 2012 A1
20120214538 Kim et al. Aug 2012 A1
20120224807 Winzer et al. Sep 2012 A1
20120226394 Marcus et al. Sep 2012 A1
20120235864 Lu et al. Sep 2012 A1
20120235881 Pan et al. Sep 2012 A1
20120250534 Langer et al. Oct 2012 A1
20120250752 McHann et al. Oct 2012 A1
20120263152 Fischer et al. Oct 2012 A1
20120267863 Kiest et al. Oct 2012 A1
20120268340 Capozzoli et al. Oct 2012 A1
20120270507 Qin et al. Oct 2012 A1
20120272741 Xiao et al. Nov 2012 A1
20120274528 McMahon et al. Nov 2012 A1
20120287922 Heck et al. Nov 2012 A1
20120299671 Ikeda et al. Nov 2012 A1
20120304294 Fujiwara et al. Nov 2012 A1
20120306587 Strid et al. Dec 2012 A1
20120306708 Henderson et al. Dec 2012 A1
20120313895 Haroun et al. Dec 2012 A1
20120319903 Huseth et al. Dec 2012 A1
20120322380 Nannarone et al. Dec 2012 A1
20120322492 Koo et al. Dec 2012 A1
20120324018 Metcalf et al. Dec 2012 A1
20120327908 Gupta et al. Dec 2012 A1
20120329523 Stewart et al. Dec 2012 A1
20120330756 Morris et al. Dec 2012 A1
20130002409 Molina et al. Jan 2013 A1
20130003876 Bennett Jan 2013 A1
20130010679 Ma et al. Jan 2013 A1
20130015922 Liu et al. Jan 2013 A1
20130016022 Heiks et al. Jan 2013 A1
20130023302 Sivanesan et al. Jan 2013 A1
20130039624 Scherer et al. Feb 2013 A1
20130064178 Cs et al. Mar 2013 A1
20130064311 Turner et al. Mar 2013 A1
20130070621 Marzetta et al. Mar 2013 A1
20130077612 Khorami et al. Mar 2013 A1
20130077664 Lee et al. Mar 2013 A1
20130080290 Kamm Mar 2013 A1
20130086639 Sondhi et al. Apr 2013 A1
20130093638 Shoemaker et al. Apr 2013 A1
20130095875 Reuven et al. Apr 2013 A1
20130108206 Sasaoka et al. May 2013 A1
20130109317 Kikuchi et al. May 2013 A1
20130117852 Stute et al. May 2013 A1
20130120548 Li et al. May 2013 A1
20130122828 Choi et al. May 2013 A1
20130124365 Pradeep May 2013 A1
20130127678 Chandler et al. May 2013 A1
20130136410 Sasaoka et al. May 2013 A1
20130144750 Brown Jun 2013 A1
20130148194 Altug et al. Jun 2013 A1
20130159153 Lau et al. Jun 2013 A1
20130159856 Ferren Jun 2013 A1
20130160122 Choi et al. Jun 2013 A1
20130162490 Blech et al. Jun 2013 A1
20130166690 Shatzkamer et al. Jun 2013 A1
20130169499 Lin et al. Jul 2013 A1
20130173807 De et al. Jul 2013 A1
20130178998 Gadiraju et al. Jul 2013 A1
20130182804 Yutaka et al. Jul 2013 A1
20130185552 Steer et al. Jul 2013 A1
20130187636 Kast et al. Jul 2013 A1
20130191052 Fernandez et al. Jul 2013 A1
20130201006 Kummetz et al. Aug 2013 A1
20130201904 Toskala et al. Aug 2013 A1
20130205370 Kalgi et al. Aug 2013 A1
20130207681 Slupsky et al. Aug 2013 A1
20130207859 Legay et al. Aug 2013 A1
20130219308 Britton et al. Aug 2013 A1
20130230235 Tateno et al. Sep 2013 A1
20130234904 Blech et al. Sep 2013 A1
20130234961 Garfinkel et al. Sep 2013 A1
20130235845 Kovvali et al. Sep 2013 A1
20130235871 Brzozowski et al. Sep 2013 A1
20130262656 Cao et al. Oct 2013 A1
20130262857 Neuman et al. Oct 2013 A1
20130263263 Narkolayev et al. Oct 2013 A1
20130265732 Herbsommer et al. Oct 2013 A1
20130268414 Lehtiniemi et al. Oct 2013 A1
20130271349 Wright et al. Oct 2013 A1
20130278464 Xia et al. Oct 2013 A1
20130279523 Denney et al. Oct 2013 A1
20130279561 Jin et al. Oct 2013 A1
20130279868 Zhang et al. Oct 2013 A1
20130285864 Clymer et al. Oct 2013 A1
20130303089 Wang et al. Nov 2013 A1
20130305369 Karta et al. Nov 2013 A1
20130306351 Lambert et al. Nov 2013 A1
20130307645 Mita et al. Nov 2013 A1
20130311661 McPhee et al. Nov 2013 A1
20130314182 Takeda et al. Nov 2013 A1
20130321225 Pettus et al. Dec 2013 A1
20130326063 Burch et al. Dec 2013 A1
20130326494 Nunez et al. Dec 2013 A1
20130330050 Yang et al. Dec 2013 A1
20130335165 Arnold et al. Dec 2013 A1
20130336370 Jovanovic et al. Dec 2013 A1
20130336418 Tomeba et al. Dec 2013 A1
20130341094 Taherian et al. Dec 2013 A1
20130342287 Randall et al. Dec 2013 A1
20130343213 Reynolds et al. Dec 2013 A1
20130343351 Sambhwani et al. Dec 2013 A1
20140003394 Rubin et al. Jan 2014 A1
20140003775 Ko et al. Jan 2014 A1
20140007076 Kim et al. Jan 2014 A1
20140009270 Yamazaki et al. Jan 2014 A1
20140009822 Dong et al. Jan 2014 A1
20140015705 Ebihara et al. Jan 2014 A1
20140019576 Lobo et al. Jan 2014 A1
20140026170 Francisco et al. Jan 2014 A1
20140028184 Voronin et al. Jan 2014 A1
20140028190 Voronin et al. Jan 2014 A1
20140028532 Ehrenberg et al. Jan 2014 A1
20140032005 Iwamura Jan 2014 A1
20140036694 Courtice et al. Feb 2014 A1
20140041925 Siripurapu et al. Feb 2014 A1
20140043189 Lee et al. Feb 2014 A1
20140043977 Wiley et al. Feb 2014 A1
20140044139 Dong et al. Feb 2014 A1
20140050212 Braz et al. Feb 2014 A1
20140052810 Osorio et al. Feb 2014 A1
20140056130 Grayson et al. Feb 2014 A1
20140057576 Liu et al. Feb 2014 A1
20140062784 Rison et al. Mar 2014 A1
20140071818 Wang et al. Mar 2014 A1
20140072064 Lemson et al. Mar 2014 A1
20140072299 Stapleton et al. Mar 2014 A1
20140077995 Artemenko et al. Mar 2014 A1
20140086080 Hui et al. Mar 2014 A1
20140086152 Bontu et al. Mar 2014 A1
20140112184 Chai Apr 2014 A1
20140124236 Vu et al. May 2014 A1
20140126914 Berlin et al. May 2014 A1
20140130111 Nulty et al. May 2014 A1
20140132728 Verano et al. May 2014 A1
20140139375 Faragher et al. May 2014 A1
20140143055 Johnson May 2014 A1
20140146902 Liu et al. May 2014 A1
20140148107 Maltsev et al. May 2014 A1
20140155054 Henry et al. Jun 2014 A1
20140165145 Baentsch et al. Jun 2014 A1
20140169186 Zhu et al. Jun 2014 A1
20140177692 Yu et al. Jun 2014 A1
20140179302 Polehn et al. Jun 2014 A1
20140189677 Curzi et al. Jul 2014 A1
20140189732 Shkedi et al. Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140204000 Sato et al. Jul 2014 A1
20140204754 Jeong et al. Jul 2014 A1
20140207844 Mayo et al. Jul 2014 A1
20140208272 Vats et al. Jul 2014 A1
20140222997 Mermoud et al. Aug 2014 A1
20140223527 Bortz et al. Aug 2014 A1
20140225129 Inoue et al. Aug 2014 A1
20140227905 Knott et al. Aug 2014 A1
20140227966 Artemenko et al. Aug 2014 A1
20140233900 Hugonnot et al. Aug 2014 A1
20140241718 Jiang et al. Aug 2014 A1
20140254516 Lee et al. Sep 2014 A1
20140254896 Zhou et al. Sep 2014 A1
20140254979 Zhang et al. Sep 2014 A1
20140266946 Stevenson et al. Sep 2014 A1
20140266953 Yen et al. Sep 2014 A1
20140267700 Wang et al. Sep 2014 A1
20140269260 Xue et al. Sep 2014 A1
20140269691 Xue et al. Sep 2014 A1
20140269972 Rada et al. Sep 2014 A1
20140273873 Huynh et al. Sep 2014 A1
20140285277 Herbsommer et al. Sep 2014 A1
20140285293 Schuppener et al. Sep 2014 A1
20140285373 Kuwahara et al. Sep 2014 A1
20140285389 Fakharzadeh et al. Sep 2014 A1
20140286189 Kang et al. Sep 2014 A1
20140286235 Chang et al. Sep 2014 A1
20140286284 Lim et al. Sep 2014 A1
20140287702 Schuppener et al. Sep 2014 A1
20140299349 Yamaguchi et al. Oct 2014 A1
20140304498 Gonuguntla et al. Oct 2014 A1
20140317229 Hughes et al. Oct 2014 A1
20140320364 Gu et al. Oct 2014 A1
20140321273 Morrill et al. Oct 2014 A1
20140325594 Klein et al. Oct 2014 A1
20140334773 Mathai et al. Nov 2014 A1
20140334789 Matsuo et al. Nov 2014 A1
20140340271 Petkov et al. Nov 2014 A1
20140343883 Libby et al. Nov 2014 A1
20140349696 Hyde et al. Nov 2014 A1
20140351571 Jacobs Nov 2014 A1
20140355525 Willis, III et al. Dec 2014 A1
20140355989 Finckelstein Dec 2014 A1
20140357269 Zhou et al. Dec 2014 A1
20140359275 Murugesan et al. Dec 2014 A1
20140362374 Santori Dec 2014 A1
20140362694 Rodriques Dec 2014 A1
20140368301 Herbsommer et al. Dec 2014 A1
20140369430 Parnell et al. Dec 2014 A1
20140372068 Seto et al. Dec 2014 A1
20140373053 Leley et al. Dec 2014 A1
20140376655 Ruan et al. Dec 2014 A1
20150008996 Jessup et al. Jan 2015 A1
20150009089 Pesa Jan 2015 A1
20150016260 Chow et al. Jan 2015 A1
20150017473 Verhoeven et al. Jan 2015 A1
20150022399 Flannery et al. Jan 2015 A1
20150026460 Walton Jan 2015 A1
20150029065 Cheng Jan 2015 A1
20150036610 Kim et al. Feb 2015 A1
20150042526 Zeine Feb 2015 A1
20150048238 Kawai Feb 2015 A1
20150049998 Dumais Feb 2015 A1
20150061859 Matsuoka et al. Mar 2015 A1
20150065166 Ward et al. Mar 2015 A1
20150070231 Park et al. Mar 2015 A1
20150071594 Register Mar 2015 A1
20150073594 Trujillo et al. Mar 2015 A1
20150077740 Fuse Mar 2015 A1
20150078756 Soto Mar 2015 A1
20150084660 Knierim et al. Mar 2015 A1
20150084703 Sanduleanu Mar 2015 A1
20150084814 Rojanski et al. Mar 2015 A1
20150091650 Nobbe Apr 2015 A1
20150094104 Wilmhoff et al. Apr 2015 A1
20150098387 Garg et al. Apr 2015 A1
20150099555 Krishnaswamy et al. Apr 2015 A1
20150102972 Scire-Scappuzzo et al. Apr 2015 A1
20150103685 Butchko et al. Apr 2015 A1
20150104005 Holman Apr 2015 A1
20150105115 Hata et al. Apr 2015 A1
20150109178 Hyde et al. Apr 2015 A1
20150116154 Artemenko Apr 2015 A1
20150122886 Michael May 2015 A1
20150126107 Bennett et al. May 2015 A1
20150130675 Parsche May 2015 A1
20150138022 Takahashi May 2015 A1
20150138144 Tanabe May 2015 A1
20150153248 Hayward et al. Jun 2015 A1
20150156266 Gupta Jun 2015 A1
20150162988 Henry et al. Jun 2015 A1
20150171522 Liu et al. Jun 2015 A1
20150172036 Katar et al. Jun 2015 A1
20150181449 Didenko et al. Jun 2015 A1
20150185425 Gundel et al. Jul 2015 A1
20150195349 Cardamore Jul 2015 A1
20150195719 Rahman Jul 2015 A1
20150201228 Hasek Jul 2015 A1
20150207527 Eliaz et al. Jul 2015 A1
20150214615 Patel et al. Jul 2015 A1
20150215268 Dinha Jul 2015 A1
20150223078 Bennett et al. Aug 2015 A1
20150223113 Matsunaga Aug 2015 A1
20150223160 Ho Aug 2015 A1
20150230109 Turner et al. Aug 2015 A1
20150236778 Jalali Aug 2015 A1
20150236779 Jalali Aug 2015 A1
20150237519 Ghai Aug 2015 A1
20150249965 Dussmann et al. Sep 2015 A1
20150263424 Sanford Sep 2015 A1
20150271830 Shin et al. Sep 2015 A1
20150276577 Ruege et al. Oct 2015 A1
20150277569 Sprenger Oct 2015 A1
20150280328 Sanford et al. Oct 2015 A1
20150284079 Matsuda Oct 2015 A1
20150288532 Veyseh et al. Oct 2015 A1
20150289247 Liu et al. Oct 2015 A1
20150303892 Desclos Oct 2015 A1
20150304045 Henry et al. Oct 2015 A1
20150304869 Johnson et al. Oct 2015 A1
20150311951 Hariz Oct 2015 A1
20150312774 Lau Oct 2015 A1
20150318610 Lee et al. Nov 2015 A1
20150323948 Jeong Nov 2015 A1
20150325913 Vagman Nov 2015 A1
20150326274 Flood Nov 2015 A1
20150326287 Kazmi et al. Nov 2015 A1
20150333386 Kaneda et al. Nov 2015 A1
20150333804 Yang et al. Nov 2015 A1
20150334769 Kim et al. Nov 2015 A1
20150339912 Farrand et al. Nov 2015 A1
20150344136 Dahlstrom Dec 2015 A1
20150349415 Iwanaka Dec 2015 A1
20150356482 Whipple et al. Dec 2015 A1
20150356848 Hatch Dec 2015 A1
20150369660 Yu Dec 2015 A1
20150370251 Siegel et al. Dec 2015 A1
20150373557 Bennett et al. Dec 2015 A1
20150380814 Boutayeb et al. Dec 2015 A1
20150382208 Elliott et al. Dec 2015 A1
20150382363 Wang et al. Dec 2015 A1
20160006129 Haziza Jan 2016 A1
20160012460 Kruglick Jan 2016 A1
20160014749 Kang et al. Jan 2016 A1
20160021545 Shaw Jan 2016 A1
20160026301 Zhou et al. Jan 2016 A1
20160029009 Lu et al. Jan 2016 A1
20160038074 Brown et al. Feb 2016 A1
20160043478 Hartenstein Feb 2016 A1
20160044705 Gao Feb 2016 A1
20160050028 Henry et al. Feb 2016 A1
20160056543 Kwiatkowski Feb 2016 A1
20160063642 Luciani et al. Mar 2016 A1
20160064794 Henry et al. Mar 2016 A1
20160065252 Preschutti Mar 2016 A1
20160065335 Koo et al. Mar 2016 A1
20160066191 Li Mar 2016 A1
20160068265 Hoareau et al. Mar 2016 A1
20160068277 Manitta Mar 2016 A1
20160069934 Saxby et al. Mar 2016 A1
20160069935 Kreikebaum et al. Mar 2016 A1
20160070265 Liu et al. Mar 2016 A1
20160072173 Herbsommer et al. Mar 2016 A1
20160072191 Iwai Mar 2016 A1
20160072287 Jia Mar 2016 A1
20160079769 Corum et al. Mar 2016 A1
20160079771 Corum Mar 2016 A1
20160079809 Corum et al. Mar 2016 A1
20160080035 Fuchs et al. Mar 2016 A1
20160080839 Fuchs et al. Mar 2016 A1
20160082460 McMaster et al. Mar 2016 A1
20160087344 Artemenko et al. Mar 2016 A1
20160088498 Sharawi Mar 2016 A1
20160094420 Clemm et al. Mar 2016 A1
20160094879 Gerszberg et al. Mar 2016 A1
20160099749 Bennett et al. Apr 2016 A1
20160100324 Henry et al. Apr 2016 A1
20160103199 Rappaport Apr 2016 A1
20160105218 Henry et al. Apr 2016 A1
20160105233 Jalali Apr 2016 A1
20160105239 Henry et al. Apr 2016 A1
20160105255 Henry et al. Apr 2016 A1
20160111890 Corum et al. Apr 2016 A1
20160112092 Henry et al. Apr 2016 A1
20160112093 Barzegar et al. Apr 2016 A1
20160112094 Stuckman et al. Apr 2016 A1
20160112115 Henry et al. Apr 2016 A1
20160112132 Henry et al. Apr 2016 A1
20160112133 Henry et al. Apr 2016 A1
20160112135 Henry et al. Apr 2016 A1
20160112263 Henry et al. Apr 2016 A1
20160116914 Mucci Apr 2016 A1
20160118717 Britz et al. Apr 2016 A1
20160124071 Baxley et al. May 2016 A1
20160127931 Baxley et al. May 2016 A1
20160131347 Hill et al. May 2016 A1
20160134006 Ness et al. May 2016 A1
20160135132 Donepudi et al. May 2016 A1
20160135184 Zavadsky et al. May 2016 A1
20160137311 Peverill et al. May 2016 A1
20160139731 Kim May 2016 A1
20160149312 Henry et al. May 2016 A1
20160149614 Barzegar May 2016 A1
20160149636 Gerszberg et al. May 2016 A1
20160149665 Henry et al. May 2016 A1
20160149731 Henry et al. May 2016 A1
20160149753 Gerszberg et al. May 2016 A1
20160150427 Ramanath May 2016 A1
20160153938 Balasubramaniam et al. Jun 2016 A1
20160164571 Bennett et al. Jun 2016 A1
20160164573 Birk et al. Jun 2016 A1
20160165472 Gopalakrishnan et al. Jun 2016 A1
20160165478 Yao et al. Jun 2016 A1
20160174040 Roberts et al. Jun 2016 A1
20160179134 Ryu Jun 2016 A1
20160181701 Sangaran et al. Jun 2016 A1
20160182161 Barzegar Jun 2016 A1
20160182981 Minarik et al. Jun 2016 A1
20160188291 Vilermo et al. Jun 2016 A1
20160189101 Kantor et al. Jun 2016 A1
20160197392 Henry et al. Jul 2016 A1
20160197409 Henry et al. Jul 2016 A1
20160197630 Kawasaki Jul 2016 A1
20160197642 Henry et al. Jul 2016 A1
20160207627 Hoareau et al. Jul 2016 A1
20160212065 To et al. Jul 2016 A1
20160212641 Kong et al. Jul 2016 A1
20160214717 De Silva Jul 2016 A1
20160218407 Henry et al. Jul 2016 A1
20160218437 Guntupalli Jul 2016 A1
20160221039 Fuchs et al. Aug 2016 A1
20160224235 Forsstrom Aug 2016 A1
20160226681 Henry et al. Aug 2016 A1
20160244165 Patrick et al. Aug 2016 A1
20160248149 Kim et al. Aug 2016 A1
20160248165 Henry Aug 2016 A1
20160248509 Henry Aug 2016 A1
20160249233 Murray Aug 2016 A1
20160252970 Dahl Sep 2016 A1
20160261309 Henry Sep 2016 A1
20160261310 Fuchs et al. Sep 2016 A1
20160261312 Fuchs et al. Sep 2016 A1
20160269156 Barzegar et al. Sep 2016 A1
20160276725 Barnickel et al. Sep 2016 A1
20160277939 Olcott et al. Sep 2016 A1
20160285508 Bennett et al. Sep 2016 A1
20160285512 Henry et al. Sep 2016 A1
20160294444 Gerszberg et al. Oct 2016 A1
20160294517 Barzegar et al. Oct 2016 A1
20160295431 Henry et al. Oct 2016 A1
20160306361 Shalom et al. Oct 2016 A1
20160315659 Henry Oct 2016 A1
20160315660 Henry Oct 2016 A1
20160315661 Henry Oct 2016 A1
20160315662 Henry Oct 2016 A1
20160322691 Bennett et al. Nov 2016 A1
20160329957 Schmid et al. Nov 2016 A1
20160336091 Henry et al. Nov 2016 A1
20160336092 Henry et al. Nov 2016 A1
20160336636 Henry et al. Nov 2016 A1
20160336996 Henry Nov 2016 A1
20160336997 Henry Nov 2016 A1
20160351987 Henry Dec 2016 A1
20160359523 Bennett Dec 2016 A1
20160359524 Bennett et al. Dec 2016 A1
20160359529 Bennett et al. Dec 2016 A1
20160359530 Bennett Dec 2016 A1
20160359541 Bennett Dec 2016 A1
20160359542 Bennett Dec 2016 A1
20160359543 Bennett et al. Dec 2016 A1
20160359544 Bennett Dec 2016 A1
20160359546 Bennett Dec 2016 A1
20160359547 Bennett et al. Dec 2016 A1
20160359649 Bennett et al. Dec 2016 A1
20160360533 Bennett et al. Dec 2016 A1
20160365175 Bennett et al. Dec 2016 A1
20160365893 Bennett et al. Dec 2016 A1
20160365894 Bennett et al. Dec 2016 A1
20160365897 Gross Dec 2016 A1
20160365916 Bennett et al. Dec 2016 A1
20160365943 Henry et al. Dec 2016 A1
20160365966 Bennett et al. Dec 2016 A1
20160366586 Gross et al. Dec 2016 A1
20160366587 Gross Dec 2016 A1
20160373937 Bennett et al. Dec 2016 A1
20160380327 Henry Dec 2016 A1
20160380328 Henry Dec 2016 A1
20160380358 Henry Dec 2016 A1
20160380701 Henry et al. Dec 2016 A1
20160380702 Henry et al. Dec 2016 A1
20170018174 Gerszberg et al. Jan 2017 A1
20170018332 Barzegar et al. Jan 2017 A1
20170018830 Henry et al. Jan 2017 A1
20170018831 Henry et al. Jan 2017 A1
20170018832 Henry et al. Jan 2017 A1
20170018833 Henry et al. Jan 2017 A1
20170018851 Henry et al. Jan 2017 A1
20170018852 Adriazola et al. Jan 2017 A1
20170018856 Henry et al. Jan 2017 A1
20170019130 Hnery et al. Jan 2017 A1
20170019131 Henry et al. Jan 2017 A1
20170019150 Henry Jan 2017 A1
20170019189 Henry et al. Jan 2017 A1
20170025728 Henry et al. Jan 2017 A1
20170025732 Henry et al. Jan 2017 A1
20170025734 Henry et al. Jan 2017 A1
20170025839 Henry et al. Jan 2017 A1
20170026063 Henry Jan 2017 A1
20170026082 Henry et al. Jan 2017 A1
20170026084 Henry et al. Jan 2017 A1
20170026129 Henry Jan 2017 A1
20170033464 Henry et al. Feb 2017 A1
20170033465 Henry et al. Feb 2017 A1
20170033466 Henry et al. Feb 2017 A1
20170033834 Gross Feb 2017 A1
20170033835 Bennett et al. Feb 2017 A1
20170033953 Henry et al. Feb 2017 A1
20170033954 Henry et al. Feb 2017 A1
20170034042 Gross et al. Feb 2017 A1
20170041081 Henry et al. Feb 2017 A1
20170047662 Henry et al. Feb 2017 A1
20180013452 Henry Jan 2018 A9
Foreign Referenced Citations (558)
Number Date Country
565039 Sep 1987 AU
582630 Apr 1989 AU
606303 Jan 1991 AU
7261000 Apr 2001 AU
760272 May 2003 AU
2005227368 Feb 2009 AU
2010101079 Nov 2010 AU
2007215252 Jan 2011 AU
201400748 Mar 2014 AU
2014200748 Mar 2014 AU
1136267 Nov 1982 CA
1211813 Sep 1986 CA
1328009 Mar 1994 CA
2260380 Dec 2000 CA
2449596 Jun 2005 CA
2515560 Feb 2007 CA
2664573 Apr 2008 CA
2467988 Nov 2010 CA
2777147 Apr 2011 CA
2814529 Apr 2012 CA
2787580 Feb 2013 CA
2927054 May 2015 CA
2940976 Sep 2015 CA
2116969 Sep 1992 CN
1155354 Jul 1997 CN
1411563 Apr 2003 CN
1126425 Oct 2003 CN
2730033 Sep 2005 CN
1833397 Sep 2006 CN
1885736 Dec 2006 CN
201048157 Apr 2008 CN
201146495 Nov 2008 CN
201207179 Mar 2009 CN
100502181 Jun 2009 CN
201282193 Jul 2009 CN
101834011 Apr 2010 CN
1823275 May 2010 CN
101785201 Jul 2010 CN
1820482 Dec 2010 CN
101075702 Feb 2011 CN
101978613 Feb 2011 CN
102130698 Jul 2011 CN
102136634 Jul 2011 CN
201985870 Sep 2011 CN
102208716 Oct 2011 CN
102280704 Dec 2011 CN
102280709 Dec 2011 CN
202093126 Dec 2011 CN
102351415 Feb 2012 CN
102396111 Mar 2012 CN
202253536 May 2012 CN
102544736 Jul 2012 CN
102590893 Jul 2012 CN
102694351 Sep 2012 CN
202424729 Sep 2012 CN
101662076 Nov 2012 CN
102017692 Apr 2013 CN
103078673 May 2013 CN
103117118 May 2013 CN
103163881 Jun 2013 CN
203204743 Sep 2013 CN
1863244 Oct 2013 CN
101958461 Nov 2013 CN
103700442 Dec 2013 CN
103700442 Apr 2014 CN
103943925 Jul 2014 CN
104052742 Sep 2014 CN
104064844 Sep 2014 CN
203813973 Sep 2014 CN
104091987 Oct 2014 CN
104092028 Oct 2014 CN
203931626 Nov 2014 CN
203950607 Nov 2014 CN
104181552 Dec 2014 CN
204538183 Aug 2015 CN
102412442 Oct 2015 CN
204760545 Nov 2015 CN
105262551 Jan 2016 CN
205265924 Jan 2016 CN
105359572 Feb 2016 CN
105453340 Mar 2016 CN
105594138 May 2016 CN
104162995 Jun 2016 CN
105813193 Jul 2016 CN
3504546 Aug 1986 DE
3533204 Mar 1987 DE
3533211 Mar 1987 DE
3827956 Mar 1989 DE
4027367 Jul 1991 DE
4225595 Sep 1993 DE
19501448 Jul 1996 DE
19939832 Feb 2001 DE
10043761 Nov 2002 DE
102004024356 Sep 2005 DE
69732676 Apr 2006 DE
4337835 May 2008 DE
102007049914 Apr 2009 DE
102012004998 Jul 2013 DE
102012203816 Sep 2013 DE
0102846 Mar 1984 EP
0110478 Jun 1984 EP
0136818 Apr 1985 EP
0280379 Aug 1988 EP
0330303 Aug 1989 EP
0331248 Sep 1989 EP
0342149 Nov 1989 EP
0391719 Apr 1990 EP
425979 May 1991 EP
0485467 May 1992 EP
272785 Feb 1994 EP
0651487 Oct 1994 EP
0371660 Apr 1996 EP
0756392 Jan 1997 EP
834722 Apr 1998 EP
0840464 May 1998 EP
0871241 Oct 1998 EP
0890132 Jan 1999 EP
755092 Apr 1999 EP
0896380 Oct 1999 EP
676648 May 2000 EP
1085599 Mar 2001 EP
0907983 Jun 2001 EP
0756786 Aug 2001 EP
1127283 Aug 2001 EP
1129550 Sep 2001 EP
1184930 Mar 2002 EP
1195847 Apr 2002 EP
1296146 Mar 2003 EP
0772061 Jul 2003 EP
1346431 Sep 2003 EP
1249056 Jan 2004 EP
1376755 Jan 2004 EP
1401048 Mar 2004 EP
1454422 Sep 2004 EP
1488397 Dec 2004 EP
1509970 Mar 2005 EP
1371108 Jun 2005 EP
1550327 Jul 2005 EP
1341255 Aug 2005 EP
1577687 Sep 2005 EP
1312135 Nov 2005 EP
1608110 Dec 2005 EP
1624685 Feb 2006 EP
1642468 Apr 2006 EP
1647072 Apr 2006 EP
1608110 Oct 2006 EP
1793508 Jun 2007 EP
1842265 Oct 2007 EP
1898532 Mar 2008 EP
1930982 Jun 2008 EP
1953940 Aug 2008 EP
1696509 Oct 2009 EP
2159749 Mar 2010 EP
2165550 Mar 2010 EP
1166599 May 2010 EP
1807950 Jan 2011 EP
2404347 Jan 2012 EP
2472671 Jul 2012 EP
1817855 Jan 2013 EP
2568528 Mar 2013 EP
2302735 Sep 2013 EP
2472737 Sep 2013 EP
2640115 Sep 2013 EP
2016643 Jul 2014 EP
2760081 Jul 2014 EP
2804259 Nov 2014 EP
2507939 Dec 2014 EP
2680452 Jan 2015 EP
2838155 Feb 2015 EP
2846480 Mar 2015 EP
2849524 Mar 2015 EP
2850695 Mar 2015 EP
2853902 Apr 2015 EP
2854361 Apr 2015 EP
2870802 May 2015 EP
2710400 Jun 2015 EP
3076482 Oct 2016 EP
2119804 Aug 1972 FR
2214161 Aug 1974 FR
2416562 Aug 1979 FR
2583226 Dec 1986 FR
2691602 Nov 1993 FR
2849728 Jul 2004 FR
2841387 Apr 2006 FR
2893717 May 2007 FR
2946466 Mar 2012 FR
2986376 Oct 2014 FR
3034203 Sep 2016 FR
175489 Feb 1922 GB
462804 Mar 1937 GB
529290 Nov 1940 GB
603119 Oct 1945 GB
589603 Jun 1947 GB
640181 Jul 1950 GB
663166 Dec 1951 GB
667290 Feb 1952 GB
668827 Mar 1952 GB
682115 Nov 1952 GB
682817 Nov 1952 GB
731473 Jun 1955 GB
746111 Mar 1956 GB
751153 Jun 1956 GB
767506 Feb 1957 GB
835976 Jun 1960 GB
845492 Aug 1960 GB
859951 Jan 1961 GB
889856 Feb 1962 GB
905417 Sep 1962 GB
993561 May 1965 GB
1004318 Sep 1965 GB
1076772 Jul 1967 GB
1141390 Jan 1969 GB
1298387 Nov 1972 GB
1383549 Feb 1974 GB
1370669 Oct 1974 GB
1422956 Jan 1976 GB
1424351 Feb 1976 GB
1468310 Mar 1977 GB
1469840 Apr 1977 GB
1527228 Oct 1978 GB
2010528 Jun 1979 GB
2045055 Oct 1980 GB
1580627 Dec 1980 GB
1584193 Feb 1981 GB
2227369 Jul 1990 GB
2247990 Mar 1992 GB
2368468 May 2002 GB
2362472 Oct 2003 GB
2394364 Jun 2005 GB
2414862 Dec 2005 GB
2411554 Jan 2006 GB
705192 Apr 2007 GB
714974 Sep 2007 GB
718597 Oct 2007 GB
2474037 Apr 2011 GB
2476787 Jul 2011 GB
2474605 Sep 2011 GB
2485355 May 2012 GB
2481715 Jan 2014 GB
2507269 Apr 2014 GB
2476149 Jul 2014 GB
2532207 May 2016 GB
261253 Jun 2014 IN
7352CHENP2015 Jul 2016 IN
201647015348 Aug 2016 IN
S50109642 Sep 1975 JP
55124303 Sep 1980 JP
55138902 Oct 1980 JP
574601 Jan 1982 JP
61178682 Nov 1986 JP
61260702 Nov 1986 JP
62110303 Jul 1987 JP
62190903 Aug 1987 JP
02214307 Aug 1990 JP
03167906 Jul 1991 JP
0653894 Aug 1991 JP
04369905 Dec 1992 JP
3001844 Sep 1994 JP
077769 Jan 1995 JP
7212126 Nov 1995 JP
0829545 Feb 1996 JP
08167810 Jun 1996 JP
08196022 Jul 1996 JP
08316918 Nov 1996 JP
2595339 Apr 1997 JP
2639531 Aug 1997 JP
10206183 Aug 1998 JP
10271071 Oct 1998 JP
116928 Jan 1999 JP
1114749 Jan 1999 JP
11239085 Aug 1999 JP
11313022 Nov 1999 JP
2000077889 Mar 2000 JP
2000216623 Aug 2000 JP
2000244238 Sep 2000 JP
2002029247 Jan 2002 JP
2002236174 Aug 2002 JP
200328219 Jan 2003 JP
2003008336 Jan 2003 JP
2003057464 Feb 2003 JP
2003511677 Mar 2003 JP
2003324309 Nov 2003 JP
3480153 Dec 2003 JP
2003344883 Dec 2003 JP
2004521379 Jul 2004 JP
2004253852 Sep 2004 JP
2004274656 Sep 2004 JP
2004297107 Oct 2004 JP
2004304659 Oct 2004 JP
2005110231 Apr 2005 JP
2005182469 Jul 2005 JP
3734975 Jan 2006 JP
2006153878 Jun 2006 JP
2006163886 Jun 2006 JP
2006166399 Jun 2006 JP
2007042009 Feb 2007 JP
2007072945 Mar 2007 JP
3938315 Jun 2007 JP
2007174017 Jul 2007 JP
2007259001 Oct 2007 JP
4025674 Dec 2007 JP
2008017263 Jan 2008 JP
2008021483 Jan 2008 JP
4072280 Apr 2008 JP
4142062 Aug 2008 JP
2008209965 Sep 2008 JP
2008218362 Sep 2008 JP
2009004986 Jan 2009 JP
4252573 Apr 2009 JP
4259760 Apr 2009 JP
2009124229 Jun 2009 JP
2010045471 Feb 2010 JP
2001217634 Aug 2010 JP
2010192992 Sep 2010 JP
2010541468 Dec 2010 JP
2011160446 Aug 2011 JP
2012058162 Mar 2012 JP
2012090242 May 2012 JP
2012175680 Sep 2012 JP
2012205104 Oct 2012 JP
2012248035 Dec 2012 JP
2013046412 Mar 2013 JP
2013110503 Jun 2013 JP
5230779 Jul 2013 JP
2014045237 Mar 2014 JP
5475475 Apr 2014 JP
5497348 May 2014 JP
5618072 Nov 2014 JP
2015095520 May 2015 JP
2015188174 Oct 2015 JP
20000074034 Dec 2000 KR
20020091917 Dec 2002 KR
100624049 Sep 2006 KR
200425873 Sep 2006 KR
100636388 Oct 2006 KR
100725002 Jun 2007 KR
100849702 Jul 2008 KR
100916077 Aug 2009 KR
100952976 Apr 2010 KR
100989064 Oct 2010 KR
101060584 Aug 2011 KR
101070364 Sep 2011 KR
101212354 Dec 2012 KR
101259715 Apr 2013 KR
101288770 Jul 2013 KR
20140104097 Aug 2014 KR
101435538 Sep 2014 KR
101447809 Oct 2014 KR
20150087455 Jul 2015 KR
101549622 Sep 2015 KR
200479199 Dec 2015 KR
101586236 Jan 2016 KR
101606803 Jan 2016 KR
101607420 Mar 2016 KR
69072 Jan 1945 NL
2129746 Apr 1999 RU
2432647 Oct 2011 RU
201537432 Oct 2015 TW
8301711 May 1983 WO
9116770 Oct 1991 WO
9210014 Jun 1992 WO
9323928 Nov 1993 WO
9424467 Oct 1994 WO
9523440 Aug 1995 WO
9529537 Nov 1995 WO
199529537 Nov 1995 WO
9603801 Feb 1996 WO
199619089 Jun 1996 WO
9639729 Dec 1996 WO
9641157 Dec 1996 WO
9735387 Sep 1997 WO
9737445 Oct 1997 WO
9829853 Jul 1998 WO
9857207 Dec 1998 WO
9859254 Dec 1998 WO
9923848 May 1999 WO
9948230 Sep 1999 WO
199945310 Sep 1999 WO
9967903 Dec 1999 WO
0070891 Nov 2000 WO
200074428 Dec 2000 WO
WO2001014985 Mar 2001 WO
0128159 Apr 2001 WO
0131746 May 2001 WO
0145206 Jun 2001 WO
02061467 Aug 2002 WO
02061971 Aug 2002 WO
03005629 Jan 2003 WO
2003009083 Jan 2003 WO
03012614 Feb 2003 WO
03026462 Apr 2003 WO
03044981 May 2003 WO
2003088418 Oct 2003 WO
03099740 Dec 2003 WO
2004011995 Feb 2004 WO
2004038891 May 2004 WO
2004051804 Jun 2004 WO
2004051804 Jun 2004 WO
2004054159 Jun 2004 WO
2004077746 Sep 2004 WO
2005015686 Feb 2005 WO
2005072469 Aug 2005 WO
2006012610 Feb 2006 WO
2006061865 Jun 2006 WO
2006085804 Aug 2006 WO
2006102419 Sep 2006 WO
2006111809 Oct 2006 WO
2006116396 Nov 2006 WO
2006122041 Nov 2006 WO
2006125279 Nov 2006 WO
0192910 Dec 2006 WO
2007000777 Feb 2007 WO
2006050331 Mar 2007 WO
2007031435 Mar 2007 WO
2007071797 Jun 2007 WO
2007148097 Dec 2007 WO
2008003939 Jan 2008 WO
2007094944 Mar 2008 WO
2007149746 Apr 2008 WO
2008044062 Apr 2008 WO
2008055084 May 2008 WO
2008061107 May 2008 WO
2008069358 Jun 2008 WO
2008070957 Jun 2008 WO
2008102987 Aug 2008 WO
2008117973 Oct 2008 WO
2008155769 Dec 2008 WO
2009014704 Jan 2009 WO
2007098061 Feb 2009 WO
2009031794 Mar 2009 WO
2009035285 Mar 2009 WO
2009090602 Jul 2009 WO
2009123404 Oct 2009 WO
2009131316 Oct 2009 WO
2010017549 Feb 2010 WO
2010050892 May 2010 WO
2010147806 Dec 2010 WO
2011006210 Jan 2011 WO
2011032605 Mar 2011 WO
2011085650 Jul 2011 WO
2011137793 Nov 2011 WO
2012007831 Jan 2012 WO
2012038816 Mar 2012 WO
2012050069 Apr 2012 WO
2012064333 May 2012 WO
2012113219 Aug 2012 WO
2012171205 Dec 2012 WO
2012172565 Dec 2012 WO
2013013162 Jan 2013 WO
2013013465 Jan 2013 WO
2013017822 Feb 2013 WO
2013023226 Feb 2013 WO
2013028197 Feb 2013 WO
2013035110 Mar 2013 WO
2013073548 May 2013 WO
2013073548 May 2013 WO
2013100912 Jul 2013 WO
2013112353 Aug 2013 WO
2013115802 Aug 2013 WO
2013121682 Aug 2013 WO
2013123445 Aug 2013 WO
2013138627 Sep 2013 WO
2014045236 Sep 2013 WO
2013136213 Sep 2013 WO
2013138627 Sep 2013 WO
2013157978 Oct 2013 WO
2013172502 Nov 2013 WO
2014018434 Jan 2014 WO
2014011438 Jan 2014 WO
2014018434 Jan 2014 WO
2014065952 May 2014 WO
2014069941 May 2014 WO
2014083500 Jun 2014 WO
2014092644 Jun 2014 WO
2014094559 Jun 2014 WO
2014096868 Jun 2014 WO
2014099340 Jun 2014 WO
2013076499 Jul 2014 WO
2014112994 Jul 2014 WO
2014128253 Aug 2014 WO
2014137546 Sep 2014 WO
2014145862 Sep 2014 WO
2014147002 Sep 2014 WO
2014197926 Dec 2014 WO
2015002658 Jan 2015 WO
2015006636 Jan 2015 WO
2015008442 Jan 2015 WO
2015024006 Feb 2015 WO
2015027033 Feb 2015 WO
2015035463 Mar 2015 WO
2015055230 Apr 2015 WO
2015052478 Apr 2015 WO
2015052480 Apr 2015 WO
2015069090 May 2015 WO
2015069431 May 2015 WO
2015077644 May 2015 WO
2015088650 Jun 2015 WO
2015120626 Aug 2015 WO
2015123623 Aug 2015 WO
2015132618 Sep 2015 WO
2015167566 Nov 2015 WO
2015175054 Nov 2015 WO
2015197580 Dec 2015 WO
2016003291 Jan 2016 WO
2016004003 Jan 2016 WO
2016009402 Jan 2016 WO
2016012889 Jan 2016 WO
2016027007 Feb 2016 WO
2016028767 Feb 2016 WO
2016043949 Mar 2016 WO
2016032592 Mar 2016 WO
2016036951 Mar 2016 WO
2016043949 Mar 2016 WO
2016048214 Mar 2016 WO
2016048257 Mar 2016 WO
2016064502 Apr 2016 WO
2016053572 Apr 2016 WO
2016053573 Apr 2016 WO
2016060761 Apr 2016 WO
2016060762 Apr 2016 WO
2016061021 Apr 2016 WO
2016064505 Apr 2016 WO
2016064516 Apr 2016 WO
2016064700 Apr 2016 WO
2016073072 May 2016 WO
2016081125 May 2016 WO
2016081128 May 2016 WO
2016081129 May 2016 WO
2016081134 May 2016 WO
2016081136 May 2016 WO
2015090382 Jun 2016 WO
2016086306 Jun 2016 WO
2016089491 Jun 2016 WO
2016089492 Jun 2016 WO
2016096029 Jun 2016 WO
2016125161 Aug 2016 WO
2016133509 Aug 2016 WO
2016122409 Aug 2016 WO
2016133672 Aug 2016 WO
2016137982 Sep 2016 WO
2016145411 Sep 2016 WO
2016161637 Oct 2016 WO
2016169058 Oct 2016 WO
2016171907 Oct 2016 WO
2016176030 Nov 2016 WO
2016200492 Dec 2016 WO
2016200579 Dec 2016 WO
2017011099 Jan 2017 WO
2017011100 Jan 2017 WO
2017011101 Jan 2017 WO
2017011102 Jan 2017 WO
2017011103 Jan 2017 WO
2017011227 Jan 2017 WO
2017014840 Jan 2017 WO
2017014842 Jan 2017 WO
2017023412 Feb 2017 WO
2017023413 Feb 2017 WO
2017023417 Feb 2017 WO
Non-Patent Literature Citations (556)
Entry
“AirCheck G2 Wireless Tester”, NetScout®, enterprise.netscout.com, Dec. 6, 2016, 10 pages.
“Brackets, Conduit Standoff”, Hubbell Power Systems, Inc., hubbellpowersystems.com, Dec. 2, 2010, 2 pages.
“Broadband Over Power Lines (BPL): Developments and Policy Issues”, Organisation for Economic Co-operation and Development, Directorate for Science, Technology and Industry, Committee for Information, Computer and Communications Policy, Jun. 2, 2009, 35 pages.
“Cisco Aironet 1500 Series Access Point Large Pole Mounting Kit Instructions”, www.cisco.com/c/en/us/td/docs/wireless/antenna/installation/guide/18098.html, 2008, 9 pages.
“Doubly-fed Cage-cone Combined Broadband Antennas for Marine Applications”, http://www.edatop.com/down/paper/antenna/%E5%A4%A9%E7%BA%BF%E8%AE%BE%E8%AE%A1-890w5nebp5ilpq.pdf, 2007, 7 pages.
“Dual Band Switched-Parasitic Wire Antennas for Communications and Direction Finding”, www.researchgate.net/profile/David_Thiel2/publication/3898574_Dual_band_switched-parasitic_wire_antennas_for_communications_and_direction_finding/links/0fcfd5091b4273ce54000000.pdf, 2000, 5 pages.
“Electronic Countermeasure (ECM) Antennas”, vol. 8, No. 2, Apr. 2000, 2 pages.
“Harvest energy from powerline”, www.physicsforums.com/threads/harvest-energy-from-powerline.685148/, Discussion thread about harvesting power from powerlines that includes the suggestion of clamping a device to the power line., 2013, 8 pages.
“International Search Report & Written Opinion”, PCT/US2016/035384, dated Oct. 31, 2016.
“International Search Report & Written Opinion”, PCT/US2016/036303, dated Aug. 24, 2016.
“International Search Report & Written Opinion”, PCT/US2016/036288, Sep. 1, 2016.
“International Search Report & Written Opinion”, PCT/2016/035383, dated Sep. 2, 2016.
“International Search Report & Written Opinion”, PCT/US16/036284, dated Sep. 8, 2016.
“International Search Report & Written Opinion”, PCT/US2016/036286, dated Sep. 13, 2016.
“International Search Report & Written Opinion”, PCT/US2016/036293, dated Sep. 15, 2016.
“International Search Report & Written Opinion”, PCT/US2016/040992, dated Oct. 17, 2006.
“International Search Report & Written Opinion”, PCT/US16/050488, dated Nov. 11, 2016.
“International Search Report & Written Opinion”, PCT/US16/50345, dated Nov. 15, 2016.
“International Search Report & Written Opinion”, PCT/US2016/050346, dated Nov. 17, 2016.
“International Search Report & Written Opinion”, PCT/US2016/050860, dated Nov. 17, 2016, 11 pages.
“International Search Report & Written Opinion”, PCT/US2016/050344, dated Nov. 25, 2016, 16 pages.
“International Search Report and Written Opinion”, PCT/US16/036388, dated Aug. 30, 2016.
“International Search Report and Written Opinion”, PCT/US2016/036297, dated Sep. 5, 2016.
“International Search Report and Written Opinion”, PCT/US2016/036292, dated Sep. 13, 2016.
“International Search Report and Written Opinion”, PCT/US2016/046315, dated Nov. 3, 2016.
“International Search Report and Written Opinion”, PCT/US2016/050039, dated Nov. 14, 2016.
“International Search Report and Written Opinion”, PCT/US2016/050347, dated Nov. 15, 2016.
“International Search Report and Written Opinion”, PCT/US2016/051217, dated Nov. 29, 2016.
“International Search Report and Written Opinion”, PCT/US2016/036289, dated Aug. 11, 2016.
“International Search Report and Written Opinion”, PCT/US2016/036295, dated Aug. 30, 2016.
“International Search Report and Written Opinion”, PCT/US2016/036553, dated Aug. 30, 2016, 1-14.
“International Search Report and Written opinion”, PCT/US2016/036556, dated Sep. 22, 2016.
“International Searching Authority”, International Search Report and Written Opinion, dated Sep. 28, 2016, 1-12.
“Invitation to Pay Additional Fees and, Where Applicable, Protest Fee”, PCT/US2016/035384, dated Aug. 31, 2016, 7 pages.
“Micromem Demonstrates UAV Installation of Power Line Monitoring Mounting System”, MicroMem, micromem.com, Mar. 4, 2015, 1-3.
“Newsletter 4.4—Antenna Magus version 4.4 released!”, antennamagus.com, Aug. 10, 2013, 8 pages.
“PCT International Search Report”, PCT/US2016/057161, PCT International Search Report and Written Opinion, dated Jan. 12, 2017, 1-13, Jan. 12, 2017, 1-13.
“PCT/US2016/041561, PCT International Search Report and Written Opinion”, dated Oct. 10, 2016, 1-15.
“PCT/US2016/046323, PCT International Search Report”, dated Oct. 24, 2016, 1-13.
“Technology Brief 13: Touchscreens and Active Digitizers”, https://web.archive.org/web/20100701004625/http://web.engr.oregonstate.edu/˜moon/engr203/read/read4.pdf, 2010, 289-311.
“The world's first achievement of microwave electric-field measurement utilizing an optical electric-field sensor mounted on an optical fiber, within a microwave discharge ion engine boarded on asteroid explorers etc.”, Investigation of internal phenomena and performance improvement in microwave discharge ion engines, Japan Aerospace Exploration Agency (JAXA), Nippon Telegraph and Telephone Corporation, Aug. 7, 2013, 4 pages.
Adabo, Geraldo J. , “Long Range Unmanned Aircraft System for Power Line Inspection of Brazilian Electrical System”, Journal of Energy and Power Engineering 8 (2014), Feb. 28, 2014, 394-398.
Al-Ali, A.R. et al., “Mobile RFID Tracking System”, Information and Communication Technologies: From Theory to Applications, ICTTA 2008, 3rd International Conference on IEEE, 2008, 4 pages.
Alam, M. N. et al., “Novel Surface Wave Exciters for Power Line Fault Detection and Communications”, Department of Electrical Engineering, University of South Carolina, Antennas and Propagation (APSURSI), 2011 IEEE International Symposium, IEEE, 2011, 1-4.
Alaridhee, T. et al., “Transmission properties of slanted annular aperture arrays. Giant energy deviation over sub-wavelength distance”, Optics express 23.9, 2015, 11687-11701.
Ali, Tariq et al., “Diagonal and Vertical Routing Protocol for Underwater Wireless Sensor Network”, Procedia-Social and Behavioral Sciences 129, 2014, 372-379.
Allen, Jeffrey et al., “New Concepts in Electromagnetic Materials and Antennas”, Air Force Research Laboratory, Jan. 2015, 80 pages.
Amirshahi, P. et al., “Transmission channel model and capacity of overhead multiconductor mediumvoltage powerlines for broadband communications”, Consumer Communications and Networking Conference, 2005, 5 pages.
Amt, John H. et al., “Flight Testing of a Pseudolite Navigation System on a UAV”, Air Force Institute of Technology: ION Conference, Jan. 2007, 9 pages.
Antennamagus, “Parabolic focus pattern fed reflector with shroud”, antennamagus.com, Jul. 4, 2014, 2 pages.
Ares-Pena, Francisco J. et al., “A simple alternative for beam reconfiguration of array antennas”, Progress in Electromagnetics Research 88, 2008, 227-240.
Ascom, “TEMS Pocket—a Complete Measurement Smartphone System in your Hand”, http://www.ascom.us/us-en/tems_pocket_14.0_feature_specific_datasheet.pdf, 2014, 2 pages.
A-Tech Fabrication, “Dual Antenna Boom Assembly”, http://web.archive.org/web/20090126192215/http://atechfabrication.com/products/dual_antenna_boom.htm, 2009, 2 pages.
Baanto, “Surface Acoustive Wave (SAW) Touch Screen”, http://baanto.com/surface-acoustic-wave-saw-touch-screen, 2016, 4 pages.
Babakhani, Aydin, “Direct antenna modulation (DAM) for on-chip mm-wave transceivers”, Diss. California Institute of Technology, 2008, 2 pages.
Barlow, H. M. et al., “Surface Waves”, 621.396.11 : 538.566, Paper No. 1482 Radio Section, 1953, pp. 329-341.
Barnes, Heidi et al., “DeMystifying the 28 Gb/s PCB Channel: Design to Measurement”, Design Con. 2014, Feb. 28, 2014, 54 pages.
Benevent, Evangéline, “Transmission lines in MMIC technology”, Universitá Mediterranea di Reggio Calabria, Jan. 28, 2010, 63 pages.
Benkhelifa, Elhadj, “User Profiling for Energy Optimisation in Mobile Cloud Computing”, 2015, 1159-1165.
Berweger, Samuel et al., “Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale”, The Journal of Physical Chemistry Letters; pubs.acs.org/JPCL, 2012, 945-952.
Blanco-Redondo, Andrea et al., “Coupling midinfrared light from a photonic crystal waveguide to metallic transmission lines”, Applied Physics Letters 104.1, 2014, 6 pages.
Blattenberger, Kirt, “DroneBased Field Measurement System (dBFMS)”, RF Cafe, rfcafe.com, Jul. 29, 2014, 3 pages.
Brambilla, Gilberto et al., “Ultra-low-loss optical fiber nanotapers”, Optoelectronics Research Centre, University of Southampton; http://www.orc.soton.ac.uk, vol. 12, No. 10, May 7, 2004, 2258-2263.
Briso-Rodriguez, “Measurements and Modeling of Distributed Antenna Systems in Railway Tunnels”, IEEE Transactions on Vehicular Technology, vol. 56, No. 5, Sep. 2007, 2870-2879.
Budde, Matthias, “Using a 2DST Waveguide for Usable, Physically Constrained Out-of-Band Wi-Fi Authentication”, https://pdfs.semanticscholar.org/282e/826938ab7170c198057f9236799e92e21219.pdf, 2013, 8 pages.
Campista, Miguel E. et al., “Improving the Data Transmission Throughput Over the Home Electrical Wiring”, The IEEE Conference on Local Computer Networks 30th Anniversary, 2005, 1-8.
Capece, P. et al., “FDTD Analysis of a Circular Coaxial Feeder for Reflector Antenna”, Antennas and Propagation Society International Symposium, IEEE Digest, vol. 3, 1997, pp. 1570-1573.
Chaimae, Elmakfalji et al., “New Way of Passive RFID Deployment for Smart Grid”, Journal of Theoretical and Applied Information Technology 82.1, Dec. 10, 2015, 81-84.
Chen, Ke et al., “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusionlike scattering”, Scientific Reports 6, 2016, 1-10.
Cliff, Oliver M. et al., “Online localization of radio-tagged wildlife with an autonomous aerial robot system”, Proceedings of Robotics Science and Systems XI, 2015, 1317.
Collins, D.D. et al., “Final Report on Advanced Antenna Design Techniques”, GER 11246, Report No. 4, Sep. 6, 1963, 1-70.
Comsol, “Fast Numerical Modeling of a Conical Horns Lens Antenna”, comsol.com, Application ID: 18695, Sep. 16, 2016, 3 pages.
Crisp, “Uplink and Downlink Coverage Improvements of 802.11g Signals Using a Distributed Antenna Network”, Journal of Lightwave Technology ( vol. 25, Issue: 11), Dec. 6, 2007, 1-4.
Crosswell, “Aperture excited dielectric antennas”, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740017567.pdf, 1974, 128 pages.
Curry, James M., “A Web of Drones: A 2040 Strategy to Reduce the United States Dependance on Space Based Capabilities”, Air War College, Feb. 17, 2015, 34 pages.
Daniel, Kai et al., “Using Public Network Infrastructures for UAV Remote Sensing in Civilian Security Operations”, Homeland Security Affairs, Supplement 3, Mar. 2011, 11 pages.
De Freitas, Carvalho et al., “Unmanned Air Vehicle Based Localization and Range Estimation of WiFi Nodes”, 2014, 109 pages.
Debord, Benoit et al., “Generation and confinement of microwave gas-plasma in photonic dielectric microstructure”, Optics express 21.21, 2013, 25509-25516.
Deilmann, Michael, “Silicon oxide permeation barrier coating and sterilization of PET bottles by pulsed low-pressure microwave plasmas”, Dissertation, 2008, 142 pages.
Deng, Chuang et al., “Unmanned Aerial Vehicles for Power Line Inspection: A Cooperative Way in Platforms and Communications”, Journal of Communicatinos vol. No. 9, No. 9, Sep. 2014, 687-692.
Dyson, John D., “The Equiangular Spiral Antenna”, IRE Transactions on Antennas and Propagation, 1959, 181-187.
Earth Data, “Remote Sensors”, NASA, earthdata.nasa.gov, Oct. 17, 2016, 36 pages.
Eizo, “How can a screen sense touch? A basic understanding of touch panels”, www.eizo.com/library/basics/basic_understanding_of_touch_panel, Sep. 27, 2010, 8 pages.
Ekstrom, “Slot-line end-fire antennas for THz frequencies”, Third International Symposium on Space Terahertz Technology, 280-290.
Elmore, Glenn et al., “A Surface Wave Transmission Line”, QEX, May/Jun. 2012, pp. 3-9.
Emerson, “About Rosemount 5300 Level Transmitter”, www.emerson.com, Nov. 2016, 6 pages.
Eom, Seung-Hyun et al., “Pattern switchable antenna system using inkjet-printed directional bow-tie for bi-direction sensing applications”, Sensors 15.12, 2015, 31171-31179.
Faggiani, Adriano, “Smartphone-based crowdsourcing for network monitoring: opportunities, challenges, and a case study”, http://vecchio.iet.unipi.it/vecchio/files/2010/02/article.pdf, 2014, 8 pages.
Farzaneh, Masoud et al., “Systems for Prediction and Monitoring of Ice Shedding, Anti-Cicing and De-Icing for Power Line Conductors and Ground Wires”, Dec. 1, 2010, 1-100.
Fattah, E. Abdel et al., “Numerical 3D simulation of surface wave excitation in planar-type plasma processing device with a corrugated dielectric plate”, Elsevier, Vacuum 86, 2011, 330-334.
Feko, “Lens Antennas”, Altair, feko.info, Jun. 30, 2014, 2 pages.
Fenn, Alan J. et al., “A Terrestrial Air Link for Evaluating Dual-Polarization Techniques in Satellite Communications”, vol. 9, No. 1, The Lincoln Laboratory Journal, 1996, 3-18.
Fiorelli, Riccardo et al., “ST7580 power line communication systemonchip design guide”, Doc ID 022923 Rev 2, Jul. 2012, 63 pages.
Fitzgerald, William D. , “A 35-GHz Beam Waveguide System for the Millimeter-Wave Radar”, The Lincoln Laboratory Journal, vol. 5, No. 2, 1992, 245-272.
Galli, “For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid”, Proceedings of the IEEE 99.6, Jun. 2011, 1-26.
Gerini, Giampiero, “Multilayer array antennas with integrated frequency selective surfaces conformal to a circular cylindrical surface”, http://alexandria.tue.nl/openaccess/Metis248614.pdf, 2005, 2020-2030.
Geterud, Erik G., “Design and Optimization of Wideband Hat-Fed Reflector Antenna with Radome for Satellite Earth Station”, http://publications.lib.chalmers.se/records/fulltext/163718.pdf, Discloses Frequency Selective Surfaces for antenna coverings for weather protection (table of materials on p. 29-30; pp. 37-46), 2012, 70 pages.
Gilbert, Barrie et al., “The Gears of Genius”, IEEE SolidState Circuits Newsletter 4.12, 2007, 10-28.
Glockler, Roman, “Phased Array for Millimeter Wave Frequencies”, International Journal of Infrared and Millimeter Waves, Springer, vol. 11, No. 2, Feb. 1, 1990, 10 pages.
Godara, “Applications of Antenna Arrays to Mobile Communications, Part I: Performance Improvement, Feasibility, and System Considerations”, Proceedings of the IEEE, vol. 85, No. 7, Jul. 1997, 1031-1060.
Greco, R., “Soil water content inverse profiling from single TDR waveforms”, Journal of hydrology 317.3, 2006, 325-339.
Gunduz, Deniz et al., “The multiway relay channel”, IEEE Transactions on Information Theory 59.1, 2013, 5163.
Guo, Shuo et al., “Detecting Faulty Nodes with Data Errors for Wireless Sensor Networks”, 2014, 25 pages.
Hadi, Ghozali S. et al., “Autonomous UAV System Development for Payload Dropping Mission”, The Journal of Instrumentation, Automation and Systems, vol. 1, No. 2, 2014, pp. 72-22.
Hafeez, “Smart Home Area Networks Protocols within the Smart Grid Context”, Journal of Communications vol. 9, No. 9, Sep. 2014, 665-671.
Halder, Achintya et al., “Low-cost alternate EVM test for wireless receiver systems”, 23rd IEEE VLSI Test Symposium (VTS'05), 2005, 6 pages.
Hale, Paul et al., “A statistical study of deembedding applied to eye diagram analysis”, IEEE Transactions on Instrumentation and Measurement 61.2, 2012, 475-488.
Halligan, Matthew S., “Maximum crosstalk estimation and modeling of electromagnetic radiation from PCB/highdensity connector interfaces”, http://scholarsmine.mst.edu/cgi/viewcontent.cgiarticle=3326&context=doctoral_dissertations, 2014, 251 pages.
Hanashi, Abdalla M. et al., “Effect of the Dish Angle on the Wet Antenna Attenuation”, IEEE, 2014, 1-4.
Hays, Phillip, “SPG-49 Tracking Radar”, www.okieboat.com/SPG-49%20description.html, 2015, 15 pages.
Heo, Joon et al., “Identity-Based Mutual Device Authentication Schemes for PLC Systems”, IEEE International Symposium on Power Line Communications and Its Applications, 2008, pp. 47-51.
Howard, Courtney , “UAV command, control & communications”, Military & Aerospace Electronics, militaryaerospace.com, Jul. 11, 2013, 15 pages.
Hussain, Mohamed T. et al., “Closely Packed Millimeter-Wave MIMO Antenna Arrays with Dielectric Resonator Elements”, Antennas and Propagation (EuCAP) 2016 10th European Conference, Apr. 2016, 1-5.
Huth, G. K., “Integrated source and channel encoded digital communication system design study”, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750003064.pdf, 1974, 65 pages.
Ikrath, K. et al., “Antenna Innovation Glass-Fiber Tube Focuses Microwave Beam”, Electronics, vol. 35, No. 38, Sep. 21, 1962, 44-47.
Illinois Historic Archive, “Antennas on the Web”, Photo Archive of Antennas, ece.illinois.ed, 1-18, Dec. 2016.
Islam, M. T., “Coplanar Waveguide Fed Microstrip Patch Antenna”, Information Technology Journal 9.2 (2010): 367-370., 2010, 367-370.
James, Graeme L. et al., “Diplexing Feed Assemblies for Application to Dual-Reflector Antennas”, IEEE Transactions on Antennas and Propagation, vol. 51, No. 5, May 2003, 1024-1029.
James, J. R. et al., “Investigations and Comparisons of New Types of Millimetre-Wave Planar Arrays Using Microstrip and Dielectric Structures”, Royal Military College of Science, Apr. 1985, 122 pages.
Jensen, Michael, “Data-Dependent Fingerprints for Wireless Device Authentication”, www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA626320, 2014, 15 pages.
Jiang, Peng, “A New Method for Node Fault Detection in Wireless Sensor Networks”, 2009, 1282-1294.
Jiang, Y.S. et al., “Electromagnetic orbital angular momentum in remote sensing”, PIERS Proceedings, Moscow, Russia, Aug. 18-21, 2009, 1330-1337.
Jones, Jr., Howard S., “Conformal and Small Antenna Designs”, U.S. Army Electronics Research and Development Command, Harry Diamond Laboratories, Apr. 1981, 32 pages.
Kado, Yuichi et al., “Exploring SubTHz Waves for Communications, Imaging, and Gas Sensing”, Fog 2: O2, PIERS Proceedings, Beijing, China, Mar. 23-27, 2009, 42-47.
Karbowiak, A. E. et al., “Characteristics of Waveguides for Long-Distance Transmission”, Journal of Research of the National Bureau of Standards, vol. 65D, No. 1, Jan.-Feb. 1961, May 23, 1960, 75-88.
Katrasnik, Jaka, “New Robot for Power Line Inspection”, 2008 IEEE Conference on Robotics, Automation and Mechatronics, 2008, 1-6.
Kedar, “Wide Beam Tapered Slot Antenna for Wide Angle Scanning Phased Array Antenna”, Progress in Electromagnetics Research B, vol. 27, 2011, 235-251.
Khan, Kaleemullah, “Authentication in Multi-Hop Wireless Mesh Networks”, World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering vol. 2, No. 10, 2008, 2406-2411.
Khan, Mohammed R., “A beam steering technique using dielectric wedges”, Diss. University of London, Dec. 1985, 3 pages.
Kim, Jong-Hyuk et al., “Real-time Navigation, Guidance, and Control of a UAV using Low-cost Sensors”, Australian Centre for Field Robotics, Mar. 5, 2011, 6 pages.
Kim, Myungsik et al., “Automated RFID-based identification system for steel coils”, Progress in Electromagnetics Research 131, 2012, 1-17.
Kima, Yi-Gon et al., “Generating and detecting torsional guided waves using magnetostrictive sensors of crossed coils”, Chonnam National University, Republic of Korea, Elsevier Ltd,, 2010, 145-151.
Kleinrock, Leonard et al., “On measured behavior of the ARPA network”, National Computer Conference, 1974, 767-780.
Kliros, George S., “Dielectric-EBG covered conical antenna for UWB applications”, www.researchgate.net/profile/George_Kliros/publication/235322849_Dielectric-EBG_covered_conical_antenna_for_UWB_applications/links/54329e410cf225bddcc7c037.pdf, 2010, 10 pages.
Koga, Hisao et al., “High-Speed Power Line Communication System Based on Wavelet OFDM”, 7th International Symposium on Power-Line Communications and Its Applications, Mar. 26-28, 2003, 226-231.
Kolpakov, Stanislav A. et al., “Toward a new generation of photonic humidity sensors”, Sensors 14.3, 2014, 3986-4013.
Kuehn, E, “Self-configuration and self-optimization of 4G Radio Access Networks”, http://wirelessman.org/tgm/contrib/S80216m-07_169.pdf, 2007, 13 pages.
Kumar, Sumeet et al., “Urban street lighting infrastructure monitoring using a mobile sensor platform”, IEEE Sensors Journal, Dec. 16, 2016, 4981-4994.
Kune, Denis F. et al., “Ghost Talk: Mitigating EMI Signal Injection Attacks against Analog Sensors”, IEEE Symposium on Security and Privacy, 2013, 145-159.
Lairdtech, “Allpurpose Mount Kit”, www.lairdtech.com, Mar. 29, 2015, 2 pages.
Lazaropoulos, Athanasios, “TowardsModal Integration of Overhead and Underground Low-Voltage and Medium-Voltage Power Line Communication Channels in the Smart Grid Landscape:Model Expansion, Broadband Signal Transmission Characteristics, and Statistical Performance Metrics”, International Scholarly Research Network, ISRN Signal Processing, vol. 2012, Article ID 121628, 17 pages, Mar. 26, 2012, 18 pages.
Lazaropoulos, Athanasios G, “Wireless sensor network design for transmission line monitoring, metering, and controlling: introducing broadband over power lines-enhanced network model (BPLeNM)”, ISRN Power Engineering, 2014, 23 pages.
Lee, Joseph C., “A Compact Q-/K-Band Dual Frequency Feed Horn”, No. TR-645, Massachusetts Institute of Technology, Lincoln Laboratory, May 3, 1983, 40 pages.
Lee, Sung-Woo, “Mutual Coupling Considerations in the Development of Multi-feed Antenna Systems”, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750003064.pdf, 2008, 127 pages.
Li, Mo et al., “Underground structure monitoring with wireless sensor networks”, Proceedings of the 6th international conference on Information processing in sensor networks, ACM, 2007, 69-78.
Liang, Bin, “Cylindrical Slot FSS Configuration for Beam-Switching Applications”, IEEE Transactions on Antennas and Propagation, vol. 63, No. 1, Jan. 2015, 166-173.
Lier, Erik, “A Dielectric Hybrid Mode Antenna Feed: A Simple Alternative to the Corrugated Horn”, IEEE Transactions on Antennas and Propagation, vol. AP-34, No. 1, Jan. 1986, 21-30.
Lumerical Solutions, Inc., “Waveguide Bragg Microcavity”, www.lumerical.com, Sep. 2016, 6 pages.
Luo, Hailu et al., “Reversed propagation dynamics of Laguerre-Gaussian beams in left-handed materials”, Physical Review A 77.2, 023812., Feb. 20, 2008, 1-7.
Makwana, G. D. et al., “Wideband Stacked Rectangular Dielectric Resonator Antenna at 5.2 GHz”, International Journal of Electromagnetics and Applications 2012, 2(3), 2012, 41-45.
Marin, Leandro, “Optimized ECC Implementation for Secure Communication between Heterogeneous IoT Devices”, www.mdpi.com/1424-8220/15/9/21478/pdf, 2015, 21478-21499.
Marrucci, Lorenzo, “Rotating light with light: Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals”, International Congress on Optics and Optoelectronics. International Society for Optics and Photonics, 2007, 12 pages.
Marzetta, “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas”, IEEE Transactions on Wireless Communications, vol. 9, No. 11, Nov. 2010, 3590-3600.
Matikainen, Leena et al., “Remote sensing methods for power line corridor surveys”, ISPRS Journal of Photogrammetry and Remote Sensing, 119, 2016, 10-31.
McKeown, David M. et al., “Rulebased interpretation of aerial imagery”, IEEE Transactions on Pattern Analysis and Machine Intelligence 5, 1985, 570-585.
Meessen, A., “Production of EM Surface Waves by Superconducting Spheres: A New Type of Harmonic Oscillators”, Progress in Electromagnetics Research Symposium Proceedings, Moscow, Russia, Aug. 19-23, 2012, pp. 529-533.
Mehta, “Advance Featuring Smart Energy Meter With Bi-directional Communication”, Electronics & Communication MEFGI, Feb. 9, 2014, 169-174.
Mena, F.P. et al., “Design and Performance of a 600720GHz SidebandSeparating Receiver Using and AIN SIS Junctions”, IEEE Transactions on Microwave Theory and Techniques 59.1, 2011, 166-177.
Miller, Ashley et al., “Pathway to Ubiquitous Broadband: Environments, Policies, and Technologies to Implementation”, Oct. 2016, 20 pages.
Miller, David A., “Establishing Optimal Wave Communication Channels Automatically”, Journal of Lightwave Technology, vol. 31, No. 24, Dec. 15, 2013, 3987-3994.
Mishra, Sumita et al., “Load Balancing Optimization in LTE/LTEA Cellular Networks: A Review”, arXiv preprint arXiv:1412.7273 (2014), 2014, 1-7.
Mori, A. et al., “The Power Line Transmission Characteristics for an OFDM Signal”, Progress in Electromagnetics Research, PIER 61, Musashi Institute of Technology, 2006, 279-290.
Mueller, G.E. et al., “Polyrod Antennas”, Bell System Technical Journal, vol. 26., No. 4, Oct. 29, 1947, 837-851.
Mushref, Muhammad, “Matrix solution to electromagnetic scattering by a conducting cylinder with an eccentric metamaterial coating”, www.sciencedirect.com/science/article/pii/S0022247X06011450/pdf?md5 =4823be0348a3771b5cec9ffb7f326c2c&pid=1-s2.0-S0022247X06011450-main.pdf, Discloses controlling antenna radiation pattern with coatings, 2007, 356-366.
Nakano, Hisamatsu, “A Low-Profile Conical Beam Loop Antenna with an Electromagnetically Coupled Feed System”, http://repo.lib.hosei.ac.jp/bitstream/10114/3835/1/31_TAP(Low- Profile).pdf, Dec. 2000, 1864-1866.
Nakano, Hisamatsu et al., “A Spiral Antenna Backed by a Conducting Plane Reflector”, IEEE Transactions on Antennas and Propagation, vol. AP-34 No. 6, Jun. 1986, 791-796.
Nandi, Somen et al., “Computing for rural empowerment: enabled by last-mile telecommunications”, IEEE Communications Magazine 54.6, 2016, 102-109.
Nassar, “Local Utility Powerline Communications in the 3-500 kHz Band: Channel Impairments, Noise, and Standards”, IEEE Signal Processing Magazine, 2012, 1-22.
Niedermayer, Uwe et al., “Analytic modeling, simulation and interpretation of broadband beam coupling impedance bench measurements”, Nuclear Instruments and Methods in Physics Research.
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 776, 2015, 129-143.
Nikitin, A. Y. et al., “Efficient Coupling of Light to Graphene Plasmons by Compressing Surface Polaritons with Tapered Bulk Materials”, NanoLetters; pubs.acs.org/NanoLett, Apr. 28, 2014, 2896-2901.
Nikitin, Pavel V. et al., “Propagation Model for the HVAC Duct as a Communication Channel”, IEEE Transactions on Antennas and Propagation 51.5, 2003, 7 pages.
Nwclimate, “Weather Instruments and Equipment Explained”, nwclimate.org, May 7, 2015, 22 pages.
Ohliger, Michael, “An introduction to coil array design for parallel MRI”, http://mriquestions.com/uploads/3/4/5/7/34572113/intro_to_coil_design_parallel_.pdf, 2006, 16 pages.
Paruchuri, et al., “Securing Powerline Communication”, IEEE, 2008, 64-69.
Patel, Pinak S. et al., “Sensor Fault Detection in Wireless Sensor Networks and Avoiding the Path Failure Nodes”, International Journal of Industrial Electronics and Electrical Engineering, vol. 2, Issue- 3, Mar. 2014, 2347-6982.
PCT, “International Search Report”, dated Oct. 25, 2016, 1-12.
Pike, Kevin J. et al., “A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission”, Journal of Magnetic Resonance, 2012, 9 pages.
Qi, Xue et al., “Ad hoc QoS ondemand routing (AQOR) in mobile ad hoc networks”, Journal of parallel and distributed computing 63.2, 2003, 154-165.
Qiu, Lili et al., “Fault Detection, Isolation, and Diagnosis in Multihop Wireless Networks”, Dec. 2003, 16 pages.
Quan, Xulin, “Analysis and Design of a Compact Dual-Band Directional Antenna”, IEEE Antennas and Wireless Propagation Letters, vol. 11, 2012, 547-550.
Quinstar Technology, Inc., “Prime Focus Antenna (QRP series)”, quinstar.com, Aug. 19, 2016, 2 pages.
Ranga, Yogesh et al., “An ultra-wideband quasi-planar antenna with enhanced gain”, Progress in Electromagnetics Research C 49, 2014, 59-65.
Rangan, Sundeep et al., “Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges”, Proceedings of the IEEE, vol. 102, No. 3, Mar. 2014, 366-385.
Rangel, Rodrigo K. et al., “Sistema de Inspecao de Linhas de Transmissao de Energia Electrica Utilizando Veiculos Aereos Nao-Tripulados”, Sep. 14-16, 2009, 1-9.
Rekimoto, Jun, “SmartSkin: An Infrastructure for Freehand Manipulation on Interactive Surfaces”, https://vs.inf.ethz.ch/edu/SS2005/DS/papers/surfaces/rekimoto-smartskin.pdf, 2002, 8 pages.
Ren-Bin, Zhong et al., “Surface plasmon wave propagation along single metal wire”, Chin. Phys. B, vol. 21, No. 11, May 2, 2012, 9 pages.
Ricardi, L. J., “Some Characteristics of a Communication Satellite Multiple-Beam Antenna”, Massachusetts Institute of Technology, Lincoln Laboratory, Technical Note 1975-3, Jan. 28, 1975, 62 pages.
Rieke, M. et al., “High-Precision Positioning and Real-Time Data Processing of UAV Systems”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-1/C22, 2011, 119-124.
Robinson, D.A. et al., “Advancing processbased watershed hydrological research using nearsurface geophysics: A vision for, and review of, electrical and magnetic geophysical methods”, Hydrological Processes 22.18, Mar. 11, 2008, 3604-3635.
Robles, Rosslin John et al., “A Review on Security in Smart Home Development”, International Journal of Advanced Science and Technology 15, Feb. 2010, 13-22.
Rosenberg, Uwe et al., “A novel frequency-selective power combiner/divider in single-layer substrate integrated waveguide technology”, IEEE Microwave and Wireless Components Letters, vol. 23, No. 8, Aug. 2013, 406-408.
Rousstia, M. W., “Switched-beam antenna array design for millimeter-wave applications”, https://pure.tue.nl/ws/files/4418145/599448877400424.pdf, Jan. 1, 2011, 148 pages.
Sahoo, Srikanta, “Faulty Node Detection in Wireless Sensor Networks Using Cluster”, Apr. 2013, 212-223.
Scerri, Paul et al., “Geolocation of RF emitters by many UAVs”, AIAA Infotech, Aerospace 2007 Conference and Exhibit, 2007, 1-13.
Schoning, Johannes et al., “Multi-Touch Surfaces: A Technical Guide”, Johannes Schöning, Institute for Geoinformatics University of Münster, Technical Report TUM-10833, 2008, 19 pages.
Sembiring, Krisantus, “Dynamic Resource Allocation for Cloud-based Media Processing”, http://www.chinacloud.cn/upload/2013-04/13042109511919.pdf, 2013, 49-54.
Sharma, Archana et al., “Dielectric Resonator Antenna for X band Microwave Application”, Research & Reviews, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Oct. 2016, 9 pages.
Shila, Devu M., “Load-Aware Traffic Engineering for Mesh Networks”, Computer Communications 31.7, 2008, 1460-1469.
Shin, Donghoon et al., “10 Gbps Millimeter-Wave OFDM Experimental System with Iterative Phase Noise Compensation”, Tokyo Institute of Technology, IEEE, 2013, 184-186.
Silvonen, Kimmo, “Calibration and DeEmbedding of Microwave Measurements Using Any Combination of Oneor TwoPort Standards”, Publication of the Circuit Theory Laboratory, CT4, 1987, 1-28.
Simionovici, Ana-Maria et al., “Predictive Modeling in a VoIP System”, 2013, 32-40.
Simons, Rainee N., “Coplanar Waveguide Feeds for Phased Array Antennas”, Solid State Technology Branch of NASA Lewis Research Center Fourth Annual Digest, Conference on Advanced Space Exploration Initiative Technologies cosponsored by AIAA, NASA and OAI, 1992, 1-9.
Singh, Sapana et al., “Key Concepts and Network Architecture for 5G Mobile Technology”, International Journal of Scientific Research Engineering & Technology (IJSRET), IIMT Engineering College, Meerut, India, vol. 1, Issue 5, Aug. 2012, 165-170.
Singh, Seema M. et al., “Broadband Over Power Lines a White Paper”, State of New Jersey, Division of the Ratepayer Advocate, NJ, Oct. 2016, 67 pages.
Song, Kaijun et al., “Broadband radial waveguide power amplifier using a spatial power combining technique”, www.mtech.edu/academics/mines/geophysical/xzhou/publications/songfanzhou_2009b_impa.pdf, 2009, 7 pages.
Sospedra, Joaquim et al., “Badalona Oil PierBased Met-Ocean Monitoring Station”, Campbell Scientific, www.campbellsci.com, Nov. 2016, 2 pages.
Souryal, Michael R. et al., “Rapidly Deployable Mesh Network Testbed”, https://pdfs.semanticscholar.org/f914/1ce6999c4095eab3bdea645745761ebe5141.pdf, 2009, 6 pages.
Sowmya, Arcot et al., “Modelling and representation issues in automated feature extraction from aerial and satellite images”, ISPRS journal of photogrammetry and remote sensing, 55.1, 2000, 34-47.
Spencer, D G., “Novel Millimeter ACC Antenna Feed”, IEEE Colloquium on Antennas for Automotives, Mar. 10, 2000, 10 pages.
Stancil, Daniel D. et al., “High-speed internet access via HVAC ducts: a new approach”, Global Telecommunications Conference, IEEE vol. 6, 2001, 4 pages.
Sun, Zhi et al., “Magnetic Induction Communications for Wireless Underground Sensor Networks”, IEEE Transactions on Antennas and Propagation, vol. 58, No. 7, Jul. 2010, 2426-2435.
Sundqvist, Lassi, “Cellular Controlled Drone Experiment: Evaluation of Network Requirements”, 2015, 71 pages.
Szczys, Mike, “Cameras Perch on Power Lines, Steal Electricity”, http://hackaday.com/2010/06/28/cameras-perch-on-power-lines-steal-electricity/, Discloses cameras that clamp on to power lines and use induction as a power source., 2010, 1 page.
Tantawi, Sami G. et al., “High-power multimode X-band rf pulse compression system for future linear colliders”, Physical Review Special Topics—Accelerators and Beams, 1098-4402/05/8(4)/042002, 2005, 19 pages.
Teng, Ervin et al., “Aerial Sensing and Characterization of ThreeDimensional RF Fields”, Univ. at Buffalo, cse.buffalo.edu, Sep. 2016, 6 pages.
Tesoriero, Ricardo et al., “Tracking autonomous entities using RFID technology”, IEEE Transactions on Consumer Electronics 55.2, 2009, 650-655.
Thota, Saigopal et al., “Computing for Rural Empowerment: Enabled by Last-Mile Telecommunications (Extended Version)”, Technical Report, 2013, 14 pages.
Thottapan, M., “Design and simulation of metal PBG waveguide mode launcher”, www.researchgate.net/profile/Dr_M_Thottappan/publication/262415753_Design_and_Simulation_of_Metal_PBG_Waveguide_Mode_Launcher/links/0f317537ad93a5e2a4000000.pdf, 2014, 383-387.
Tillack, M. S. et al., “Configuration and engineering design of the ARIES-RS tokamak power plant”, https://www.researchgate.net/publication/222496003_Configuration_and_engineering_design_of_the_ARIES-RS_tokamak_power_plant, 1997, 87-113.
Tucson Electric Power, “Energy-Harvesting Power Supply”, http://sdpm.arizona.edu/projects/project-publi/upid/38a8cf3b42f35576de25de1f6dcc20f3, Discloses a project to harvest energy from a power line and that a device was built that clamps onto a power line., 2016, 1 page.
UK Essays, “Beam Adaptive Algorithms for Smart Antennas Computer Science Essay”, www.ukessays.com, Mar. 23, 2015, 21 pages.
Van Atta, L.C., “Contributions to the antenna field during World War II”, www.nonstopsystems.com/radio/pdf-hell/article-IRE-5-1962.pdf, 1962, 692-697.
Wade, Paul, “Multiple Reflector Dish Antennas”, www.w1ghz.org/antbook/conf/Multiple_reflector_antennas.pdf, 2004, 45 pages.
Wang, Hao et al., “Dielectric Loaded Substrate Integrated Waveguide (SIW)—Plan Horn Antennas”, IEEE Transactions on Antennas and Propagation, IEEE Service Center, Piscataway, NJ, US, vol. 56, No. 3, Mar. 1, 2010, 640-647.
Wang, Wei, “Optimization Design of an Inductive Energy Harvesting Device for Wireless Power Supply System Overhead High-Voltage Power Lines”, https://pdfs.semanticscholar.org/3941/601af7a21d55e8b57ab0c50d5f1d9f9f6868.pdf, Discloses an induction based energy harvesting device that takes energy from overhead powerlines (Figure 4)., 2016, 16 pages.
Wang, Xingfu et al., “Zigzag coverage scheme algorithm & analysis for wireless sensor networks”, Network Protocols and Algorithms 5.4, 2013, 19-38.
Washiro, Takanori, “Applications of RFID over power line for Smart Grid”, Power Line Communications and Its Applications (ISPLC), 2012 16th IEEE International Symposium on. IEEE, 2012, 83-87.
Wenger, N., “The launching of surface waves on an axial-cylindrical reactive surface”, IEEE Transactions on Antennas and Propagation 13.1, 1965, 126-134.
Werner, Louis B. et al., “Operation Greenhouse”, Scientific Director's Report of Atomic Weapon Tests at Eniwetok, Annex 6.7 Contimation-Decontamination Studies Naval Radiological Defense Lab, 1951, 209 pages.
Wikipedia, “Angular Momentum of Light”, https://en.wikipedia.org/wiki/Angular_momentum_of_light, Nov. 10, 2016, 1-7.
Wilkes, Gilbert, “Wave Length Lenses”, Dec. 5, 1946, 49 pages.
Wolfe, Victor et al., “Feasibility Study of Utilizing 4G LTE Signals in Combination With Unmanned Aerial Vehicles for the Purpose of Search and Rescue of Avalanche Victims (Increment 1)”, University of Colorado at Boulder, Research Report, 2014, 26 pages.
Won Jung, Chang et al., “Reconfigurable Scan-Beam Single-Arm Spiral Antenna Integrated With RF-MEMS Switches”, IEEE Transactions on Antennas and Propagation, vol. 54, No. 2, Feb. 2006, 455-463.
Woodford, Chris, “How do touchscreens work?”, www.explainthatstuff.com/touchscreens.html, Aug. 23, 2016, 8 pages.
Xiao, Shiyi et al., “Spin-dependent optics with metasurfaces”, Nanophotonics 6.1, 215-234., 2016, 215-234.
Yeh, C. et al., “Thin-Ribbon Tapered Coupler for Dielectric Waveguides”, 5/151994, 42-48.
Zhang, “Modified Tapered Slot-line Antennas for Special Applications”, REV Journal on Electronics and Communications, vol. 2, Jul.-Dec. 2012, 106-112.
Zhang, Ming et al., “PlanetSeer: Internet Path Failure Monitoring and Characterization in Wide Area Services”, OSDI, vol. 4, 2004, 33 pages.
International Search Report and Written Opinion in PCT/US2016/028417, dated Jul. 5, 2016, 13 pages, Authorized officer Brigitte Bettiol.
PCT/US16/027397 International Search Report & Written Opinion dated Jun. 24, 2016.
PCT/US16/027398 International Search Report and Written Opinion dated Jun. 24, 2016.
PCT/US16/027403 Internatioanl Search Report & Written Opinion dated Jun. 22, 2016.
PCT/US16/028395 International Search Report and Written Opinion dated Jun. 29, 2016.
PCT/US16/032441 International Search Report and Written Opinion dated Jul. 29, 2016.
“Cband & L/Sband Telemetry Horn Antennas,” mWAVE, mwavellc.com, http://www.mwavellc.com/custom-Band-LS—BandTelemetryHornAntennas.php, Jul. 6, 2012.
“Product Abstract—Program on Technology Innovation: Study on the Integration of High Temperature Superconducting DC Cables Within the Eastern and West urn North American Power Grids.” EPRI—Electronic Power Research Institute, epri.com, Product ID:10203, Nov. 25, 2009.
“Boost: The world's first WI-FI extending led bulb,” Sengled, sengled.com, http://www.sengled.com/sites/default/files/field/product/downloads/manual/a01-a60_na_user_manual.pdf, Dec. 2014.
“Examples of Cell Antennas,” RF Check®, rfcheck.com, https://web.archive.org/web/20100201214318/http://www.rfcheck.com/Examplesof-Cell-Antennas.php, Feb. 1, 2010.
“Flashing Light : IR.Lamp,” Beninca®, beninca.com, http://www.beninca.com/en/news/2015/02/23/lampeggiante-irlamp.html, Feb. 23, 2015.
“An Improved Solid Dielectric Lens Impulse Radiating Antenna,” SBIR/STTR, DoD, sbir.gov., 2004.
“Power line communications: An overview Part I.” King Fahd University of Petroleum and Minerals, Dhahran, KSA., 2008.
“Power Line Communications,” Atmel®, atmel.com http://www.atmel.com/products/smartenergy/powerlinecommunications/default.aspx., 2015.
“Integrated Radio Masts Fully camouflaged Outdoor-Wi-Fi APs in GRP-lamp poles,” Brown-iposs, brown-iposs.com., Mar. 21, 2014.
“How is ELine Different?,” ELine Corridor Systems, corridor.biz http://www.corridor.biz/ELine_is_different.html., Apr. 23, 2015.
“Powerline Communication,” Cypress Perform, cypress.com http://www.cypress.com/?id=2330., Apr. 23, 2015.
“Products: GSM Mircro Repeater.” L-TEL: Quanzhou L-TEL Communication Equipment Co., Ltd., l-tel.com., Apr. 24, 2015.
“New Wi-Fi antenna enhances wireless coverage,” ScienceDaily®, sciencedaily.com., Apr. 29, 2015.
“Dielectric Antenna,” Microwave Technologies, Ind., microwavetechnologiesinc.co.in http://www.microwavetechnologiesinc.co.in/microwavecommunicationlabproducts.html#dielectricantenna,, May 21, 2015.
“Horn Antennas,” Steatite QPar Antennas, steatiteqparantennas.co.uk, http://www.steatiteqparantennas.co.uk/products hornantennas.html? http://www.steatiteqparantennas.co.uk/consultancy/customhornantennas/., May 21, 2015.
“24 Volt D.C Flashing Light With Built-in Antenna 433Mhz, DEA+ Product Guide” Meteor electrical, meteorelectrical.com, Code: LUMY/24A., Jul. 28, 2010.
“Waveguide-fed Conical Horn,” Antenna Magus, antennamagus.com, ©2015, accessed:, Aug. 2015.
“Identity Management,” Tuomas Aura CSE-C3400 Information Security, Aalto University, 33 pgs., Autumn 2014.
“Power Communication,” Communication Power Solutions, Inc., cpspower.biz, http://www.cpspower.biz/services/powercommunications/., Oct. 2013.
“7785-1167-WO International Search Report and Written Opinion”, PCT/US2016/030964, dated Aug. 4, 2016.
“A Dielectric Lens Antenna with Enhanced Aperture Efficiency for Industrial Radar Applications”, Computer Simulation Technology, cst.com, May 10, 2011.
“A New Approach to Outdoor DAS Network Physical Layer Using E-Line Technology”, Corridor Systems, Mar. 2011, 5 pages.
“About Firelight Media Group”, http://www. insu ra ncetechnologies.com/Products/Prod ucts_firelight_overview .shtml, Firelight®. Insurance Technologies, LLC,, Apr. 19, 2015.
“Alternative Local Loop Technologies: A Review”, Organisation for Economic Co-operation and Development, Paris, OCDE/GD(96)181, https://www.oecd.org/sti/2090965.pdf, 1996.
“Asahi Multi-Core Fiber Cable”, Industrial Fiber optics, i-fiberoptics.com http://i-fiberoptics.com/m u lti-core-fi ber-ca ble. ph p, Apr. 26, 2015.
“Bi-Axial PA Horn with Gimbal Mount”, Atlas Sound, MCM Electronics, mcmelectronics.com, MCM Part #555-13580., 2011.
“Broadband Negligible Loss Metamaterials”, Computer Electmagnetics and Antennas Research Laboratory, cearl.ee.psu.edu., May 15, 2012.
“Broadband: Bringing Home the Bits: Chapter 4 Technology Options and Economic Factors”, The National Academies Press, nap.edu, 2002.
“Cisco IP VSAT Satellite WAN Network Module for Cisco Integrated Services Routers”, http://www.cisco.com/c/en/us/products/collateral/interfaces-modules/ip-vsatsatellite-wan-module/product_data_sheet0900aecd804bbf6f.html, Jul. 23, 2014.
“Cloud Management”, Cisco Meraki, cisco.com., Sep. 11, 2015.
“Decryption: Identify & Control Encrypted Traffic”, Palo Alto Networks, paloaltonetworks.com, Mar. 7, 2011.
“Delivering broadband over existing wiring”, Cabling Installation & Maintenance, cablinginstall.com, May 1, 2002.
“Denso”, Winn & Coales (Denso) Ltd. UK, denso.net, http://www.denso.net/voidfiller/voidpump.htm, 2015, 1 page.
“Detecting and Preventing MAC Spoofing”, Detecting and Preventing MAC Spoofing | Network Access Control Solutions, infoexpress, 2014.
“Electronic Business Fulfillment FireLight ®”, Firelight Media Group LLC, firelightmedia.net http://www .firelightmedia .net/fmg/index.php/home, Apr. 19, 2015, 2 pages.
“Elliptical Polarization”, “Elliptical Polarization” Wikipedia, <http://en.wikipedia.org/wiki/Elliptical_polarization>, 3 pgs., Apr. 21, 2015.
“Exacter Outage-Avoidance System”, http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001020393, Nov. 30, 2009.
“GM-12 Gimbal Mount”, Newmark System, Inc, newmarksystems.com., 2015.
“HiveManager Network Management System”, Aerohive® Networks, aerohive.com., Sep. 2015.
“Home”, Darktrace, darktrace.com, Jul. 10, 2014.
“How to Use STUF”, STUF Page Link Info, crossdevices.com, http://www.crossdevices.com/cross_devices_010.htm, 2015, 1 page.
“IEEE Standard for Information technology—Local and metropolitan area networks—Specific requirements”, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs), in IEEE Std 802.15.4, (Revision of IEEE Std 802.15.4-2003), Sep. 7, 2006, 1-320.
“Installing Satellite Accessories”, ACE®, acehardware.com., May 8, 2006.
“International Preliminary Report on Patentability”, PCT/US2014/039746, dated Dec. 10, 2015.
“International Preliminary Report on Patentability”, PCT/US2014/060841, dated May 19, 2016, 8 pages.
“International Preliminary Report on Patentability & Written Opinion”, PCT/US2014/061445, dated Jun. 23, 2016, 9 pages.
“International Search Report & Written Opinion”, PCT/US2015/034827, dated Sep. 30, 2015.
“International Search Report & Written Opinion”, PCT/US2015/056316, dated Jan. 21, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056320, dated Jan. 29, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056365, dated Jan. 22, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056368, dated Jan. 25, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056598, dated Jan. 28, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056615, dated Jan. 21, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056626, dated Jan. 21, 2016.
“International Search Report & Written Opinion”, PCT/US2015/056632, dated Jan. 26, 2016.
“International Search Report & Written Opinion”, PCT/US2016/013988, dated Apr. 8, 2016.
“International Search Report & Written Opinion”, PCT/US2016/020001, dated May 23, 2016.
“International Search Report & Written Opinion”, PCT/US2016/026860, dated Jun. 1, 2016.
“International Search Report & Written Opinion”, PCT/US2016/026318, dated Jun. 15, 2016.
“International Search Report & Written Opinion”, PCT/US2016/028412, dated Jun. 27, 2016.
“International Search Report & Written Opinion”, PCT/US2016/028206, dated Jun. 29, 2016.
“International Search Report & Written Opinion”, PCT/US16/033182, dated Jul. 12, 2016.
“International Search Report & Written Opinion”, PCT/US2014/039746, dated Jan. 12, 2015.
“International Search Report & Written Opinion”, PCT/US2014/060841, dated Jan. 7, 2015.
“International Search Report & Written Opinion”, PCT/US2015/039848, dated Oct. 20, 2015.
“International Search Report & Written Opinion”, PCT/US2015/047315, dated Oct. 30, 2015.
“International Search Report & Written Opinion”, PCT/US2015/048454, dated Nov. 11, 2015.
“International Search Report & Written Opinion”, PCT/US2015/049928, dated Nov. 16, 2015.
“International Search Report & Written Opinion”, PCT/US2015/049932, dated Nov. 16, 2015.
“International Search Report & Written Opinion”, PCT/US2015/049927, dated Nov. 24, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051193, dated Nov. 27, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051146, dated Dec. 15, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051183, dated Dec. 15, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051194, dated Dec. 15, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051578, dated Dec. 17, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051583, dated Dec. 21, 2015.
“International Search Report & Written Opinion”, PCT/US2015/048458, dated Dec. 23, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051213, dated Dec. 4, 2015.
“International Search Report & Written Opinion”, PCT/US2015/051163, dated Dec. 7, 2015.
“International Search Report & Written Opinion”, PCT/US2014/061445, dated Feb. 10, 2015.
“International Search Report & Written Opinion”, PCT/US16/28207, dated Jun. 15, 2016.
“International Search Report & Written Opinion”, PCT/US2016/015501, dated Apr. 29, 2016, 11 pages.
“International Search Report & Written Opinion”, PCT/US2015/047225, dated Nov. 6, 2015, Nov. 6, 2015.
“International Search Report and Written Opinion”, PCT/US2016/028197, dated Jun. 24, 2016.
“Invitation to Pay Additional Fees & Partial Search Report”, PCT/US2016/028205, dated Jun. 22, 2016.
“Invitation to Pay Additional Fees & Partial Search Report”, PCT/US2016/032430, dated Jun. 22, 2016.
“Ipitek All-Optical Sensors”, http://www.ipitek.com/solutions-by-industry/all-optical-sensors., Jun. 2, 2014.
“mmWave Axial Choke Horn Antenna with Lens”, Feko, Sep. 24, 2013.
“Network technology”, nbnTM, nbnco.com.au, Jun. 27, 2014.
“Norse Appliance™: Block attacks before they target your network, and dramatically improve the ROI on your entire security infrastructure”, norsecorp.com, 2015.
“Out-of-Band Mgmt”, Cradle Point, cradlepoint.com., Sep. 2015.
“Out-of-Band Security Solution”, Gigamon®, gigamon.com., Aug. 3, 2014.
“PCT International Search Report & Written Opinion”, PCT/US2016/026193, dated Jun. 1, 2016.
“Powerline—Juice Up Your Network With Powerline”, Netgear®, netgear.com http://www.netgear.com/home/products/networking/powerline/, Apr. 21, 2015, 3 pages.
“PRO 600 Sirius XM Radio Amplified Outdoor Antenna”, Pixel Technologies, Oct. 3, 2014.
“Product Overview: Introducing SilentDefense”, Security Matters, secmatters.com, Nov. 9, 2013.
“Quickly identify malicious traffics: Detect”, Lancope®, lancope.com, Mar. 15, 2015.
“Radar at st Andrews”, mmwaves.epr, st-andrews.ac.uk., Feb. 4, 2011.
“Resilience to Smart Meter Disconnect Attacks”, ADSC Illinois at Singapore PTE, LTD., publish.illinois.edu http://publish.illinois.edu/integrativesecurityassessment/resiliencetosmartmeterdisconnectattacks/, 2015.
“RF Sensor Node Development Platform for 6LoWPAN and 2.4 GHz Applications”, http://www.ti.com/tool/TIDM-RF-SENSORNODE., Jun. 2, 2014.
“Smart Out-of-Band Management”, Open Gear, opengear.com., Sep. 2015.
“Tapered waveguide”, Lumerical Solutions, Inc., docs.lumerical.com., 2010.
“Tapered Waveguides Improve Fiber Light Coupling Efficiency”, Tech Briefs, techbriefs.com, Molex Inc., Downers Grove, Illinois and KiloLambda Technologies Ltd., Tel Aviv, Israel., Jan. 1, 2006.
“Transducer”, IEEE Std 100-2000, Sep. 21, 2015, 1154.
“Troubleshooting Problems Affecting Radio Frequency Communication”, cisco.com, Oct. 19, 2009.
“Wireless powerline sensor”, wikipedia.org, http://en.wikipedia.org/wiki/Wireless_powerline_sensor, 2014, 3 pages.
Akiba, Shigeyuki et al., “Photonic Architecture for Beam Forming of RF Phased Array Antenna”, Optical Fiber Communication Conference. Optical Society of America., Abstract Only, 2014.
Alam, M N et al., “Novel surface wave exciters for power line fault detection and communications”, Antennas and Propagation (APSURSI), IEEE International Symposium on, IEEE, pp. 1139-1142, Jul. 3, 2011.
Alam, M.N. et al., “Novel surface wave exciters for power line fault detection and communications.” Antennas and Propagation (APSURSI), 2011 IEEE International Symposium on. IEEE, 2011.
Alam, MD N. et al., “Design and Application of Surface Wave Sensors for nonintrusive Power Line Fault Detection,” IEEE Sensors Journal, IEEE Service Center, New York, NY, US, vol. 13, No. 1, pp. 339-347, Jan. 1, 2013.
Ali, Muhammad Q. et al., “Randomizing AMI configuration for proactive defense in smart grid”, Smart Grid Communications (SmartGridComm), IEEE International Conference on. IEEE, Abstract Only, http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6688027, 2013.
Angove, Alex , “Direct Bury Duct Assemblies, MPB 302 3+ —Ribbonet Microducts”, Ericsson, archive.ericsson.net, Jul. 30, 2014.
Angove, Alex , “How the NBN Differs from ADSL2+, Cable and Wireless”, Whistle Out, whistleout.com.au, Jul. 30, 2014.
Arage, Alebel et al., “Measurement of wet antenna effects on millimetre wave propagation”, Radar, IEEE Conference on IEEE., Abstract Only, 2006.
Arthur, Joseph Kweku , “Improving QoS in UMTS Network in ACCRA Business District Using Tower-Less Towers”, IPASJ International Journal of Electrical Engineering (IIJEE), vol. 2, Issue 11., Nov. 2014.
Asadallahi, Sina et al., “Performance comparison of CSMA/CA Advanced Infrared (AIr) and a new pointtomultipoint optical MAC protocol.” Wireless Communications and Mobile Computing Conference (IWCMC), 2012 8th International. IEEE., Abstract Only, 2012.
Atwater, Harry A. , “The promise of plasmonics.” Scientific American 296.4: 56-62., 2007.
Bach, Christian , “Current Sensor—Power Line Monitoring for Energy Demand Control”, Application Note 308, http://www.enocean.com/fileadmin/redaktion/pdf/app_notes/AN308_CURRENT_SENSOR_Jan09.pdf, Jan. 2009, 4 pages.
Barron, Ashleigh L. , “Integrated Multicore Fibre Devices for Optical Trapping”, Diss. Heriot-Watt University, 2014, 11-15.
Beal, J.C. et al., “Coaxial-slot surface-wave launcher”, Electronics Letters 4.25: 557559, Abstract Only, 1968.
Bhushan, Naga , “Network densification: the dominant theme for wireless evolution into 5G”, Communications Magazine, IEEE 52.2: 82-89, 2014.
Bing, Benny , “Ubiquitous Broadband Access Networks with Peer-to-Peer Application Support”, Evolving the Access Network: 27-36, 2006.
Bing, Benny , “Ubiquitous Broadband Access Networks with Peer-to-Peer Application Support”, Evolving the Access Network, 2006, 27-36.
Bock, James et al., “Optical coupling.” Journal of Physics: Conference Series. vol. 155. No. 1. IOP Publishing., 2009.
Bowen, Leland H. et al., “A Solid Dielectric Lens Impulse Radiating Antenna with High Dielectric Constant Surrounded by a Cylindrical Shroud,” Sensor and Simulation Note 498., Introduction, Apr. 2005, 3 pages.
Bridges, Greg E. et al., “Plane wave coupling to multiple conductor transmission lines above a lossy earth”, Compatibility, IEEE Transactions on 31.1, Abstract Only, 1989, 21-33.
Brooke, Gary H., Properties of surface waveguides with discontinuities and perturbations in cross-section. Diss. University of British Columbia, 1977., 1977.
Brown, J. et al., “The launching of radial cylindrical surface waves by a circumferential slot”, Proceedings of the IEE Part B: Radio and Electronic Engineering 106.26: 123128., Abstract Only, 1959.
Bruno, Joseph, “Interference Reduction in Wireless Networks”, Computing Research Topics, Computing Sciences Department, Villanova University, Nov. 14, 2007, 8 pages.
Burkhart, Martin et al., “Does Topology Control Reduce Interference?”, Department of Computer Science, ETH Zurich, Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing, ACM, 2004, 11 pages.
Callis, et al., “An In-Line Power Monitor for HE11 Low Loss Transmission Lines”, Proceedings of the 29th International Conference on Infrared and Millimeter Waves (IRMMW), Karlsruhe, Germany, 2004.
Carroll, John M. et al., “Developing the Blacksburg electronic village”, Communications of the ACM 39.12: 69-74, 1996.
Chandra, Shekar , “Transmission Line Fault Detection & Indication through GSM”, IRD India, ISSN (Online): 2347-2812, vol. 2, Iss. 5, 2014.
Chen, Dong et al., “A trust management model based on fuzzy reputation for internet of things”, Computer Science and Information Systems 8.4: 12071228, Abstract Only, 2011.
Chen, Yingying , “Detecting and Localizing Wireless Spoofing Attacks”, Sensor, Mesh and Ad Hoc Communications and Networks, SECON'07. 4th Annual IEEE Communications Society Conference on IEEE, 2007, 10 pages.
Chiba, Jiro, “Experimental Studies of the Losses and Radiations Due to Bends in the Goubau Line”, IEEE Transactions on Microwave Theory and Techniques, Feb. 1977, 94-100.
Chiba, Jiro, “On the Equivalent Circuit for the G-Line Above Ground”, International Wroclaw Symposium on Electromagnetic Compatibility, 1998, 78-82.
Chu, Eunmi et al., Self-organizing and self-healing mechanisms in cooperative small cell networks. PIMRC. 2013.
Cimini, Carlos Alberto et al., “Temperature profile of progressive damaged overhead electrical conductors”, Journal of Electrical Power & Energy Systems 49: 280-286., 2013.
Costantine, Joseph et al., “The analysis of a reconfigurable antenna with a rotating feed using graph models”, Antennas and Wireless Propagation Letters 8: 943-946, 2009.
Covington, Michael J. et al., “Threat implications of the internet of things”, Cyber Conflict (CyCon), 2013 5th International Conference on. IEEE., Abstract Only, 2013.
Crane, Robert K. , “Analysis of the effects of water on the ACTS propagation terminal antenna”, Antennas and Propagation, IEEE Transactions on 50.7: 954965, Abstract Only, 2002.
De Sabata, Aldo et al., “Universitatea Politehnica”, din Timişoara Facultatea de Electronică şi Telecomunicaţii., 2012.
Dini, Gianluca et al., “MADAM: A Multilevel Anomaly Detector for Android Malware”, MMMACNS. vol. 12, 2012.
Doane, J.L. et al., “Oversized rectangular waveguides with modefree bends and twists for broadband applications”, Microwave Journal 32(3), Abstract Only, 1989, 153-160.
Doelitzscher, et al., “ViteraaS: Virtual cluster as a service.” Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference on. IEEE., 2011.
Dooley, Kevin, “Out-of-Band Management”, auvik, auvik.com., Apr. 12, 2014.
Doshi, D.A. et al., “Real Time Fault Failure Detection in Power Distribution Line using Power Line Communication”, International Journal of Engineering Science 4834, 2016.
Dostert, Klaus, “Frequency-hopping spread-spectrum modulation for digital communications over electrical power lines.” Selected Areas in Communications, IEEE Journal on 8.4: 700-710., Abstract Only, 1990.
Dragoo, R.E. et al., “Fiber Optic Data Bus for the AN/GYQ21(V).” Harris Corp, U.S. Communications Syst. Div. Chart, Microcopy Resolution Test, 1980.
Dutton, Harry Jr., “Understanding Optical Communications”, International Technical Support Organization, SG24-5230-00., Sep. 1998.
Ehyaie, Danial , “Novel Approaches to the Design of Phased Array Antennas,” Diss. The University of Michigan., 2011.
Elmore, Glenn , “Introduction to the Propagating Wave on a Single Conductor”, www.corridor.biz, Jul. 27, 2009, 30 pages.
Erickson, Katherine , “Conductive cylindrical surface waveguides.” https://www.ideals.illinois.edu/bitstream/handle/2142/30914/Erickson_Katherine.pdf?sequence=1, 2012.
Erickson, Katherine, “Conductive cylindrical surface waveguides”, 2012.
Eskelinen, Harri, “DFM (A)-aspects for a horn antenna design,” Lappeenranta University of Technology., 2004.
Eskelinen, P. , “A low-cost microwave rotary joint,” International Radar Conference, 13-17, p. 1-4., Abstract Only, Oct. 2014, 1 page.
Feng, Taiming et al., “Design of a survivable hybrid wireless-optical broadband-access network”, Journal of Optical Communications and Networking 3.5, 2011, 458-464.
Feng, Wei et al., Downlink power allocation for distributed antenna systems in a multi-cell environment. 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing. IEEE, 2009., 2009.
Fenye, Bao et al., “Dynamic trust management for internet of things applications”, Proceedings of the 2012 international workshop on Selfaware internet of things. ACM, Abstract Only, 2012, 1 page.
Ford, Steven, AT&T's new antenna system will boost cellular coverage at Walt Disney World. Orlando Sentinel, orlandosentinel.com, Mar. 9, 2014, 2014.
Freyer, Dan , “Combating the Challenges of Ka-Band Signal Degradation”, SatMagazine, satmagzine.com., Sep. 2014.
Friedman, M et al., “Low-loss RF transport over long distances,” IEEE Transactions on Microwave Theory and Techniques, Jan. 1, 2001, pp. 341-348.
Friedman, M et al., “Low-Loss RF Transport Over Long Distances”, IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 2, Feb. 2001, 8 pages.
Friedman, M. et al., “Low-Loss RF Transport Over Long Distances”, IEEE Transactions on Microwave Theory an Techniques, vol. 49, No. 2, Feb. 2001, 341-348.
Fromm, W. et al., “A new microwave rotary joint,” 1958 IRE International Convention Record, 21-25, 6:78-82., Abstract Only, Mar. 1966, 2 pages.
Garcia-Etxarri, Aitzol et al., “A combination of concave/convex surfaces for fieldenhancement optimization: the indented nanocone”, Optics express 20.23, 2012, 2520125212.
Ghazisaidi, Navid et al., “Survivability analysis of next-generation passive optical networks and fiber-wireless access networks”, Reliability, IEEE Transactions on 60.2, 2011, 479-492.
Goldsmith, P.F. , “Quasi-optical techniques”, Proceedings of the IEEE., vol. 80, No. 11, Nov. 1, 1992.
Golrezaei, Negin et al., “FemtoCaching: Wireless Video Content Delivery through Distributed Caching Helpers”, INFOCOM, Proceedings IEEE, 2012.
Gomes, Nathan J. et al., “Radio-over-fiber transport for the support of wireless broadband services”, Journal of Optical Networking 8.2: 156-178., 2009.
Gonthier, François et al., “Mode coupling in nonuniform fibers: comparison between coupled-mode theory and finite-difference beam-propagation method simulations”, JOSA B 8.2: 416421, Abstract Only, 1991, 3 pages.
Gritzalis, Dimitris et al., “The Sphinx enigma in critical VoIP infrastructures: Human or botnet?.” Information, Intelligence, Systems and Applications (IISA), 2013 Fourth International Conference, IEEE., 2013.
Haider, Muhammad Kumail et al., Mobility resilience and overhead constrained adaptation in directional 60 GHz WLANs: protocol design and system implementation. Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. ACM, 2016., 2016.
Han, Chong et al., “crosslayer communication module for the Internet of Things”, Computer Networks 57.3: 622633, Abstract Only, 2013, 1 page.
Haroun, Ibrahim et al., “WLANs meet fiber optics—Evaluating 802.11 a WLANs over fiber optics links”, RF Des. Mag: 36-39., 2003.
Hassan, Karim , “Fabrication and characterization of thermo-plasmonic routers for telecom applications”, Diss. Univ. de Bourgogne., 2014.
Hassan, Maaly A., “Interference reduction in mobile ad hoc and sensor networks”, Journal of Engineering and Computer Innovations vol. 2(7), Sep. 2011, 138-154.
Hassani, Alireza et al., “Porous polymer fibers for low-loss Terahertz guiding.” Optics express 16.9: 6340-6351., 2008.
Hautakorpi, Jani et al., “Requirements from Session Initiation Protocol (SIP) Session Border Control (SBC) Deployments.” RFC5853, IETF (2010)., 2010.
Hawrylyshen, A. et al., “SIPPING Working Group J. Hautakorpi, Ed. Internet-Draft G. Camarillo Intended status: Informational Ericsson Expires: Dec. 18, 2008 R. Penfield Acme Packet.”, 2008.
Hoss, R.J. et al., “Manufacturing Methods and Technology Program for Ruggedized Tactical Fiber Optic Cable”, No. ITT-80-03-078. ITT Electrooptical Products DIV Roanoke VA., 1980.
Ippolito, Louis J., “Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design”, 1989, Abstract Only, 1989, 1 page.
Izumiyama, Hidetaka et al., “Multicast over satellite”, Applications and the Internet, (SAINT 2002). Proceedings. Symposium on. IEEE, 2002.
Jackson, Mark, “Timico CTO Hit by Slow FTTC Broadband Speeds After Copper Corrosion”, ISP review, ispreview.co.uk, Mar. 5, 2013.
Jaeger, Raymond et al., “Radiation Performance of Germanium Phosphosilicate Optical Fibers.” RADC-TR-81-69: Final Technical Report, Galileo Electro-Optical Corp., May 1981.
James, J.R. et al., “Investigations and Comparisons of New Types of Millimetre-Wave Planar Arrays Using Microstrip and Dielectric Structures”, Royal Military Coll of Science Shrivenham (England)., 1985.
Jang, Hung-Chin, “Applications of Geometric Algorithms to Reduce Interference in Wireless Mesh Network”, Journal on Applications of Graph Theory in Wireless Ad hoc Networks and Sensor Networks (JGRAPH-HOC) vol. 2, No. 1, Abstract Only, Mar. 2010, 1 page.
Jawhar, Imad et al., “A hierarchical and topological classification of linear sensor networks”, Wireless Telecommunications Symposium, WTS, IEEE, http://faculty.uaeu.ac.ae/Nader_M/papers/WTS2009.pdf, 2009, 8 pages.
Jee, George et al., “Demonstration of the Technical Viability of PLC Systems on Medium- and Low-Voltage Lines in the United States”, Broadband is Power: Internet Access Via Power Line Networks, IEEE Communication Magazine, May 2003, 5 pages.
Jeong, et al., “Study of elliptical polarization requirement of KSTAR 84-GHz ECH system”, Journal—Korean Physical Society 49, 2006.
Jin, , “Quasi-optical mode converter for a coaxial cavity gyrotron”, Forschungszentrum, 2007.
Jin, Yu et al., “Nevermind, the Problem Is Already Fixed: Proactively Detecting and Troubleshooting Customer DSL Problems”, ACM CoNEXT, Philadelphia, USA, Nov.-Dec. 2010, 12 pages.
Kamilaris, et al., “Exploring the Use of DNS as a Search Engine for the Web of Things.” Internet of Things (WF-IoT), 2014 IEEE World Forum on. IEEE, 2014.
Kang, , “Chapter 6: Array Antennas,” IHS Engineering360, globalspec.com, http://www.globalspec.com/reference/75109/203279/chapter-6-array-antennas., Apr. 22, 2015.
Katkovnik, Vladimir et al., “High-resolution signal processing for a switch antenna array FMCW radar with a single channel receiver”, Sensor Array and Multichannel Signal Processing Workshop Proceedings, IEEE., 2002.
Khan, , “Dual polarized dielectric resonator antennas”, Chalmers University of Technology, 2010.
Kikuchi, H. et al., “Hybrid transmission mode of Goubau lines”,J.Inst.Electr.Comm.Engrs., Japan,vol. 43, pp. 39-45., 1960.
Kirkham, H. et al., “Power system applications of fiber optics (Jet Propulsion Lab.” JPL Publication 84-28, Electric Energy Systems Division, U.S. DoE, p. 180., 1984.
Koshiba, Masanori et al., “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers”, Photonics Journal, IEEE 4.5, 2012, 1987-1995.
Kroon, Barnard et al., “Steady state RF fingerprinting for identity verification: one class classifier versus customized ensemble.” Artificial Intelligence and Cognitive Science. Springer Berlin Heidelberg, 198206., Abstract Only, 2010, 3 pages.
Kroyer, Thomas, “A Waveguide High Order Mode Reflectometer for the Large Hadron Collider Beam-pipe”, Diss. TU Wien., 2003.
Kuhn, Marc et al., “Power Line Enhanced Cooperative Wireless Communications”, IEEE Journal on Selected Areas in Communications, vol. 24, No. 7, Jul. 2006, 10 pages.
Kumar, Sailesh, “Survey of Current Network Intrusion Detection Techniques”, Washington Univ. in St. Louis, Dec. 2007.
Laforte, J.L. et al., “State-of-the-art on power line de-icing”, Atmospheric Research 46, 143-158, 1998.
Lappgroupusa, , “Selection of Number Of Cable Cores With Emphasis on Sizing Parameters”, Industrial Cable & Connector Technology News, lappconnect.blogspot.com, http://lappconnect.blogspot.com/2014_10_01_archive.html, Oct. 30, 2014.
Leech, Jamie et al., “Experimental investigation of a low-cost, high performance focal-plane horn array.” Terahertz Science and Technology, IEEE Transactions on 2.1: 61-70., 2012.
Li, Xi et al., A FCM-Based peer grouping scheme for node failure recovery in wireless P2P file sharing. 2009 IEEE International Conference on Communications. IEEE, 2009., 2009.
Li, Xiang-Yang et al., “Interference-Aware Topology Control for Wireless Sensor Networks”, SECON. vol. 5, 2005.
Li, Xiaowei et al., “Integrated plasmonic semi-circular launcher for dielectric-loaded surface plasmonpolariton waveguide”, Optics express 19.7: 65416548, 2011.
Li, Xu et al., “Smart community: an internet of things application”, Communications Magazine, IEEE 49.11: 68-75, 2011.
Lier, E. et al., “Simple hybrid mode horn feed loaded with a dielectric cone,” Electronics Letters 21.13: 563564., 1985.
Lim, Christina et al., “Fiber-wireless networks and subsystem technologies”, Lightwave Technology, Journal of 28.4, 390-405, 2010.
Liu, et al., A 25 Gb/s (/km 2) urban wireless network beyond IMTadvanced. IEEE Communications Magazine 49.2 (2011): 122-129.
Lou, Tiancheng, “Minimizing Average Interference through Topology Control”, Algorithms for Sensor Systems, Springer Berlin Heidelberg, 2012, 115-129.
Lucyszyn, S. et al., “Novel RF MEMS Switches”, Microwave Conference, APMC, Asia-Pacific. IEEE, 2007.
Lucyszyn, Stepan et al., “RF MEMS for antenna applications”, Antennas and Propagation (EuCAP), 7th European Conference on. IEEE, 2013.
Luo, Qi et al., “Circularly polarized antennas”, John Wiley & Sons, Book—description only, 2013, 1 page.
Mahato, Suvranshu Sekhar, Studies on an Infrared Sensor Based Wireless Mesh Network. Diss., Abstract Only, 2010, 2 pages.
Maier, Martin et al., “The audacity of fiberwireless (FiWi) networks”, AccessNets. Springer Berlin Heidelberg, 16-35., 2009.
Marcatili, E.A. et al., “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers”, Bell System Technical Journal 43(4), Abstract Only, 2 pages, 1964, 1783-1809.
Matsukawa, et al., A dynamic channel assignment scheme for distributed antenna networks. Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th. IEEE, 2012.
McAllister, M.W. et al., “Resonant hemispherical dielectric antenna,” Electronics Letters 20.16: 657659., Abstract Only, 1984, 1 page.
Meng, H. et al., “A transmission line model for high-frequency power line communication channel”, Power System Technology, PowerCon 2002. International Conference on. vol. 2. IEEE, 2002. http:/ /infocom. uniroma 1.it/ enzobac/MengChen02. pdf, 2002.
Menon, S.S. et al., “Propagation characteristics of guided modes in a solid dielectric pyramidal horn,” Proceedings of the 2012 International Conference on Communication Systems and Network Technologies. IEEE Computer Society, 2012., Abstract Only, 2012, 2 pages.
Mitchell, John E., “Integrated Wireless Backhaul Over Optical Access Networks”, Journal of Lightwave Technology 32.20, 2014, 3373-3382.
Miyagi, M., “Bending losses in hollow and dielectric tube leaky waveguides”, Applied Optics 20(7), Abstract Only, 2 pages, 1981, 1221-1229.
Moaveni-Nejad, Kousha et al., “Low-Interference Topology Control for Wireless Ad Hoc Networks”, Department of Computer Science, Illinois Institute of Technology, Ad Hoc & Sensor Wireless Networks 1.1-2, 2005, 41-64.
Moisan, M. et al., “Plasma sources based on the propagation of electromagnetic surface waves”, Journal of Physics D: Applied Physics 24.7: 1025, 1991.
Mokhtarian, Kianoosh et al., “Caching in Video CDNs: Building Strong Lines of Defense”, EuroSys, Amsterdam, Netherlands, 2014.
Morse, T.F., “Research Support for the Laboratory for Lightwave Technology.” Brown Univ Providence RI Div of Engineering, 1992., 1992.
Mruk, Joseph Rene , “Wideband monolithically integrated frontend subsystems and components”, Diss. University of Colorado, 2011.
Nachiketh, P. et al., “Optimizing public-key encryption for wireless clients”, Proceedings of the IEEE International Conference on Communications (ICC 2002). No. 1., 2002.
Narayanan, Arvind, “Fingerprinting of RFID Tags and HighTech Stalking.” 33 Bits of Entropy, 33bits.org, Oct. 4, 2011.
Nassa, Vinay Kumar, “Wireless Communications: Past, Present and Future”, Dronacharya Research Journal: 50. vol. III, Issue-II, Jul.-Dec. 2011, 2011.
Nibarger, John P., “An 84 pixel all-silicon corrugated feedhorn for CMB measurements.” Journal of Low Temperature Physics 167.3-4 (2012): 522-527., 2012.
Nicholson, Basil J., “Microwave Rotary Joints for X-, C-, and S-band”, Battelle Memorial Inst Columbus OH, 1965.
Nuvotronics, “PolyStrata—Phased Arrays & Antennas”, Nuvotronics, nuvotronics.com http://www.nuvotronics.com/antennas. php, Apr. 26, 2015.
Olver, A. D., “Microwave horns and feeds,” vol. 39. IET, Book—description only, 1994, 1 page.
Olver, A.D. et al., “Dielectric cone loaded horn antennas,” Microwaves, Antennas and Propagation, IEE Proceedings H. vol. 135. No. 3. IET., Abstract Only, 1988, 1 page.
Orfanidis, Sophocles J., “Electromagnetic waves and antennas,” Rutgers University., 2002.
Pahlavan, Kaveh et al., “Wireless data communications”, Proceedings of the IEEE 82.9: 1398-1430, 1994.
Patel, Shwetak N. et al., “The Design and Evaluation of an End-User-Deployable, Whole House, Contactless Power Consumption Sensor”, CHI 2010: Domestic Life, Apr. 2010, 10 pages.
Pato, et al., On building a distributed antenna system with joint signal processing for next generation wireless access networks: The FUTON approach. 7th Conference on Telecommunications, Portugal. 2008.
Paul, Sanjoy et al., “The Cache-and-Forward Network Architecture for Efficient Mobile Content Delivery Services in the Future Internet”, Innovations in NGN: Future Network and Services, 2008. K-INGN 2008. First ITU-T Kaleidoscope Academic Conference, 2008.
Perkons, Alfred R. et al., “TM surface-wave power combining by a planar active-lens amplifier”, Microwave Theory and Techniques, IEEE Transactions on 46.6: 775783, 1998.
Péter, Zsolt et al., “Assessment of the current intensity for preventing ice accretion on overhead conductors”, Power Delivery, IEEE Transactions on 22.1: 565-574., 2007.
Petrovsky, Oleg, “The Internet of Things: A Security Overview”, w.druva.com, Mar. 31, 2015.
Pham, Tien-Thang et al., “A WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation”, Photonics Journal, IEEE 3.1, 2011, 13-19.
Piksa, Petr et al., “Elliptic and hyperbolic dielectric lens antennas in mmwaves”, Radioengineering 20.1, 2011, 271.
Plagemann, Thomas et al., “Infrastructures for community networks”, Content Delivery Networks. Springer Berlin Heidelberg, 367-388, 2008.
Pohl, , “A dielectric lens-based antenna concept for high-precision industrial radar measurements at 24GHz,” Radar Conference (EuRAD), 2012 9th European, IEEE., 2012.
Ponchak, George E. et al., “A New Model for Broadband Waveguide to Microstrip Transition Design”, NASA TM-88905, Dec. 1, 1986, 18 pgs.
Pranonsatit, S. et al., “Sectorised horn antenna array using an RF MEMS rotary switch”, Asia-Pacific Microwave Conf., APMC., 2010.
Pranonsatit, Suneat et al., “Single-pole eight-throw RF MEMS rotary switch”, Microelectromechanical Systems, Journal of 15.6: 1735-1744, 2006.
Prashant, R.R. et al., “Detecting and Identifying the Location of Multiple Spoofing Adversaries in Wireless Network”, International Journal of Computer Science and Mobile Applications, vol. 2 Issue. 5, May 2014, 1-6.
Rahim, S. K. A. et al., “Measurement of wet antenna losses on 26 GHz terrestrial microwave link in Malaysia”, Wireless Personal Communications 64.2: 225231, 2012.
Rambabu, K. et al., “Compact single-channel rotary joint using ridged waveguide sections for phase adjustment,” IEEE Transactions on Microwave Theory and Techniques (Aug. 2003) 51(8):1982-1986., Abstract Only, Aug. 2003, 2 pages.
Rappaport, Theodore S. et al., “Mobile's Millimeter-Wave Makeover”, Spectrum.IEEE.Org, Sep. 2014.
Raychaudhuri, Dipankar et al., “Emerging Wireless Technologies and the Future Mobile Internet”, Cambridge University Press, Abstract Only, Mar. 2011, 1 page.
Raychem, “Wire and Cable”, Dimensions 2:1., 1996.
Reynet, Olivier et al., “Effect of the magnetic properties of the inclusions on the high-frequency dielectric response of diluted composites.” Physical Review B66.9: 094412., 2002.
Rouse, Margaret, “Transport Layer Security (TLS)”, TechTarget, searchsecurity.techtarget.com, Jul. 2006.
Roze, Mathieu et al., “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance.” Optics express 19.10 (2011): 9127-9138., 2011.
Sagar, Nishant , “Powerline Communications Systems: Overview and Analysis”, Thesis, May 2011, 80 pages.
Sagues, Mikel et al., “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.” Optics express 16.1 : 295-303., 2008.
Saied, Yosra Ben et al., “Trust management system design for the internet of things: a contextaware and multiservice approach”, Computers & Security 39: 351365, Abstract Only, 2013, 2 pages.
Salema, Carlos et al., “Solid dielectric horn antennas,” Artech House Publishers, 1998.
Salema, Carlos et al., “Solid dielectric horn antennas,” Artech House Publishers, 1998, Amazon., Book—description only, 1998.
Sarafi, A. et al., “Hybrid wireless-broadband over power lines: A promising broadband solution in rural areas.” Communications Magazine, IEEE 47.11 (2009): 140-147., 2009.
Sarafi, Angeliki M. et al., “Hybrid Wireless-Broadband over Power Lines: A Promising Broadband Solution in Rural Areas”, IEEE Communications Magazine, Nov. 2009, 8 pages.
Sarnecki, Joseph et al., “Microcell design principles”, Communications Magazine, IEEE 31.4: 76-82, 1993.
Saruhan, Ibrahim Halil, “Detecting and Preventing Rogue Devices on the Network”, SANS Institute InfoSec Reading Room, sans.org, Aug. 8, 2007, 1 page.
Scarfone, Karen et al., “Technical Guide to Information Security Testing and Assessment”, National Institute of Standards and Technology, csrc.nist.gov, Special Publication, Sep. 2008, 800-115.
Shafai, Lotfollah , “Dielectric Loaded Antennas”, John Wiley & Sons, Inc., http://www.researchgate.net/publication/227998803_Dielectric_Loaded_Antennas, Apr. 15, 2005.
Shafi, Mansoor et al., “Advances in Propagation Modeling for Wireless Systems”, EURASIP Journal on Wireless Communications and Networking. Hindawi Publishing Corp, 2009, p. 5.
Shankland, Steven , “Lowly DSL poised for gigabit speed boost”, C|Net, cnet.com, Oct. 21, 2014.
Shimabukuko, F.I. et al., “Attenuation measurement of very low-loss dielectric waveguides by the cavity resonator method in the millimeter/submillimeter wavelength range.” No. TR-0086A (2925-06)-1. Aerospace Corp El Segundo CA Electronics Research Lab, 1989., 1989.
Shindo, Shuichi et al., “Attenuation measurement of cylindrical dielectric-rod waveguide.” Electronics Letters 12.5, 117-118., 1976.
Shumate, Paul W. et al., “Evolution of fiber in the residential loop plant.” IEEE Communications Magazine 29.3: 68-74., 1991.
Sievenpiper, D.F. et al., “Two-dimensional beam steering using an electrically tunable impedance surface,” in Antennas and Propagation, IEEE Transactions on , vol. 51, No. 10, pp. 2713-2722., Oct. 2003.
Silver, Ralph U., “Local Loop Overview”, National Communications System (NCS), BellSouth Network Training, newnetworks.com, Aug. 2016.
Sommerfeld, A., “On the propagation of electrodynamic waves along a wire”, Annals of Physics and Chemistry New Edition, vol. 67, No. 2, 1899, 72 pages.
Strahler, Olivier, “Network Based VPNs”, SANS Institute InfoSec Reading Room, sans.org., Aug. 2002.
Strieby, M.E. et al., “Television transmission over wire lines.” American Institute of Electrical Engineers, Transactions of the 60.12: 1090-1096., Abstract Only, 1941, 2 pages.
Szabó, Csaba A., “European Broadband Initiatives with Public Participation”, Broadband Services: 255, 2005.
Taboada, John M. et al., “Thermo-optically tuned cascaded polymer waveguide taps.” Applied physics letters 75.2: 163-165., 1999.
Talbot, David, “Adapting Old-Style Phone Wires for Superfast Internet”, Adapting Old-Style Phone Wires for Superfast Internet, Jul. 30, 2013.
Templeton, Steven J. et al., “Detecting Spoofed Packets”, DARPA Information Survivability Conference and Exposition, vol. 1, IEEE, 2003.
Theoleyr, Fabrice, “Internet of Things and M2M Communications”, books.google.com, ISBN13: 9788792982483, Book—description only, Apr. 17, 2013, 1 page.
Thornton, John et al., “Modern lens antennas for communications engineering”, vol. 39, 2013.
Valladares, Cindy, “20 Critical Security Controls: Control 7—Wireless Device Control”, Tripwire—The State of Security, tripwire.com, Mar. 21, 2013.
Vogelgesang, Ralf et al., “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM)”, physica status solidi (b) 245.10: 22552260, 2008.
Volat, C. et al., “De-icing/anti-icing techniques for power lines: current methods and future direction”, Proceedings of the 11th International Workshop on Atmospheric Icing of Structures, Montreal, Canada., 2005.
Wagter, Herman, “Fiber-to-the-X: the economics of last-mile fiber”, ARS Technica, arstechnica.com, Mar. 31, 2010.
Wake, David et al., “Radio over fiber link design for next generation wireless systems”, Lightwave Technology, Journal of28.16: 2456-2464., 2010.
Wang, Jing et al., “The influence of optical fiber bundle parameters on the transmission of laser speckle patterns”, Optics express 22.8, 2014, 8908-8918.
Wilkins, George A. , “Fiber Optic Telemetry in Ocean Cable Systems”, Chapter in new edition of Handbook of Oceanographic Winch, Wire and Cable Technology, Alan H. Driscoll, Ed.,(to be published by University of Rhode Island)., 1986.
Wolff, Christian , “Phased Array Antenna” Radar Tutorial, web.archive.org.radartutorial.eu, Oct. 21, 2014.
Wu, Xidong et al., “Design and characterization of singleand multiplebeam mmwave circularly polarized substrate lens antennas for wireless communications”, Microwave Theory and Techniques, IEEE Transactions on 49.3, 2001, 431-441.
Xi, Liu Xiao , “Security services in SoftLayer”, Sep. 21, 2015.
Xia, Cen et al., “Supermodes for optical transmission”, Optics express 19.17, 2011, 16653-16664.
Yang, “Power Line Sensor Networks for Enhancing Power Line Reliability and Utilization”, Georgia Institute of Technology, https://smartech.gatech.edu/bitstream/handle/1853/41087/Yang_Yi_201108_phd.pdf, Apr. 26, 2011, 264 pages.
Yang, et al., “Power line sensornet—a new concept for power grid monitoring”, IEEE Power Engineering Society General Meeting, Abstract Only, 2006, pp. 8.
Yeh, C. et al., “Ceramic Waveguides.” Interplanetary Network Progress Report141.26: 1., 2000.
Yilmaz, et al., Self-optimization of coverage and capacity in LTE using adaptive antenna systems. Diss. Aalto University, 2010.
Yu, Shui et al., “Predicted packet padding for anonymous web browsing against traffic analysis attacks”, Information Forensics and Security, IEEE Transactions on 7.4, http://nsp.org.au/syu/papers/tifs12.pdf, 2012, 1381-1393.
Zelby, Leon W., “Propagation Modes on a Dielectric Coated Wire”, J. The Franklin Institute, vol. 274(2), pp. 85-97, 1962.
Zhao, et al., “Energy harvesting for a wireless-monitoring system of overhead high-voltage power lines”, IET Generation, Transmission & Distribution 7, IEEE Xplore Abstract, 2013, 2 pages.
Zheng, Zhu et al., “Efficient coupling of propagating broadband terahertz radial beams to metal wires”, Optics express 21.9: 1064210650, 2013.
Zucker, “Surface-wave antennas”, Antenna engineering handbook 4, 2007.
Related Publications (1)
Number Date Country
20160360511 A1 Dec 2016 US
Continuation in Parts (1)
Number Date Country
Parent 13907246 May 2013 US
Child 15179193 US