Remote hazardous devices interdiction process and apparatus

Information

  • Patent Application
  • 20020112598
  • Publication Number
    20020112598
  • Date Filed
    December 20, 2001
    23 years ago
  • Date Published
    August 22, 2002
    22 years ago
Abstract
A method for remotely accessing packages suspect of containing hazardous devices. The method includes using a continuous stream of high velocity abrasive particles and/or fluid(s) created in-situ while attached to a remotely or autonomously operated vehicle to breach the exterior surface of a suspect package well below the impact initiation threshold thus preventing sufficient stimuli to initiate explosive, pyrotechnic, or flammable materials. An automatic standoff device may be used to allow the operator of a remotely operated vehicle or the feedback mechanism of an autonomously operated vehicle to optimally locate the abrasive fluid stream.
Description


BACKGROUND OF THE INVENTION

[0002] The present invention relates to accessing hazardous devices, and more particularly to a method for the safe and remote access and disruption of packages suspected to contain hazardous devices, chemicals, and/or initiating circuits, using a continuous stream of high pressure liquid, gel, or emulsion. The continuous stream is capable of disrupting the initiating system while not presenting sufficient stimuli to initiate explosive, pyrotechnic, or flammable materials.


[0003] Many items, suspected of containing hazardous devices, are discovered in the United States everyday. It is the objective of explosive ordnance disposal (EOD) and bomb squad personnel to access these items and ascertain the contents and the relative hazard these contents present. Many of these items must be remotely opened using explosive disassembly techniques or explosively accelerated projectiles known as “dynamic devices.”


[0004] These devices are, by nature, “one-shot” units that are capable of firing only once before reloading. Due to the potential hazards associated with moving a potentially hazardous device, the energetic disrupter must be used in-situ and the collateral damage to structures and vehicles accepted as a necessary cost of operations. In some instances, such as large vehicle bombs, no remote accessing technology exists that will allow the technician to remotely open the vehicle without applying an excessive amount of force.


[0005] The large application of force often is sufficient in and of itself to initiate the hazardous device or to trigger the initiation mechanism. What is required by the technicians is a remotely operated device that can safely open items of various compositions without the application of excessive force in order to minimize collateral damage and to minimize the potential of accidental initiation of a hazardous item.


[0006] The use of high-pressure water to cut explosive-loaded ordnance is a proven technology. A review of this technology is given in “Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons,” Committee on Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons, National Research Council, 1999.


[0007] U.S. Pat. No. 5,988,038 describes an apparatus and method for destroying buried objects, such as mines. The device shoots a projectile, such as a bullet, into the buried mine essentially destroying the mine on impact. U.S. Pat. No. 5,460,154 describes an apparatus for pneumatically propelling a projectile substance. This device is designed like a pneumatic gun and propels a single projectile substance into an explosive device. In addition, U.S. Pat. No. 5,353,676 describes an apparatus which employs a shearing means, such as a blade, for disassembling a failed explosive device. However, the above mentioned apparatuses can cause the device to explode or are designed to only discharge one projectile at a time resulting in wasted time reloading the apparatus or waiting for the apparatus to recharge. None of the previous devices employ a continuous stream of high velocity abrasive particles and/or fluid(s) for safely deactivating a hazardous device.


[0008] U.S. Pat. No. 6,080,907 describes ammonia fluid jet cutting. However, these fluid jet cutting techniques have been focused on the demilitarization of conventional and chemical military munitions. The only known methods for deactivation of hazardous devices such as large vehicle bombs are (1) EOD personnel and (2) explosive disruption techniques.



BRIEF SUMMARY OF THE INVENTION

[0009] The present invention relates to a method for remotely accessing packages containing hazardous devices using a continuous stream of high velocity abrasive particles and/or fluid(s). The stream is created in-situ while attached to a remotely or autonomously operated vehicle. The object of the invention is accomplished by means of a high pressure fluid being converted to high velocity through an appropriately sized orifice aspirating an abrasive stream from a mixing chamber. In this design, optimal focusing of the high velocity abrasive particle solution onto the exterior surface of the hazardous device is achieved at a controlled speed and impact area which is below the impact initiation threshold of the hazardous device.


[0010] This invention provides an apparatus design for the safe and remote access of packages suspected to contain hazardous devices, chemicals, and/or initiating systems (fuses, detonators, timers, or triggering devices) using a continuous stream of a high pressure liquid, gel, or emulsion capable of disrupting the initiating systems while not presenting sufficient stimuli to initiate explosive, pyrotechnic, or flammable materials. This apparatus is intended to be used on a remotely operated vehicle, but could also be used as a hand-held device or as a personnel operated piece of equipment.


[0011] The process of accessing the hazardous devices can be enhanced by the use of an automatic standoff device such as a commercially available proximity sensor (mechanical, optical, acoustic, etc.) which allows the operator of the remotely operated vehicle or the feedback mechanism of a pre-programmed robotic vehicle to locate the cutting nozzle for the abrasive fluid stream at an optimum standoff distance.


[0012] The system is an autonomous unit and contains all the components and support equipment necessary to operate the system. The system can be deployed to the location of a suspected hazardous device and operated without utility power or any additional support vehicles. The system can be deployed with or without a hazardous duty robot.


[0013] In operation a hazardous device can be breached by directing a high-velocity hydroabrasive stream from the fluid jet cutting nozzle onto the exterior of the hazardous device container. For certain hazardous devices, such as a pipe bomb, the device can be safely disabled using this fluid jet cutting system. For large hazardous devices, such as a vehicle bomb, this fluid jet cutting system can be used to safely access the vehicle interior allowing the EOD squad to more thoroughly assess the hazardous device.


[0014] The cutting nozzle can be mounted on a robot that is capable of directing the hydroabrasive stream to a desired point. Optionally, the cutting nozzle can be mounted on a commercially available programmable x-y stage and deployed to the target by a robot or can be manually-deployed. The robot/cutting nozzle is remotely controlled to allow operation at a safe distance.


[0015] The invention provides a remote hazardous device interdiction apparatus which employs a fluid jet cutting nozzle; an abrasive feed system; a high pressure flexible hose; a hose reel; a high pressure intensifier; a power generator supply for electric power; a water reservoir; and an air compressor.


[0016] The instant invention further provides a method for the interdiction of remote hazardous devices which employs the apparatus.


[0017] In one embodiment of the invention the pressurization of water is performed using a remote high pressure pump of commercial origin and the pressurized water (50,000 lbs. per sq. in.) is conveyed through a flexible hose or conduit that is stored autonomously with the other equipment contributing to the invention including an intensifier for maintaining the pressurization of water; a water supply reservoir; an air compressor for assisting in the water pressurization; a feedback loop from the intensifier to the water supply reservoir for excess water collection and transfer; and a generator set for providing the necessary power required for operation.


[0018] A small diameter diamond orifice located in a cutting nozzle is used to increase the water flow to one of continuous high velocity and is connected to the flexible hose remotely from the aforementioned equipment. The orifice can have a diameter varying from 0.007 inch to 0.014 inch.


[0019] In an alternative embodiment of the invention, the pressurized water feeds into a hazardous duty robot before exiting at the cutting nozzle. This design allows for remote operation in locating and focusing the high velocity water onto a suspect package.


[0020] In yet another embodiment of the invention the cutting nozzle is mounted on an automatic standoff device, an x-y programmable stage, located on the hazardous duty robot. This design allows remote optimal focusing of the high velocity water at a controlled speed and impact area on the exterior of the suspect package.







BRIEF DESCRIPTION OF THE DRAWINGS

[0021] The various advantages of the present invention will become apparent to one skilled in the art by reading the following specification and subjoined claims and by referencing the following drawings in which:


[0022]
FIG. 1 shows a block diagram of an embodiment of the invention;


[0023]
FIG. 2 shows a block diagram of an embodiment of the invention with a hazardous duty robot;


[0024]
FIG. 3 shows a block diagram of an embodiment of the invention with a hazardous duty robot and an automatic standoff device.







DETAILED DESCRIPTION OF THE INVENTION

[0025] In FIG. 1 an apparatus 20 for the remote access of packages suspect to contain hazardous devices is shown as an autonomous unit mounted on a skid (not shown). A 25 gallon water supply reservoir 22 supplies water to a boost pump 24. The boost pump pressurizes the water to approximately 50 lbs. per sq. inch pumping it to an intensifier 26. The intensifier 26 pressurizes the water to 50,000 lbs./in2. The air compressor 28 supplies the air that is necessary to operate an emergency stop pressure dump valve (not shown) and the hydroabrasive nozzle (20). A feedback loop 30 collects excess return water from the intensifier 26 and returns it to the water supply reservoir 22.


[0026] The intensifier 26 forces pressurized water through conduit 32 to a high pressure hose 34 stored on hose reel 36.


[0027] The high pressure hose terminates in a cutting nozzle 40 which includes a small diameter diamond orifice (not shown). The small diameter of the orifice (not shown) included in the cutting nozzle 40 converts the high pressure water to a high velocity continuous stream flow field which can be controlled and directed to an impact area well below the impact initiation threshold of a package suspect of containing a hazardous device. Abrasive particles are added to the high pressure water at the orifice (not shown) via an abrasive particle mixing chamber 40.1 mounted on the cutting nozzle 40. The abrasive particles enhance the cutting capacity of the high velocity flow field and are an essential component necessary for safely breaching the exterior of the package containing a suspect hazardous device. A generator set 42 provides power to the apparatus 20 thus promoting a completely autonomous unit.


[0028] Referring to FIG. 2, the apparatus 20 can be seen with a hazardous duty robot 44 included in the design. The cutting nozzle 40 is mounted on the robot 44 and enhance safety by allowing remote operation of the hydroabrasive cutting nozzle water stream.


[0029] Referring further to FIG. 3, the apparatus 20 is further enhanced with the addition of a programmable x-y stage 46. The programmable x-y stage 46 is an automatic standoff device that allows the operator of the hazardous duty robot 44 to optimally position the continuous stream of water and to more precisely control the cutting speed and impact area. In this embodiment, the programmable x-y stage 46 is removeably attached to the hazardous duty robot 44. The cutting nozzle 40 is mounted onto the programmable x-y stage 46. Once programmed, no further human intervention is required until the apparatus 20 has completed its programmed interdiction sequence. The programmable x-y stage 46 may be used without the hazardous duty robot 44 with the cutting nozzle 40 directly mounted. It is also feasible to include the programmable x-y stage 46 in a feedback mechanism of an autonomously operated vehicle containing the apparatus 20.


[0030] Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present invention can be implemented in a variety of forms. Therefore, while this invention has been described in connection with particular examples, thereof, the true scope of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification and following claims.


Claims
  • 1. A method for remotely accessing packages suspect of containing hazardous devices, the method comprising the steps of: supplying a low pressure hydro-solution from a supply reservoir to an intensifier for pressurization to a high pressure hydro-solution; aspirating said high pressure hydro-solution from said intensifier with abrasive particles via a mixing chamber forming a high pressure abrasive solution; directing said high pressure abrasive solution through an appropriately sized orifice forming a high velocity continuous stream flow field; and focusing said high velocity continuous stream flow field at a controlled speed and impact area below impact initiation threshold towards a suspect hazardous device.
  • 2. The method according to claim 1, further comprising the step of providing water as said low pressure hydro-solution.
  • 3. The method according to claim 1, further comprising the step of providing a gelatinous substance as said low pressure hydro-solution.
  • 4. The method according to claim 1, further comprising the step of providing an emulsion as said low pressure hydro-solution.
  • 5. The method according to claim 1, further comprising the step of pressurizing said low pressure hydro-solution to include 50,000 lbs. per square inch.
  • 6. The method according to claim 1, further comprising the step of providing a cutting nozzle with a diamond orifice having a diameter of less than or equal to 0.014 inch forming said high velocity continuous stream flow field.
  • 7. The method according to claim 6, further comprising the step of forming said high pressure abrasive solution by adding abrasive particles to said high pressure hydro-solution in said cutting nozzle.
  • 8. The method according to claim 6, further comprising the step of mounting said cutting nozzle on a hazardous duty robot for remotely directing said high velocity continuous stream flow field.
  • 9. The method according to claim 7, further comprising the step of mounting said cutting nozzle on an x-y programmable stage removeably attached to said hazardous duty robot for optimally directing said high velocity continuous stream flow field.
  • 10. The method according to claim 9, further comprising the step of deploying said high velocity continuous stream flow field by utilizing said x-y programmable stage in a man-deployed mode of operation.
  • 11. The method according to claim 1, further comprising the step of incorporating said method as an autonomous mobile unit which can be deployed to a location of said suspect hazardous device without utility power and any additional support equipment.
  • 12. A method for remotely accessing packages suspect to contain hazardous devices including breaching an exterior surface of said suspect packages with a continuous stream of a high pressure solution capable of disrupting an initiating system while not presenting sufficient stimuli to initiate contents of said suspect packages.
  • 13. The method according to claim 12, further comprising the step of adding abrasive particles to said high pressure solution forming a high pressure abrasive solution.
  • 14. The method according to claim 12, further comprising the step of intensifying said continuous stream of high pressure solution by utilizing an intensifier.
  • 15. The method according to claim 12, further comprising the step of operating in-situ as a unit incorporated on a remotely operated vehicle.
  • 16. The method according to claim 12, further comprising the step of operating as a hand-held unit.
  • 17. The method according to claim 12, further comprising the step of operating as a unit incorporated as a personnel operated piece of equipment.
  • 18. An apparatus for remote access of packages suspect to contain hazardous devices comprising: a water supply reservoir containing water at a low pressure; a pump to transfer said low pressure water from said water supply reservoir to an intensifier; said intensifier supplying an output of regulated pressurized water; a feedback loop from said intensifier to said water supply reservoir to accommodate return water; said output of regulated pressurized water from said intensifier feeding through a high pressure hose to an appropriately sized orifice forming a high velocity continuous stream flow field; an air compressor supplying compressed air to said intensifier and said abrasive nozzle; a cutting nozzle including said orifice for focusing said high velocity continuous stream flow field at a controlled speed and impact area below impact initiation threshold towards said suspect hazardous devices; and a generator set for supplying power to said pump, said air compressor, and said intensifier obviating the need for an external power source.
  • 19. The apparatus according to claim 18, wherein abrasive particles are added to said high velocity continuous stream flow field via said cutting nozzle.
  • 20. The apparatus according to claim 18, wherein said high pressure hose from said intensifier feeds into a hazardous duty robot for remotely directing said high velocity continuous stream flow field.
  • 21. The apparatus according to claim 20, wherein an x-y programmable stage is removeably attached to said hazardous duty robot for remotely directing said high velocity continuous stream flow field.
  • 22. The apparatus according to claim 18, wherein said high pressure hose is housed on a hose reel.
Parent Case Info

[0001] This application is a continuation-in-part under 35 U.S.C. §120 of copending U.S. patent application Ser. No. 09797,852 filed on Mar. 5, 2001 , which claims priority under 35 §U.S.C. 119(e) from U.S. application Ser. No. 60/186,673 and each of these applications are incorporated by reference.

Provisional Applications (1)
Number Date Country
60186673 Mar 2000 US
Continuation in Parts (1)
Number Date Country
Parent 09797852 Mar 2001 US
Child 10022215 Dec 2001 US