The present disclosure relates to environmental comfort systems and more particularly to remote monitoring and diagnosis of residential environmental comfort systems.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
A residential HVAC (heating, ventilation, and air conditioning) system controls environmental parameters, such as temperature and humidity, of a residence. The HVAC system may include, but is not limited to, components that provide heating, cooling, humidification, and dehumidification. The target values for the environmental parameters, such as a temperature set point, may be specified by a homeowner.
Referring now to
The thermostat 122 may direct that the blower 114 be turned on at all times or only when a heat request or cool request is present. The blower 114 may also be turned on at a scheduled time or on demand. In various implementations, the blower 114 can operate at multiple speeds or at any speed within a predetermined range. One or more switching relays (not shown) may be used to control the blower 114 and/or to select a speed of the blower 114.
The thermostat 122 also provides the heat and/or cool requests to the control module 118. When a heat request is made, the control module 118 causes a burner 126 to ignite. Heat from combustion is introduced to the return air provided by the blower 114 in a heat exchanger 130. The heated air is supplied to the residence and is referred to as supply air.
The burner 126 may include a pilot light, which is a small constant flame for igniting the primary flame in the burner 126. Alternatively, an intermittent pilot may be used in which a small flame is first lit prior to igniting the primary flame in the burner 126. A sparker may be used for an intermittent pilot implementation or for direct burner ignition. Another ignition option includes a hot surface igniter, which heats a surface to a high enough temperature that when gas is introduced, the heated surface causes combustion to begin. Fuel for combustion, such as natural gas, may be provided by a gas valve (not shown).
The products of combustion are exhausted outside of the residence, and an inducer blower 134 may be turned on prior to ignition of the burner 126. The inducer blower 134 provides a draft to remove the products of combustion from the burner 126. The inducer blower 134 may remain running while the burner 126 is operating. In addition, the inducer blower 134 may continue running for a set period of time after the burner 126 turns off. In a high efficiency furnace, the products of combustion may not be hot enough to have sufficient buoyancy to exhaust via conduction. Therefore, the inducer blower 134 creates a draft to exhaust the products of combustion.
A single enclosure, which will be referred to as an air handler 208, may include the filter 110, the blower 114, the control module 118, the burner 126, the heat exchanger 130, the inducer blower 134, the expansion valve 188, the evaporator 192, and the condensate pan 196.
In the HVAC system of
A compressor control module 200 receives a cool request from the control module 118 and controls the compressor 180 accordingly. The compressor control module 200 also controls a condenser fan 204, which increases heat exchange between the condenser 184 and outside air. In such a split system, the compressor 180, the condenser 184, the compressor control module 200, and the condenser fan 204 are located outside of the residence, often in a single outdoor enclosure 212.
In various implementations, the compressor control module 200 may simply include a run capacitor, a start capacitor, and a contactor or relay. In fact, in certain implementations, the start capacitor may be omitted, such as when a scroll compressor instead of a reciprocating compressor is being used. The compressor 180 may be a variable capacity compressor and may respond to a multiple-level cool request. For example, the cool request may indicate a mid-capacity call for cool or a high capacity call for cool.
The electrical lines provided to the outdoor enclosure 212 may include a 240 volt mains power line and a 24 volt switched control line. The 24 volt control line may correspond to the cool request shown in
Monitoring of operation of components in the outdoor enclosure 212 and the air handler 208 has traditionally been performed by multiple discrete sensors, measuring current individually to each component. For example, a sensor may sense the current drawn by a motor, another sensor measures resistance or current flow of an igniter, and yet another sensor monitors a state of a gas valve. However, the cost of these sensors and the time required for installation has made monitoring cost prohibitive.
A monitoring system for a heating, ventilation, and air conditioning (HVAC) system of a residence includes a monitoring device installed at the residence and a server located remotely from the residence. The monitoring device measures an aggregate current supplied to a plurality of components of the HVAC system and transmits current data based on the measured aggregate current. The server receives the transmitted current data and, based on the received current, assesses whether a failure has occurred in a first component of the plurality of components of the HVAC system and assesses whether a failure has occurred in a second component of the plurality of components of the HVAC system.
In other features, the monitoring device samples the aggregate current over a time period, performs a frequency domain analysis on the samples over the time period, and transmits frequency domain data to the server. The server identifies transition points in the current data and analyzes the frequency domain data around the identified transition points. The server determines whether the failure has occurred in the first component by comparing the frequency domain data to baseline data. The server adapts the baseline data based on normal operation of the HVAC system. The monitoring device determines a single current value for the time period and transmits the single current value to the server without transmitting the samples to the server.
In further features, the single current value is one of a root mean squared current, an average current, and a peak current. The monitoring device measures the aggregate current over a series of consecutive time periods and transmits a frame of information to the server for each of the time periods. For a first period of the time periods, the monitoring device transmits a first frame including (i) a single value of the aggregate current during the first period and (ii) a frequency domain representation of the aggregate current during the first period.
In still other features, the first frame does not include individual samples of the aggregate current. The first frame includes a voltage measurement of power arriving at the HVAC system, a temperature measurement, and a representation of status of HVAC control lines during the first period. The monitoring device records control signals from a thermostat and transmits information based on the control signals to the server. The control signals include at least one of call for heat, call for fan, and call for cool.
In other features, the monitoring device is located in close proximity to an air handler unit of the HVAC system. A second monitoring device is located in close proximity to a second enclosure of the HVAC system, wherein the second enclosure includes at least one of a compressor and a heat pump heat exchanger. The second monitoring device (i) measures an aggregate current supplied to a plurality of components of the second enclosure and (ii) transmits current data based on the measured aggregate current to the server. The second monitoring device transmits the current data to the server via the monitoring device.
In further features, the monitoring device includes a switch that selectively interrupts an enabling signal to a compressor of the HVAC system. The monitoring device interrupts the enabling signal in response to at least one of (i) a value from a water sensor, (ii) a locked rotor condition of the compressor, and (iii) a command from the server. The server (i) generates an alert in response to determining presence of a fault of either the first component or the second component and (ii) sends the alert to at least one of a homeowner of the residence and an installation contractor.
In still other features, the server (i) selectively predicts an impending failure of the first component based on the received current data, (ii) selectively predicts an impending failure of the second component based on the received current data, and (iii) generates an alert in response to prediction of impending failure. The plurality of components of the HVAC system includes at least two components selected from: a flame sensor, a solenoid-operated gas valve, a hot surface igniter, a circulator blower motor, an inducer blower motor, a compressor, a pressure switch, a capacitor, an air filter, a condensing coil, an evaporating coil, and a contactor.
A method of monitoring a heating, ventilation, and air conditioning (HVAC) system of a residence includes using a monitoring device installed at the residence, measuring an aggregate current supplied to a plurality of components of the HVAC system, and transmitting current data based on the measured aggregate current to a server located remotely from the residence. The method includes receiving the transmitted current data at the server and based on the received current, assessing whether a failure has occurred in a first component of the plurality of components of the HVAC system. The method further includes, based on the received current, assessing whether a failure has occurred in a second component of the plurality of components of the HVAC system.
In other features, the method includes sampling the aggregate current over a time period, performing a frequency domain analysis on the samples over the time period, and transmitting frequency domain data to the server. The method includes identifying transition points in the current data, and analyzing the frequency domain data around the identified transition points. The method further includes determining whether the failure has occurred in the first component by comparing the frequency domain data to baseline data, and adapting the baseline data based on normal operation of the HVAC system.
In still other features, the method includes determining a single current value for the time period and transmitting the single current value to the server without transmitting the samples to the server. The single current value is one of a root mean squared current, an average current, and a peak current. The method includes measuring the aggregate current over a series of consecutive time periods, and transmitting a frame of information to the server for each of the time periods.
In still further features, the method includes, for a first period of the time periods, transmitting a first frame including (i) a single value of the aggregate current during the first period and (ii) a frequency domain representation of the aggregate current during the first period. The first frame does not include individual samples of the aggregate current. The first frame includes a voltage measurement of power arriving at the HVAC system, a temperature measurement, and a representation of status of HVAC control lines during the first period.
In other features, the method includes recording control signals from a thermostat, and transmitting information based on the control signals to the server. The control signals include at least one of call for heat, call for fan, and call for cool. The monitoring device is located in close proximity to an air handler unit of the HVAC system, and the method further includes measuring an aggregate current supplied to a plurality of components of a second enclosure of the HVAC system. The second enclosure includes at least one of a compressor and a heat pump heat exchanger, and the method includes transmitting current data based on the measured aggregate current to the server.
In still other features, the method includes transmitting the current data from the second monitoring device to the server via the monitoring device, and communicating with the monitoring device using power line communication. The method includes selectively interrupting an enabling signal to a compressor of the HVAC system in response to at least one of (i) a value from a water sensor, (ii) a locked rotor condition of the compressor, and (iii) a command from the server. The method includes sending an alert in response to determining presence of a fault of either the first component or the second component, wherein the alert is sent to at least one of a homeowner of the residence and an installation contractor.
In further features, the method includes selectively predicting an impending failure of the first component based on the received current data, selectively predicting an impending failure of the second component based on the received current data, and generating an alert in response to prediction of impending failure. The plurality of components of the HVAC system includes at least two components selected from: a flame sensor, a solenoid-operated gas valve, a hot surface igniter, a circulator blower motor, an inducer blower motor, a compressor, a pressure switch, a capacitor, an air filter, a condensing coil, an evaporating coil, and a contactor. The method includes transmitting the current data to a gateway wirelessly, wherein the gateway forwards the current data to the server over the Internet.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
According to the present disclosure, sensing/monitoring modules can be integrated with a residential HVAC (heating, ventilation, and air conditioning) system. As used in this application, the term HVAC encompasses all environmental comfort systems in a home or business, including heating, cooling, humidifying, and dehumidifying, and covers devices such as furnaces, heat pumps, humidifiers, dehumidifiers, and air conditioners. The term HVAC is a broad term, in that an HVAC system according to this application does not necessarily include both heating and air conditioning, and may instead have only one or the other.
In split HVAC systems with an air handler unit (often, indoors) and a compressor unit (often, outdoors), an air handler monitor module and a compressor monitor module, respectively, can be used. The air handler monitor module and the compressor monitor module may be integrated by the manufacturer of the HVAC system, may be added at the time of the installation of the HVAC system, and/or may be retrofitted to an existing system.
The air handler monitor and compressor monitor modules monitor operating parameters of associated components of the HVAC system. For example, the operating parameters may include power supply current, power supply voltage, operating and ambient temperatures, fault signals, and control signals. The air handler monitor and compressor monitor modules may communicate data between each other, while one or both of the air handler monitor and compressor monitor modules uploads data to a remote location. The remote location may be accessible via any suitable network, including the Internet.
The remote location includes one or more computers, which will be referred to as servers. The servers execute a monitoring system on behalf of a monitoring company. The monitoring system receives and processes the data from the air handler monitor and compressor monitor modules of homeowners who have such systems installed. The monitoring system can provide performance information, diagnostic alerts, and error messages to a homeowner and/or third parties, such as a designated HVAC contractor.
The air handler monitor and compressor monitor modules may each sense an aggregate current for the respective unit without measuring individual currents of individual components. The aggregate current data may be processed using frequency domain analysis, statistical analysis, and state machine analysis to determine operation of individual components based on the aggregate current data. This processing may happen partially or entirely in a server environment, outside of the homeowner's residence.
Based on measurements from the air handler monitor and compressor monitor modules, the monitoring company can determine whether HVAC components are operating at their peak performance and can advise the homeowner and the contractor when performance is reduced. This performance reduction may be measured for the system as a whole, such as in terms of efficiency, and/or may be monitored for one or more individual components.
In addition, the monitoring system may detect and/or predict failures of one or more components of the system. When a failure is detected, the homeowner can be notified and potential remediation steps can be taken immediately. For example, components of the HVAC system may be shut down to minimize damage or HVAC components and/or prevent water damage. The contractor can also be notified that a service call will be required. Depending on the contractual relationship between the homeowner and the contractor, the contractor may immediately schedule a service call to the residence.
The monitoring system may provide specific information to the contractor, including identifying information of the homeowner's HVAC system, including make and model numbers, as well as indications of the specific part numbers that appear to be failing. Based on this information, the contractor can allocate the correct repair personnel that have experience with the specific HVAC system and/or component. In addition, the service technician is able to bring replacement parts, avoiding return trips after diagnosis.
Depending on the severity of the failure, the homeowner and/or contractor may be advised of relevant factors in determining whether to repair the HVAC system or replace some or all of the components of the HVAC system. For example only, these factors may include relative costs of repair versus replacement, and may include quantitative or qualitative information about advantages of replacement equipment. For example, expected increases in efficiency and/or comfort with new equipment may be provided. Based on historical usage data and/or electricity or other commodity prices, the comparison may also estimate annual savings resulting from the efficiency improvement.
As mentioned above, the monitoring system may also predict impending failures. This allows for preventative maintenance and repair prior to an actual failure. Alerts regarding detected or impending failures reduce the time when the HVAC system is out of operation and allows for more flexible scheduling for both the homeowner and contractor. If the homeowner is out of town, these alerts may prevent damage from occurring when the homeowner is not present to detect the failure of the HVAC system. For example, failure of heat in winter may lead to pipes freezing and bursting.
Alerts regarding potential or impending failures may specify statistical timeframes before the failure is expected. For example only, if a sensor is intermittently providing bad data, the monitoring system may specify an expected amount of time before it is likely that the sensor effectively stops working due to the prevalence of bad data. Further, the monitoring system may explain, in quantitative or qualitative terms, how the current operation and/or the potential failure will affect operation of the HVAC system. This enables the homeowner to prioritize and budget for repairs.
For the monitoring service, the monitoring company may charge a periodic rate, such as a monthly rate. This charge may be billed directly to the homeowner and/or may be billed to the contractor. The contractor may pass along these charges to the homeowner and/or may make other arrangements, such as by requiring an up-front payment upon installation and/or applying surcharges to repairs and service visits.
For the air handler monitor and compressor monitor modules, the monitoring company or contractor may charge the homeowner the equipment cost, including the installation cost, at the time of installation and/or may recoup these costs as part of the monthly fee. Alternatively, rental fees may be charged for the air handler monitor and compressor monitor modules, and once the monitoring service is stopped, the air handler monitor and compressor monitor modules may be returned.
The monitoring service may allow a homeowner and/or contractor to remotely monitor and/or control HVAC components, such as setting temperature, enabling or disabling heating and/or cooling, etc. In addition, the homeowner may be able to track energy usage, cycling times of the HVAC system, and/or historical data. Efficiency and/or operating costs of the homeowner's HVAC system may be compared against HVAC systems of neighbors, whose homes will be subject to the same environmental conditions. This allows for direct comparison of HVAC system and overall home efficiency because environmental variables, such as temperature and wind, are controlled.
The monitoring system can be used by the contractor during and after installation and during and after repair to verify operation of the air handler monitor and compressor monitor modules as well as to verify correct installation of the components of the HVAC system. In addition, the homeowner may review this data in the monitoring system for assurance that the contractor correctly installed and configured the HVAC system. In addition to being uploaded to the cloud, monitored data may be transmitted to a local device in the residence. For example, a smartphone, laptop, or proprietary portable device may receive monitoring information to diagnose problems and receive real-time performance data. Alternatively, data may be uploaded to the cloud and then downloaded onto a local computing device, such as via the Internet from an interactive web site.
The historical data collected by the monitoring system may allow the contractor to properly specify new HVAC components and to better tune configuration, including dampers and set points of the HVAC system. The information collected may be helpful in product development and assessing failure modes. The information may be relevant to warranty concerns, such as determining whether a particular problem is covered by a warranty. Further, the information may help to identify conditions, such as unauthorized system modifications, that could potentially void warranty coverage.
Original equipment manufacturers may subsidize partially or fully the cost of the monitoring system and air handler and compressor monitor modules in return for access to this information. Installation and service contractors may also subsidize some or all of these costs in return for access to this information, and for example, in exchange for being recommended by the monitoring system. Based on historical service data and homeowner feedback, the monitoring system may provide contractor recommendations to homeowners.
Referring now to
The present disclosure is not limited, and applies to other systems including, as examples only, systems where the components of the air handler unit 304 and the compressor/condenser unit 308 are located in close proximity to each other or even in a single enclosure. The single enclosure may be located inside or outside of the homeowner residence 300. In various implementations, the air handler unit 304 may be located in a basement, garage, or attic. In ground source systems, where heat is exchanged with the earth, the air handler unit 304 and the compressor/condenser unit 308 may be located near the earth, such as in a basement, crawlspace, garage, or on the first floor, such as when the first floor is separated from the earth by only a concrete slab.
According to the principles of the present disclosure, a compressor monitor module 316 is interconnected with the compressor/condenser unit 308, and may be located within or in close proximity to the outdoor enclosure 312. The compressor monitor module 316 monitors parameters of the compressor/condenser unit 308 including current, voltage, and temperatures.
In one implementation, the current measured is a single power supply current that represents the aggregate current draw of the entire outdoor enclosure 312 from an electrical panel 318. A current sensor 320 measures the current supplied to the compressor/condenser unit 308 and provides measured data to the compressor monitor module 316. For example only, the compressor/condenser unit 308 may receive an AC line voltage of approximately 240 volts. The current sensor 320 may sense current of one of the legs of the 240 volt power supply. A voltage sensor (not shown) may sense the voltage of one or both of the legs of the AC voltage supply. The current sensor 320 may include a current transformer, a current shunt, and/or a hall effect device. In various implementations, a power sensor may be used in addition to or in place of the current sensor 320. Current may be calculated based on the measured power, or profiles of the power itself may be used to evaluate operation of components of the compressor/condenser unit 308.
An air handler monitor module 322 monitors the air handler unit 304. For example, the air handler monitor module 322 may monitor current, voltage, and various temperatures. In one implementation, the air handler monitor module 322 monitors an aggregate current drawn by the entire air handler unit 304, and when the air handler unit 304 provides power to an HVAC control module 360, also the current drawn by the HVAC control module 360. A current sensor 324 measures current delivered to the air handler unit 304 by the electrical panel 318. The current sensor 324 may be similar to the current sensor 320. Voltage sensors (not shown) may be located near the current sensors 324 and 320. The voltage sensors provide voltage data to the air handler unit 304 and the compressor/condenser unit 308.
The air handler unit 304 and the compressor/condenser unit 308 may evaluate the voltage to determine various parameters. For example, frequency, amplitude, RMS voltage and DC offset may be calculated based on the measured voltage. In situations where 3-phase power is used, the order of the phases may be determined. Information about when the voltage crosses zero may be used to synchronize various measurements and to determine frequency based on counting the number of zero crossings within a predetermine time period.
The air handler unit 304 includes a blower, a burner, and an evaporator. In various implementations, the air handler unit 304 includes an electrical heating device instead of or in addition to the burner. The electrical heating device may provide backup or secondary heat. The compressor monitor module 316 and the air handler monitor module 322 share collected data with each other. When the current measured is the aggregate current draw, in either the air handler monitor module 322 or the compressor monitor module 316, contributions to the current profile are made by each component. It may be difficult, therefore, to easily determine in the time domain how the measured current corresponds to individual components. However, when additional processing is available, such as in a monitoring system, which may include server and other computing resources, additional analysis, such as frequency domain analysis, can be performed.
The frequency domain analysis may allow individual contributions of HVAC system components to be determined. Some of the advantages of using an aggregate current measurement may include reducing the number of current sensors that would otherwise be necessary to monitor each of the HVAC system components. This reduces bill of materials costs, as well as installation costs and potential installation problems. Further, providing a single time domain current stream may reduce the amount of bandwidth necessary to upload the current data. Nevertheless, the present disclosure could also be used with additional current sensors.
Further, although not shown in the figures, additional sensors, such as pressure sensors, may be included and connected to the air handler monitor module 322 and/or the compressor monitor module 316. The pressure sensors may be associated with return air pressure or supply air pressure, and/or with pressures at locations within the refrigerant loop. Air flow sensors may measure mass air flow of the supply air and/or the return air. Humidity sensors may measure relative humidity of the supply air and/or the return air, and may also measure ambient humidity inside or outside the homeowner residence 300.
In various implementations, the principles of the present disclosure may be applied to monitoring other systems, such as a hot water heater, a boiler heating system, a refrigerator, a refrigeration case, a pool heater, a pool pump/filter, etc. As an example, the hot water heater may include an igniter, a gas valve (which may be operated by a solenoid), an igniter, an inducer blower, and a pump. Aggregate current readings can be analyzed by the monitoring company to assess operation of the individual components of the hot water heater. Aggregate loads, such as the hot water heater or the air handler unit 304, may be connected to an AC power source via a smart outlet, a smart plug, or a high amp load control switch, each of which may provide an indication when a connected device is activated.
In one implementation, which is shown in
In various other implementations, the compressor monitor module 316 may transmit data from the air handler monitor module 322 and the compressor monitor module 316 to an external wireless receiver. The external wireless receiver may be a proprietary receiver for a neighborhood in which the homeowner residence 300 is located, or may be an infrastructure receiver, such as a metropolitan area network (such as WiMAX), a WiFi access point, or a mobile phone base station.
In the implementation of
The air handler monitor module 322 may communicate with the homeowner router 338 via a gateway 346. The gateway 346 translates information received from the air handler monitor module 322 into TCP/IP (Transmission Control Protocol/Internet Protocol) packets and vice versa. The gateway 346 then forwards those packets to the homeowner router 338. The gateway 346 may connect to the homeowner router 338 using a wired or wireless connection. The air handler monitor module 322 may communicate with the gateway 346 using a wired or wireless connection. For example, the interface between the gateway 346 and the homeowner router 338 may be Ethernet (IEEE 802.3) or WiFi (IEEE 802.11).
The interface between the air handler monitor module 322 and the gateway 346 may include a wireless protocol, such as Bluetooth, ZigBee (IEEE 802.15.4), 900 Megahertz, 2.4 Gigahertz, WiFi (IEEE 802.11), and proprietary protocols. The air handler monitor module 322 may communicate with the compressor monitor module 316 using wired or wireless protocols. For example only, the air handler monitor module 322 and the compressor monitor module 316 may communicate using power line communications, which may be sent over a line voltage (such as 240 volts) or a stepped-down voltage, such as 24 volts, or a dedicated communications line.
The air handler monitor module 322 and the compressor monitor module 316 may transmit data within frames conforming to the ClimateTalk™ standard, which may include the ClimateTalk Alliance HVAC Application Profile v1.1, released Jun. 23, 2011, the ClimateTalk Alliance Generic Application Profile, v1.1, released Jun. 23, 2011, and the ClimateTalk Alliance Application Specification, v1.1, released Jun. 23, 2011, the disclosures of which are hereby incorporated by reference in their entirety. In various implementations, the gateway 346 may encapsulate ClimateTalk™ frames into IP packets, which are transmitted to the monitoring system 330. The monitoring system 330 then extracts the ClimateTalk™ frames and parses the data contained within the ClimateTalk™ frames. The monitoring system 330 may send return information, including monitoring control signals and/or HVAC control signals, using ClimateTalk™.
The HVAC control module 360 controls operation of the air handler unit 304 and the compressor/condenser unit 308. The HVAC control module 360 may operate based on control signals from a thermostat 364. The thermostat 364 may transmit requests for fan, heat, and cool to the HVAC control module 360. One or more of the control signals may be intercepted by the air handler monitor module 322. Various implementations of interaction between the control signals and the air handler monitor module 322 are shown below in
Additional control signals may be present in various HVAC systems. For example only, a heat pump may include additional control signals, such as a control signal for a reversing valve. The thermostat 364 and/or the HVAC control module 360 may include control signals for secondary heating and/or secondary cooling, which may be activated when the primary heating or primary cooling is insufficient. In dual fuel systems, such as systems operating from either electricity or natural gas, control signals related to the selection of the fuel may be monitored. Further, additional status and error signals may be monitored, such as a defrost status signal, which may be asserted when the compressor is shut off and a defrost heater operates to melt frost from an evaporator.
In various implementations, the thermostat 364 may use the gateway 346 to communicate with the Internet 334. In one implementation, the thermostat 364 does not communicate directly with the air handler monitor module 322 or the compressor monitor module 316. Instead, the thermostat 364 communicates with the monitoring system 330, which may then provide information or control signals to the air handler monitor module 322 and/or the compressor monitor module 316 based on information from the thermostat 364. Using the monitoring system 330, the homeowner or contractor may send signals to the thermostat 364 to manually enable heating or cooling (regardless of current temperature settings), or to change set points, such as desired instant temperature and temperature schedules. In addition, information from the thermostat 364, such as current temperature and historical temperature trends, may be viewed.
The monitoring system 330 may provide alerts for situations such as detected or predicted failures to the homeowner computer 342 and/or to any other electronic device of the homeowner. For example, the monitoring system 330 may provide an alert to a mobile device 368 of the homeowner, such as a mobile phone or a tablet. The alerts are shown in
The monitoring system 330 also interacts with a contractor computer 372. The contractor computer 372 may then interface with mobile devices carried by individual contractors. Alternatively, the monitoring system 330 may directly provide alerts to predetermined mobile devices of the contractor. In the event of an impending or detected failure, the monitoring system 330 may provide information regarding identification of the homeowner, identification of the HVAC system, the part or parts related to the failure, and/or the skills required to perform the maintenance.
In various implementations, the monitoring system 330 may transmit a unique identifier of the homeowner or the residence to the contractor computer 372. The contractor computer 372 may include a database indexed by the unique identifier, which stores information about the homeowner including the homeowner's address, contractual information such as service agreements, and detailed information about the installed HVAC equipment.
The air handler monitor module 322 and the compressor monitor module 316 may receive respective sensor signals, such as water sensor signals. For example, the air handler monitor module 322 may receive signals from a float switch 376, a condensate sensor 380, and a conduction sensor 384. The condensate sensor 380 may include a device as described in commonly assigned patent application Ser. No. 13/162,798, filed Jun. 17, 2011, titled Condensate Liquid Level Sensor and Drain Fitting, the disclosure of which is hereby incorporated by reference in its entirety.
Where the air handler unit 304 is performing air conditioning, condensation occurs and is captured in a condensate pan. The condensate pan drains, often via a hose, into a floor drain or a condensate pump, which pumps the condensate to a suitable drain. The condensate sensor 380 detects whether the drain hose has been plugged, a condition which will eventually cause the condensate pan to overflow, potentially causing damage to the HVAC system and to surrounding portions of the homeowner residence 300.
The air handler unit 304 may be located on a catch pan, especially in situations where the air handler unit 304 is located above living space of the homeowner residence 300. A catch pan may include the float switch 376. When enough liquid accumulates in the catch pan, the float switch 376 provides an over-level signal to the air handler monitor module 322.
The conduction sensor 384 may be located on the floor or other surface where the air handler unit 304 is located. The conduction sensor 384 may sense water leaks that are for one reason or another not detected by the float switch 376 or the condensate sensor 380, including leaks from other systems such as a hot water heater.
Referring now to
Alternatively, leads from the air handler monitor module 322 may be attached to the same location as the fan and heat signals, such as by putting multiple spade lugs underneath a signal screw head. The cool signal from the thermostat 364 may be disconnected from the HVAC control module 360 and attached to the air handler monitor module 322. The air handler monitor module 322 then provides a switched cool signal to the HVAC control module 360. This allows the air handler monitor module 322 to interrupt operation of the air conditioning system, such as upon detection of water by one of the water sensors. The air handler monitor module 322 may also interrupt operation of the air conditioning system based on information from the compressor monitor module 316, such as detection of a locked rotor condition in the compressor.
Referring now to
Referring now to
Referring now to
The control line monitor module 504 may also receive additional control signals, depending on application, including second stage heat, second stage cool, reversing valve direction, defrost status signal, and dual fuel selection.
A wireless transceiver 512 communicates using an antenna 516 with a wireless host, such as a gateway 346, a mobile phone base station, or a WiFi (IEEE 802.11) or WiMax (IEEE 802.16) base station. A formatting module 520 forms data frames, such as ClimateTalk™ frames, including data acquired by the air handler monitor module 322. The formatting module 520 provides the data frames to the wireless transceiver 512 via a switching module 524.
The switching module 524 receives data frames from the monitoring system 330 via the wireless transceiver 512. Additionally or alternatively, the data frames may include control signals. The switching module 524 provides the data frames received from the wireless transceiver 512 to the formatting module 520. However, if the data frames are destined for the compressor monitor module 316, the switching module 524 may instead transmit those frames to a power-line communication module 528 for transmission to the compressor monitor module 316.
A power supply 532 provides power to some or all of the components of the air handler monitor module 322. The power supply 532 may be connected to line voltage, which may be single phase 120 volt AC power. Alternatively, the power supply 532 may be connected to a stepped down voltage, such as a 24 volt power supply already present in the HVAC system. When the power received by the power supply 532 is also provided to the compressor monitor module 316, the power-line communication module 528 can communicate with the compressor monitor module 316 via the power supply 532. In other implementations, the power supply 532 may be distinct from the power-line communication module 528. The power-line communication module 528 may instead communicate with the compressor monitor module 316 using another connection, such as the switched cool signal (which may be a switched 24 volt line) provided to the compressor monitor module 316, another control line, a dedicated communications line, etc.
In various implementations, power to some components of the air handler monitor module 322 may be provided by 24 volt power from the thermostat 364. For example only, the cool request from the thermostat 364 may provide power to the compressor interrupt module 508. This may be possible when the compressor interrupt module 508 does not need to operate (and therefore does not need to be powered) unless the cool request is present, thereby powering the compressor interrupt module 508.
Data frames from the compressor monitor module 316 are provided to the switching module 524, which forwards those frames to the wireless transceiver 512 for transmission to the gateway 346. In various implementations, data frames from the compressor monitor module 316 are not processed by the air handler monitor module 322 other than to forward the frames to the gateway 346. In other implementations, the air handler monitor module 322 may combine data gathered by the air handler monitor module 322 with data gathered by the compressor monitor module 316 and transmit combined data frames.
In addition, the air handler monitor module 322 may perform data gathering or remedial operations based on the information from the compressor monitor module 316. For example only, the compressor monitor module 316 may transmit a data frame to the air handler monitor module 322 indicating that the air handler monitor module 322 should monitor various inputs. For example only, the compressor monitor module 316 may signal that the compressor is about to start running or has started running. The air handler monitor module 322 may then monitor related information.
Therefore, the formatting module 520 may provide such a monitoring indication from the compressor monitor module 316 to a trigger module 536. The trigger module 536 determines when to capture data, or if data is being continuously captured, which data to store, process, and/or forward data. The trigger module 536 may also receive a signal from an error module 540. The error module 540 may monitor an incoming current and generate an error signal when the current is at too high of a level for too long of a time.
The compressor monitor module 316 may be configured similarly to the air handler monitor module 322. In the compressor monitor module 316, a corresponding error module may determine that a high current level indicates a locked rotor condition of the compressor. For example only, a baseline run current may be stored, and a current threshold calculated by multiplying the baseline run current by a predetermined factor. The locked rotor condition may then be determined when a measurement of current exceeds the current threshold. This processing may occur locally because a quick response time to a locked rotor is beneficial.
The error module 540 may instruct the trigger module 536 to capture information to help diagnose this error and/or may send a signal to the compressor interrupt module 508 to disable the compressor. The disable signal received by the compressor interrupt module 508 may cause disabling of the compressor interrupt module 508 when either the error module 540 or the formatting module 520 indicates that the interruption is required. This logical operation is illustrated with an OR gate 542.
The formatting module 520 may disable the compressor based on an instruction from the monitoring system 330 and/or the compressor monitor module 316. For example, the monitoring system 330 may instruct the formatting module 520 to disable the compressor based on a request by a utility company. For example, during peak load times, the utility company may request air conditioning to be turned off in return for a discount on electricity prices. This shut off can be implemented via the monitoring system 330.
A water monitoring module 544 may monitor the conduction sensor 384, the float switch 376, and the condensate sensor 380. For example, when a resistivity of the conduction sensor 384 decreases below a certain value, which would happen in the presence of water, the water monitoring module 544 may signal to the error module 540 that water is present.
The water monitoring module 544 may also detect when the float switch 376 detects excessive water, which may be indicated by a closing or an opening of the float switch 376. The water monitoring module 544 may also detect when resistivity of the condensate sensor 380 changes. In various implementations, detection of the condensate sensor 380 may not be armed until a baseline current reading is made, such as at the time when the air handler monitor module 322 is powered on. Once the condensate sensor 380 is armed, a change in current may be interpreted as an indication that a blockage has occurred. Based on any of these water signals, the water monitoring module 544 may signal to the error module 540 that the compressor should be disabled.
A temperature tracking module 548 tracks temperatures of one or more HVAC components. For example, the temperature tracking module 548 may monitor the temperature of supply air and of return air. The temperature tracking module 548 may provide average values of temperature to the formatting module 520. For example only, the averages may be running averages. The filter coefficients of the running averages may be predetermined and may be modified by the monitoring system 330.
The temperature tracking module 548 may monitor one or more temperatures related to the air conditioning system. For example, a liquid line provides refrigerant to an expansion valve of the air handler unit 304 from a condenser of the compressor/condenser unit 308. A temperature may be measured along the refrigerant line before and/or after the expansion valve. The expansion valve may include, for example, a thermostatic expansion valve, a capillary tube, or an automatic expansion valve.
The temperature tracking module 548 may additionally or alternatively monitor one or more temperatures of an evaporator coil of the air handler unit 304. The temperatures may be measured along the refrigerant line at or near the beginning of the evaporator coil, at or near an end of the evaporator coil, or at one or more midpoints. In various implementations, the placement of the temperature sensor may be dictated by physical accessibility of the evaporator coil. The temperature tracking module 548 may be informed of the location of the temperature sensor. Alternatively, data about temperature location may be stored as part of installation data, which may be available to the formatting module 520 and/or to the monitoring system, which can use this information to accurately interpret the received temperature data.
A power calculation module 552 monitors voltage and current. In one implementation, these are the aggregate power supply voltage and the aggregate power supply current, which represents the total current consumed by all of the components of the air handler unit 304. The power calculation module 552 may perform a point-by-point power calculation by multiplying the voltage and current. Point-by-point power values and/or an average value of the point-by-point power is provided to the formatting module 520.
A current recording module 556 records values of the aggregate current over a period of time. The aggregate current may be sensed by a current sensor that is installed within the air handler unit 304 or along the electrical cable providing power to the air handler unit 304 (see current sensor 324 In
The aggregate current includes current drawn by all energy consuming components of the air handler unit 304. For example only, the energy consuming components can include a gas valve solenoid, an igniter, a circulator blower motor, an inducer blower motor, a secondary heat source, an expansion valve controller, a furnace control panel, a condensate pump, and a transformer, which may provide power to a thermostat. The energy consuming components may also include the air handler monitor module 322 itself and the compressor monitor module 316.
It may be difficult to isolate the current drawn by any individual energy consuming component. Further, it may be difficult to quantify or remove distortion in the aggregate current, such as may be caused by fluctuations of the voltage level of incoming AC power. As a result, processing is applied to the current, which includes, for example only, filtering, statistical processing, and frequency domain processing.
In the implementation of
A clock 564 allows the formatting module 520 to apply a time stamp to each data frame that is generated. In addition, the clock 564 may allow the trigger module 536 to periodically generate a trigger signal. The trigger signal may initiate collection and/or storage and processing of received data. Periodic generation of the trigger signal may allow the monitoring system 330 to receive data from the air handler monitor module 322 frequently enough to recognize that the air handler monitor module 322 is still functioning.
A voltage tracking module 568 measures the AC line voltage, and may provide raw voltage values or an average voltage value (such as an average of absolute values of the voltage) to the formatting module 520. Instead of average values, other statistical parameters may be calculated, such as RMS (root mean squared) or mean squared.
Based on the trigger signal, a series of frames may be generated and sent. For example only, the frames may be generated contiguously for 105 seconds and then intermittently for every 15 seconds until 15 minutes has elapsed. Each frame may include a time stamp, RMS voltage, RMS current, real power, average temperature, conditions of status signals, status of liquid sensors, FFT current data, and a flag indicating the source of the trigger signal. Each of these values may correspond to a predetermined window of time, or, frame length.
The voltage and current signals may be sampled by an analog-to-digital converter at a certain rate, such as 1920 samples per second. The frame length may be measured in terms of samples. When a frame is 256 samples long, at a sample rate of 1920 samples per second, there are 7.5 frames every second (or, 0.1333 seconds per frame). Generation of the trigger signal is described in more detail below in
The formatting module 520 may receive a request for a single frame from the monitoring system 330. The formatting module 520 therefore provides a single frame in response to the request. For example only, the monitoring system 330 may request a frame every 30 seconds or some other periodic interval, and the corresponding data may be provided to a contractor monitoring the HVAC system in real time.
Referring now to
The current recording module 556 of
In the compressor monitoring module 316, the temperature tracking module 548 may track an ambient temperature. When the compressor monitor module 316 is located outdoors, the ambient temperature represents an outside temperature. As discussed above, the temperature sensor supplying the ambient temperature may be located outside of an enclosure housing a compressor or condenser. Alternatively, the temperature sensor may be located within the enclosure, but exposed to circulating air. In various implementations the temperature sensor may be shielded from direct sunlight and may be exposed to an air cavity that is not directly heated by sunlight.
The temperature tracking module 548 may monitor temperatures of the refrigerant line at various points, such as before the compressor (referred to as a suction line temperature), after the compressor (referred to as a compressor discharge temperature), after the condenser (referred to as a liquid line out temperature), and/or at one or more points along the condenser coil. The location of temperature sensors may be dictated by a physical arrangement of the condenser coils. During installation, the location of the temperature sensors may be recorded.
Additionally or alternatively, a database may be available that specifies where temperature sensors are placed. This database may be referenced by installers and may allow for accurate cloud processing of the temperature data. The database may be used for both air handler sensors and compressor/condenser sensors. The database may be prepopulated by the monitoring company or may be developed by trusted installers, and then shared with other installation contractors. The temperature tracking module 548 and/or a cloud processing function may determine an approach temperature, which is a measurement of how close the condenser has been able to make the liquid line out temperature to the ambient air temperature.
Referring now to
Referring now to
A power supply 580 provides power to components of the air handler monitor module 322. A communications module 582 includes a communications controller 584, a radio 586 for wireless communication, and a power line communications module 588 for power line communications. A power monitor chip 590 may monitor the scaled voltage and current and provide current and voltage information, as well as power information and phase information, to the microprocessor 576.
Referring now to
Although 10-bit and 12-bit A/D converters are shown, A/D converters having more or less resolution may be chosen. In various implementations, such as shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The current zero cross block 664 receives current from a current sensor 666, which also provides current values to a signal conditioning block 668, which conditions the current values, such as by applying filters, and provides them to a current monitor 670 and a power calculation block 658. The power calculation block determines power based on the current and voltage and supplies the result to a power log 674.
The current log 672, the power log 674, a phase log 676, and the voltage log 656 provide information to an information packaging block 678. The information packaging block 678 packages information for transmission by a transmit block 680. The information packaging block 678 may provide identifying information such as a module ID number 682. A temperature log 684 receives one or more temperature signals 686, while a pressure log 688 receives one or more pressures 690.
A key recognition block 692 monitors inputs from a variety of sources, which may include the power calculation block 658, the phase calculation block 662, the voltage log 656, the temperature log 684, the pressure log 688, and state inputs 694, such as call for heat and call for cool control lines. The key recognition block 692 may identify which portions of each of the logs is transmitted by the transmit block 680.
The key recognition block 692 identifies occurrence of certain events, such as the beginning of a call for heat or call for cool. In addition, the key recognition block 692 may recognize when anomalous situations have occurred, such as over-voltage, over-current, or temperatures or pressures out of bounds. In response to identification of events by the key recognition block 692, a log control block 694 may control the information packaging block 678 to discard or only locally store low priority information, to delay transmitting medium priority information, and to transmit higher priority information more quickly or even immediately.
Referring now to
At 716, fan, heat, and common lines from the air handler monitor module are connected to terminals on the HVAC control module. In various implementations, the fan, heat, and common lines originally going to the HVAC control module may be disconnected and connected to the air handler monitor module. This may be done for HVAC control modules where additional lines cannot be connected in parallel with the original fan, heat, and common lines.
At 720, a current sensor such as a snap-around current transformer, is connected to mains power to the HVAC system. At 724, power and common leads are connected to the HVAC transformer, which may provide 24 volt power to the air handler monitor module. In various implementations, the common lead may be omitted, relying on the common lead discussed at 716. Continuing at 728, a temperature sensor is placed in the supply air duct work and connected to the air handler monitor module. At 732, a temperature sensor is placed in the return air duct work and connected to the air handler monitor module. At 734, a temperature sensor is placed in a predetermined location, such as a middle loop, of the evaporator coil. At 736, water sensors are installed and connected to the air handler monitor module.
At 740, mains power to the compressor/condenser unit is disconnected. At 744, the power supply of the compressor monitor module is connected to the compressor/condenser unit's input power. For example, the compressor monitor module may include a transformer that steps down the line voltage into a voltage usable by the compressor monitor module. At 748, a current sensor is attached around the compressor/condenser unit's power input. At 752, a voltage sensor is connected to the compressor/condenser unit's power input.
At 756, a temperature sensor is installed on the liquid line, such as at the input or the output to the condenser. The temperature sensor may be wrapped with insulation to thermally couple the temperature sensor to the liquid in the liquid line and thermally isolate the temperature sensor from the environment. At 760, the temperature sensor is placed in a predetermined location of the condenser coil and insulated. At 764, the temperature sensor is placed to measure ambient air. The temperature sensor may be located outside of the outdoor enclosure 312 or in a space of the outdoor enclosure 312 in which outside air circulates. At 768, mains power to the air handler and the compressor/condenser unit is restored.
Referring now to
Control continues at 804, where control determines whether a request for a frame has been received from the monitoring system. If such a request has been received, control transfers to 808; otherwise, control transfers to 812. At 808, a frame is logged, which includes measuring voltage, current, temperatures, control lines, and water sensor signals. Calculations are performed, including averages, powers, RMS, and FFT. Then a frame is transmitted to the monitoring system. In various implementations, monitoring of one or more control signals may be continuous. Therefore, when a remote frame request is received, the most recent data is used for the purpose of calculation.
Control then returns to 800. Referring now to 812, control determines whether one of the control lines has turned on. If so, control transfers to 816; otherwise, control transfers to 820. Although 812 refers to the control line being turned on, in various other implementations, control may transfer to 816 when a state of a control line changes—i.e., when the control line either turns on or turns off. This change in status may be accompanied by signals of interest to the monitoring system. Control may also transfer to 816 in response to an aggregate current of either the air handler unit or the compressor/condenser unit.
At 820, control determines whether a remote window request has been received. If so, control transfers to 816; otherwise, control transfers to 824. The window request is for a series of frames, such as is described below. At 824, control determines whether current is above a threshold, and if so, control transfers to 816; otherwise, control transfers to 828. At 828, control determines whether the alive timer is above a threshold such as 60 minutes. If so, control transfers to 808; otherwise, control returns to 804.
At 816, a window timer is reset. A window of frames is a series of frames, as described in more detail here. At 832, control begins logging frames continuously. At 836, control determines whether the window timer has exceeded a first threshold, such as 105 seconds. If so, control continues at 840; otherwise, control remains at 836, logging frames continuously. At 840, control switches to logging frames periodically, such as every 15 seconds.
Control continues at 844, where control determines whether the HVAC system is still on. If so, control continues at 848; otherwise, control transfers to 852. Control may determine that the HVAC system is on when an aggregate current of the air handler unit and/or of the compressor unit exceeds a predetermined threshold. Alternatively, control may monitor control lines of the air handler unit and/or the compressor unit to determine when calls for heat or cool have ended. At 848, control determines whether the window timer now exceeds a second threshold, such as 15 minutes. If so, control transfers to 852; otherwise, control returns to 844 while control continues logging frames periodically.
At 852, control stops logging frames periodically and performs calculations such as power, average, RMS, and FFT. Control continues at 856 where the frames are transmitted. Control then returns to 800. Although shown at the end of frame capture, 852 and 856 may be performed at various times throughout logging of the frames instead of at the end. For example only, the frames logged continuously up until the first threshold may be sent as soon as the first threshold is reached. The remaining frames up until the second threshold is reached may each be sent out as it is captured.
In various implementations, the second threshold may be set to a high value, such as an out of range high, which effectively means that the second threshold will never be reached. In such implementations, the frames are logged periodically for as long as the HVAC system remains on.
A server of the monitoring system includes a processor and memory, where the memory stores application code that processes data received from the air handler monitor and compressor monitor modules and determines existing and/or impending failures, as described in more detail below. The processor executes this application code and stores received data either in the memory or in other forms of storage, including magnetic storage, optical storage, flash memory storage, etc. While the term server is used in this application, the application is not limited to a single server.
A collection of servers, which may together operate to receive and process data from the air handler monitor and compressor monitor modules of multiple residences. A load balancing algorithm may be used between the servers to distribute processing and storage. The present application is not limited to servers that are owned, maintained, and housed by a monitoring company. Although the present disclosure describes diagnostics and processing and alerting occurring in the monitoring system 330, some or all of these functions may be performed locally using installed equipment and/or homeowner resources, such as a homeowner computer.
The servers may store baselines of frequency data for the HVAC system of a residence. The baselines can be used to detect changes indicating impending or existing failures. For example only, frequency signatures of failures of various components may be pre-programmed, and may be updated based on observed evidence from contractors. For example, once a malfunctioning HVAC system has been diagnosed, the monitoring system may note the frequency data leading up to the malfunction and correlate that frequency signature with the diagnosed cause of the malfunction. For example only, a computer learning system, such as a neural network or a genetic algorithm, may be used to refine frequency signatures. The frequency signatures may be unique to different types of HVAC systems and/or may share common characteristics. These common characteristics may be adapted based on the specific type of HVAC system being monitored.
The monitoring system may also receive current data in each frame. For example, when 7.5 frames per seconds are received, current data having a 7.5 Hz resolution is available. The current and/or the derivative of this current may be analyzed to detect impending or existing failures. In addition, the current and/or the derivative may be used to determine when to monitor certain data, or points at which to analyze obtained data. For example, frequency data obtained at a predetermined window around a certain current event may be found to correspond to a particular HVAC system component, such as activation of a hot surface igniter.
Components of the present disclosure may be connected to metering systems, such as utility (including gas and electric) metering systems. Data may be uploaded to the monitoring system 330 using any suitable method, including communications over a telephone line. These communications may take the form of digital subscriber line (DSL) or may use a modem operating at least partially within vocal frequencies. Uploading to the monitoring system 330 may be confined to certain times of day, such as at night time or at times specified by the contractor or homeowner. Further, uploads may be batched so that connections can be opened and closed less frequently. Further, in various implementations, uploads may occur only when a fault or other anomaly has been detected.
Methods of notification are not restricted to those disclosed above. For example, notification of HVAC problems may take the form of push or pull updates to an application, which may be executed on a smart phone or other mobile device or on a standard computer. Notifications may also be viewed using web applications or on local displays, such as the thermostat 364 or other displays located throughout the residence or on the air handler monitor module 322 or the compressor monitor module 316.
Referring now to
A compressor motor 918 includes a start winding 920 and a run winding 922 and is controlled by a switch 924. A run capacitor 926 may be connected across terminals of the compressor motor 918. Current sensors 928, 930, and 931, which measure currents supplied to the compressor motor 918, may be eliminated in accordance with the principles of the present disclosure. A mid-capacity solenoid 932 may be actuated by a switch 934. The mid-capacity solenoid 932 may alter the capacity of the compressor motor 918, for example from a high capacity to a medium capacity.
A reversing valve 936 may be controlled by a switch 938 and/or by a switch 940. A processor 942 controls switches 914, 924, 934, 938, and 940. The processor 942 may provide visual indicators of operation, such as on a screen or via a blinking multicolor light-emitting diode 944. The processor 942 may communicate with a furnace control processor 946 via a network port 948 over networking lines 950. The processor 942 may operate in response to a high side refrigerant processor 952 and a low side refrigerant processor 954. The processor 942 may also operate in response to an outside ambient temperature sensor 956 and a condenser coil temperature sensor 958.
A blower motor controller 960 communicates over the network using the networking lines 950. The blower motor controller 960 may include a blower control processor 962 and a inverter driver 964. The inverter driver 964 drives a circulator blower motor 966. A circulator blower controller 968 controls the blower motor controller 960 over the network using the networking lines 950. The circulator blower controller includes a relay 970 and a circulator control processor 972.
A furnace controller 974 includes the furnace control processor 946 and switches 976, 978, and 980. The furnace controller 974 receives power from one of the lines 904 or 906 and the neutral line 908. The furnace control processor 946 receives control signals from a thermostat 982 and actuates the switches 976, 978, and 980 in response. The switch 976 may be a relay and controls a gas valve 984, which regulates combustion fuel to the furnace. The switch 978 controls an inducer motor 986, which exhausts combustion gases. The switch 980 controls an igniter 988, which ignites the fuel. The furnace controller 974 and the thermostat 982 are powered by a transformer 990.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now
The cloud processor 1204 receives the logged data and identifies key points in the data 1208, such as transitions between operating modes. These transitions may be identified by current spikes, such as are depicted in
A base case pattern log 1224 may learn normal operation of the device in question and thereby establish a baseline. Pattern comparison 1228 receives data corresponding to key points and compares that data with base cases and selected operation patterns. Deviations by more than a predetermined amount may result in fault notification 1232. Further, anomalies that may be not be sufficient to trigger a fault may impact performance 1236. Performance 1236 may monitor even properly running equipment to determine if performance has degraded through normal wear and tear or through issues with the home itself, such as low insulation value. An information channel 1240 provides information about identified faults and performance, such as alerts of decreased performance, to a contractor or homeowner, represented at 1244.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The processing module 1400 may then perform each prediction or detection task with relevant data from the event data 1402. In various implementations, certain processing operations are common to more than one detection or prediction operation. This data may therefore be cached and reused. The processing module 1400 receives information about equipment configuration 1410, such as control signal mapping.
Rules and limits 1414 determine whether sensor values are out of bounds, which may indicate sensor failures. In addition, the rules and limits 1414 may indicate that sensor values cannot be trusted when parameters such as current and voltage are outside of predetermined limits. For example only, if the AC voltage sags, such as during a brownout, data taken during that time may be discarded as unreliable.
De-bouncing and counter holds 1418 may store counts of anomaly detection. For example only, detection of a single solenoid-operated gas valve malfunction may increment a counter, but not trigger a fault. Only if multiple solenoid-operated gas valve failures are detected is an error signaled. This can eliminate false positives. For example only, a single failure of energy consuming component may cause a corresponding counter to be incremented by one, while detection of proper operation may lead to the corresponding counter being decremented by one. In this way, if faulty operation is prevalent, the counter will eventually increase to a point where an error is signaled. Records and reference files 1422 may store frequency and time domain data establishing baselines for detection and prediction.
A basic failure-to-function fault may be determined by comparing control line state against operational state based on current and/or power. Basic function may be verified by temperature, and improper operation may contribute to a counter being incremented. This analysis may rely on return air temperature, supply air temperature, liquid line in temperature, voltage, current, real power, control line status, compressor discharge temperature, liquid line out temperature, and ambient temperature.
Sensor error faults may be detected by checking sensor values for anomalous operation, such as may occur for open-circuit or short-circuit faults. The values for those determinations may be found in the rules and limits 1414. This analysis may rely on return air temperature, supply air temperature, liquid line in temperature (which may correspond to a temperature of the refrigerant line in the air handler, before or after the expansion valve), control line status, compressor discharge temperature, liquid line out temperature, and ambient temperature.
When the HVAC system is off, sensor error faults may also be diagnosed. For example, based on control lines indicating that the HVAC system has been off for an hour, processing module 1400 may check whether the compressor discharge temperature, liquid line out temperature, and ambient temperature are approximately equal. In addition, the processing module 1400 may also check that the return air temperature, the supply air temperature, and the liquid line in temperature are approximately equal.
The processing module 1400 may compare temperature readings and voltages against predetermined limits to determine voltage faults and temperature faults. These faults may cause the processing module 1400 to ignore various faults that could appear present when voltages or temperatures are outside of the predetermined limits.
The processing module 1400 may check the status of discrete sensors to determine whether specifically-detected fault conditions are present. For example only, the status of condensate, float switch, and floor sensor water sensors are checked. The water sensors may be cross-checked against operating states of the HVAC system. For example only, if the air conditioning system is not running, it would not be expected that the condensate tray would be filling with water. This may instead indicate that one of the water sensors is malfunctioning. Such a determination could initiate a service call to fix the sensor so that it can properly identify when an actual water problem is present.
The processing module 1400 may determine whether the proper sequence of furnace initiation is occurring. This may rely on event and daily accumulation files 1426. The processing module 1400 may perform state sequence decoding, such as by looking at transitions as shown in
The processing module 1400 may determine whether a flame probe or flame sensor is accurately detecting flame. State sequence decoding may be followed by determining whether a series of furnace initiations are performed. If so, this may indicate that the flame probe is not detecting flame and the burner is therefore being shut off. The frequency of retries may increase over time when the flame probe is not operating correctly.
The processing module 1400 may evaluate heat pump performance by comparing thermal performance against power consumption and unit history. This may rely on equipment configuration data 1410, including compressor maps when available.
The processing module 1400 may determine refrigerant level of the air conditioning system. For example, the processing module 1400 may analyze the frequency content of the compressor current and extract frequencies at the third, fifth, and seventh harmonics of the power line frequencies. This data may be compared, based on ambient temperature, to historical data from when the air conditioning system was known to be fully charged. Generally, as charge is lost, the surge frequency may decrease. Additional data may be used for reinforcement of a low refrigerant level determination, such as supply air temperature, return air temperature, liquid line in temperature, voltage, real power, control line status, compressor discharge temperature, and liquid line out temperature.
The processing module 1400 may alternatively determine a low refrigerant charge by monitoring deactivation of the compressor motor by a protector switch, may indicate a low refrigerant charge condition. To prevent false positives, the processing module 1400 may ignore compressor motor deactivation that happens sooner than a predetermined delay after the compressor motor is started, as this may instead indicate another problem, such as a stuck rotor.
The processing module 1400 may determine the performance of a capacitor in the air handler unit, such as a run capacitor for the circulator blower. Based on return air temperature, supply air temperature, voltage, current, real power, control line status, and FFT data, the processing module 1400 determines the time and magnitude of the start current and checks the start current curve against a reference. In addition, steady state current may be compared over time to see whether an increase results in a corresponding increase in the difference between the return air temperature and the supply air temperature.
Similarly, the processing module 1400 determines whether the capacitor in the compressor/condenser unit is functioning properly. Based on compressor discharge temperature, liquid line out temperature, ambient temperature, voltage, current, real power, control line status, and FFT current data, control determines a time and magnitude of start current. This start current is checked against a reference in the time and/or frequency domains. The processing module 1400 may compensate for changes in ambient temperature and in liquid line in temperature. The processing module 1400 may also verify that increases in steady state current result in a corresponding increase in the difference between the compressor discharge temperature and the liquid line in temperature.
The processing module may calculate and accumulate energy consumption data over time. The processing module may also store temperatures on a periodic basis and at the end of heat and cool cycles. In addition, the processing module 1400 may record lengths of run times. An accumulation of run times may be used in determining the age of wear items, which may benefit from servicing, such as oiling, or preemptive replacing.
The processing module 1400 may also grade the homeowner's equipment. The processing module 1400 compares heat flux generated by the HVAC equipment against energy consumption. The heat flux may be indicated by return air temperature and/or indoor temperature, such as from a thermostat. The processing module 1400 may calculate the envelope of the residence to determine the net flux. The processing module 1400 may compare the equipment's performance, when adjusted for residence envelope, against other similar systems. Significant deviations may cause an error to be indicated.
The processing module 1400 uses a change in current or power and the type of circulator blower motor to determine the change in load. This change in load can be used to determine whether the filter is dirty. The processing module 1400 may also use power factor, which may be calculated based on the difference in phase between voltage and current. Temperatures may be used to verify reduced flow and eliminate other potential reasons for observed current or power changes in the circulator blower motor. The processing module 1400 may also determine when an evaporator coil is closed. The processing module 1400 uses a combination of loading and thermal data to identify the signature of a coil that is freezing or frozen. This can be performed even when there is no direct temperature measurement of the coil itself.
FFT analysis may show altered compressor load from high liquid fraction. Often, a frozen coil is caused by a fan failure, but the fan failure itself may be detected separately. The processing module 1400 may use return air temperature, supply air temperature, liquid line in temperature, voltage, current, real power, and FFT data from both the air handler unit and the compressor condenser unit. In addition, the processing module 1400 may monitor control line status, switch statuses, compressor discharge temperature, liquid line out temperature, and ambient temperature. When a change in loading occurs that might be indicative of a clogged filter, but the change happened suddenly, a different cause may be to blame.
The processing module 1400 identifies a condenser blockage by examining the approach temperature, which is the difference between the liquid line out temperature and the ambient temperature. When the refrigerant has not been sufficiently cooled from the condenser discharge temperature (the input to the condenser) to the liquid line out temperature (output of the condenser), adjusted based on ambient temperature, the condenser may be blocked. Other data can be used to exclude other possible causes of this problem. The other data may include supply air temperature, return air temperature, voltage, current, real power, FFT data, and control line status both of the air handler unit and the compressor condenser unit.
The processing module 1400 determines whether the installed equipment is oversized for the residence. Based on event and daily accumulation files, the processing module evaluates temperature slopes at the end of the heating and/or cooling run. Using run time, duty cycle, temperature slopes, ambient temperature, and equipment heat flux versus home flux, appropriateness of equipment sizing can be determined. When equipment is oversized, there are comfort implications. For example, in air conditioning, short runs do not circulate air sufficiently, so moisture is not pulled out of the air. Further, the air conditioning system may never reach peak operating efficiency during a short cycle.
The processing module 1400 evaluates igniter positive temperature coefficient based on voltage, current, real power, control line status, and FFT data from the air handler unit. The processing module compares current level and slope during warm-up to look for increased resistance. Additionally, the processing module may use FFT data on warm-up to detect changes in the curve shape and internal arcing.
The processing module also evaluates igniter negative temperature coefficient based on voltage, current, real power, control line status, and FFT data from the air handler unit. The processing module 1400 compares current level and slope during warm-up to look for increased resistance. The processing module 1400 checks initial warm-up and trough currents. In addition, the processing module 1400 may use FFT data corresponding to warm-up to detect changes in the curve shape and internal arcing.
The processing module 1400 can also evaluate the positive temperature coefficient of a nitride igniter based on voltage, current, real power, control line status, and FFT data from the air handler unit. The processing module 1400 compares voltage level and current slope during warm-up to look for increased resistance. In addition, the processing module 1400 uses FFT data corresponding to warm-up to detect changes in the curve shape, drive voltage pattern, and internal arcing. Changes in drive voltage may indicate igniter aging, so those adjustments should be distinguished from changes to compensate for gas content and other furnace components.
Referring now to
The primary columns include timing of when events are detected, time domain current information, temperatures (including residence temperature as measured by the thermostat), pressures (such as refrigerant system pressures and/or air pressures), FFT data, and direct detection. Direct detection may occur when a status or control line directly indicates the fault or feature, such as when a water sensor indicates an overfull condensate tray.
Referring now to
The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A or B or C), using a non-exclusive logical OR. It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the present disclosure.
As used herein, the term module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC); an electronic circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor (shared, dedicated, or group) that executes code; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip. The term module may include memory (shared, dedicated, or group) that stores code executed by the processor. For example only, the processor may be a 16-bit PIC24 MCU microprocessor manufactured by Michrochip Technology, Inc.
The term code, as used above, may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, and/or objects. The term shared, as used above, means that some or all code from multiple modules may be executed using a single (shared) processor. In addition, some or all code from multiple modules may be stored by a single (shared) memory. The term group, as used above, means that some or all code from a single module may be executed using a group of processors. In addition, some or all code from a single module may be stored using a group of memories.
The apparatuses and methods described herein may be implemented by one or more computer programs executed by one or more processors. The computer programs include processor-executable instructions that are stored on a non-transitory tangible computer readable medium. The computer programs may also include stored data. Non-limiting examples of the non-transitory tangible computer readable medium are nonvolatile memory, magnetic storage, and optical storage.
This application is a continuation of U.S. patent application Ser. No. 14/300,782, filed on Jun. 10, 2014 (now U.S. Pat. No. 9,703,287), which is a continuation of U.S. patent application Ser. No. 13/407,180, filed on Feb. 28, 2012 (now U.S. Pat. No. 9,285,802), which claims the benefit of U.S. Provisional Application No. 61/447,681 filed on Feb. 28, 2011 and U.S. Provisional Application No. 61/548,009 filed on Oct. 17, 2011. The entire disclosures of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2054542 | Hoelle | Sep 1936 | A |
2296822 | Wolfert | Sep 1942 | A |
2631050 | Haeberlein | Mar 1953 | A |
2804839 | Hallinan | Sep 1957 | A |
2961606 | Mead | Nov 1960 | A |
2962702 | Derr et al. | Nov 1960 | A |
2978879 | Heidorn | Apr 1961 | A |
3027865 | Kautz et al. | Apr 1962 | A |
3047696 | Heidorn | Jul 1962 | A |
3082951 | Kayan | Mar 1963 | A |
3107843 | Finn | Oct 1963 | A |
3170304 | Hale | Feb 1965 | A |
3232519 | Long | Feb 1966 | A |
3278111 | Parker | Oct 1966 | A |
3327197 | Marquis | Jun 1967 | A |
3339164 | Landis et al. | Aug 1967 | A |
3400374 | Schumann | Sep 1968 | A |
3513662 | Golber | May 1970 | A |
3581281 | Martin et al. | May 1971 | A |
3585451 | Day, III | Jun 1971 | A |
3653783 | Sauder | Apr 1972 | A |
3660718 | Pinckaers | May 1972 | A |
3665339 | Liu | May 1972 | A |
3665399 | Zehr et al. | May 1972 | A |
3680324 | Garland | Aug 1972 | A |
3697953 | Schoenwitz | Oct 1972 | A |
3707851 | McAshan, Jr. | Jan 1973 | A |
3729949 | Talbot | May 1973 | A |
3735377 | Kaufman | May 1973 | A |
3742302 | Neill | Jun 1973 | A |
3742303 | Dageford | Jun 1973 | A |
3767328 | Ladusaw | Oct 1973 | A |
3777240 | Neill | Dec 1973 | A |
3783681 | Hirt et al. | Jan 1974 | A |
3820074 | Toman | Jun 1974 | A |
3882305 | Johnstone | May 1975 | A |
3924972 | Szymaszek | Dec 1975 | A |
3927712 | Nakayama | Dec 1975 | A |
3935519 | Pfarrer et al. | Jan 1976 | A |
3950962 | Odashima | Apr 1976 | A |
3960011 | Renz et al. | Jun 1976 | A |
3978382 | Pfarrer et al. | Aug 1976 | A |
3998068 | Chirnside | Dec 1976 | A |
4006460 | Hewitt et al. | Feb 1977 | A |
4014182 | Granryd | Mar 1977 | A |
4018584 | Mullen | Apr 1977 | A |
4019172 | Srodes | Apr 1977 | A |
4024725 | Uchida et al. | May 1977 | A |
4027289 | Toman | May 1977 | A |
4034570 | Anderson et al. | Jul 1977 | A |
4038061 | Anderson et al. | Jul 1977 | A |
4045973 | Anderson et al. | Sep 1977 | A |
4046532 | Nelson | Sep 1977 | A |
RE29450 | Goldsby et al. | Oct 1977 | E |
4060716 | Pekrul et al. | Nov 1977 | A |
4066869 | Apaloo et al. | Jan 1978 | A |
4090248 | Swanson et al. | May 1978 | A |
4102150 | Kountz | Jul 1978 | A |
4102394 | Botts | Jul 1978 | A |
4104888 | Reedy et al. | Aug 1978 | A |
4105063 | Bergt | Aug 1978 | A |
4112703 | Kountz | Sep 1978 | A |
4132086 | Kountz | Jan 1979 | A |
4136730 | Kinsey | Jan 1979 | A |
4137057 | Piet et al. | Jan 1979 | A |
4137725 | Martin | Feb 1979 | A |
4142375 | Abe et al. | Mar 1979 | A |
4143707 | Lewis et al. | Mar 1979 | A |
4146085 | Wills | Mar 1979 | A |
RE29966 | Nussbaum | Apr 1979 | E |
4151725 | Kountz et al. | May 1979 | A |
4153003 | Willis | May 1979 | A |
4156350 | Elliott et al. | May 1979 | A |
4161106 | Savage et al. | Jul 1979 | A |
4165619 | Girard | Aug 1979 | A |
4171622 | Yamaguchi et al. | Oct 1979 | A |
4173871 | Brooks | Nov 1979 | A |
4178988 | Cann et al. | Dec 1979 | A |
RE30242 | del Toro et al. | Apr 1980 | E |
4197717 | Schumacher | Apr 1980 | A |
4205381 | Games et al. | May 1980 | A |
4209994 | Mueller et al. | Jul 1980 | A |
4211089 | Mueller et al. | Jul 1980 | A |
4217761 | Cornaire et al. | Aug 1980 | A |
4220010 | Mueller et al. | Sep 1980 | A |
4227862 | Andrew et al. | Oct 1980 | A |
4232530 | Mueller | Nov 1980 | A |
4233818 | Lastinger | Nov 1980 | A |
4236379 | Mueller | Dec 1980 | A |
4244182 | Behr | Jan 1981 | A |
4246763 | Mueller et al. | Jan 1981 | A |
4248051 | Darcy et al. | Feb 1981 | A |
4251988 | Allard et al. | Feb 1981 | A |
4257795 | Shaw | Mar 1981 | A |
4259847 | Pearse, Jr. | Apr 1981 | A |
4267702 | Houk | May 1981 | A |
4270174 | Karlin et al. | May 1981 | A |
4271898 | Freeman | Jun 1981 | A |
4281358 | Plouffe et al. | Jul 1981 | A |
4284849 | Anderson et al. | Aug 1981 | A |
4286438 | Clarke | Sep 1981 | A |
4290480 | Sulkowski | Sep 1981 | A |
4296727 | Bryan | Oct 1981 | A |
4301660 | Mueller et al. | Nov 1981 | A |
4306293 | Marathe | Dec 1981 | A |
4307775 | Saunders et al. | Dec 1981 | A |
4308725 | Chiyoda | Jan 1982 | A |
4311188 | Kojima et al. | Jan 1982 | A |
4319461 | Shaw | Mar 1982 | A |
4321529 | Simmonds et al. | Mar 1982 | A |
4325223 | Cantley | Apr 1982 | A |
4328678 | Kono et al. | May 1982 | A |
4328680 | Stamp, Jr. et al. | May 1982 | A |
4333316 | Stamp, Jr. et al. | Jun 1982 | A |
4333317 | Sawyer | Jun 1982 | A |
4336001 | Andrew et al. | Jun 1982 | A |
4338790 | Saunders et al. | Jul 1982 | A |
4338791 | Stamp, Jr. et al. | Jul 1982 | A |
4345162 | Hammer et al. | Aug 1982 | A |
4346755 | Alley et al. | Aug 1982 | A |
4350021 | Lundstrom | Sep 1982 | A |
4350023 | Kuwabara et al. | Sep 1982 | A |
4351163 | Johannsen | Sep 1982 | A |
4356703 | Vogel | Nov 1982 | A |
4361273 | Levine et al. | Nov 1982 | A |
4365983 | Abraham et al. | Dec 1982 | A |
4370098 | McClain et al. | Jan 1983 | A |
4372119 | Gillbrand et al. | Feb 1983 | A |
4376926 | Senor | Mar 1983 | A |
4381549 | Stamp, Jr. et al. | Apr 1983 | A |
4382367 | Roberts | May 1983 | A |
4384462 | Overman et al. | May 1983 | A |
4387368 | Day, III et al. | Jun 1983 | A |
4387578 | Paddock | Jun 1983 | A |
4390058 | Otake et al. | Jun 1983 | A |
4390321 | Langlois et al. | Jun 1983 | A |
4390922 | Pelliccia | Jun 1983 | A |
4395886 | Mayer | Aug 1983 | A |
4395887 | Sweetman | Aug 1983 | A |
4399548 | Castleberry | Aug 1983 | A |
4402054 | Osborne et al. | Aug 1983 | A |
4406133 | Saunders et al. | Sep 1983 | A |
4407138 | Mueller | Oct 1983 | A |
4408660 | Sutoh et al. | Oct 1983 | A |
4412788 | Shaw et al. | Nov 1983 | A |
4415896 | Allgood | Nov 1983 | A |
4418388 | Allgor et al. | Nov 1983 | A |
4420947 | Yoshino | Dec 1983 | A |
4425010 | Bryant et al. | Jan 1984 | A |
4429578 | Darrel et al. | Feb 1984 | A |
4432232 | Brantley et al. | Feb 1984 | A |
4434390 | Elms | Feb 1984 | A |
4441329 | Dawley | Apr 1984 | A |
4448038 | Barbier | May 1984 | A |
4449375 | Briccetti | May 1984 | A |
4451929 | Yoshida | May 1984 | A |
4460123 | Beverly | Jul 1984 | A |
4463571 | Wiggs | Aug 1984 | A |
4463574 | Spethmann et al. | Aug 1984 | A |
4463576 | Burnett et al. | Aug 1984 | A |
4465229 | Kompelien | Aug 1984 | A |
4467230 | Rovinsky | Aug 1984 | A |
4467385 | Bandoli et al. | Aug 1984 | A |
4467613 | Behr et al. | Aug 1984 | A |
4470092 | Lombardi | Sep 1984 | A |
4470266 | Briccetti et al. | Sep 1984 | A |
4474024 | Eplett et al. | Oct 1984 | A |
4474542 | Kato et al. | Oct 1984 | A |
4479389 | Anderson, III et al. | Oct 1984 | A |
4484452 | Houser, Jr. | Nov 1984 | A |
4489551 | Watanabe et al. | Dec 1984 | A |
4490986 | Paddock | Jan 1985 | A |
4494383 | Nagatomo et al. | Jan 1985 | A |
4495779 | Tanaka et al. | Jan 1985 | A |
4496296 | Arai et al. | Jan 1985 | A |
4497031 | Froehling et al. | Jan 1985 | A |
4498310 | Imanishi et al. | Feb 1985 | A |
4499739 | Matsuoka et al. | Feb 1985 | A |
4502084 | Hannett | Feb 1985 | A |
4502833 | Hibino et al. | Mar 1985 | A |
4502842 | Currier et al. | Mar 1985 | A |
4502843 | Martin | Mar 1985 | A |
4505125 | Baglione | Mar 1985 | A |
4506518 | Yoshikawa et al. | Mar 1985 | A |
4507934 | Tanaka et al. | Apr 1985 | A |
4510547 | Rudich, Jr. | Apr 1985 | A |
4510576 | MacArthur et al. | Apr 1985 | A |
4512161 | Logan et al. | Apr 1985 | A |
4516407 | Watabe | May 1985 | A |
4517468 | Kemper et al. | May 1985 | A |
4520674 | Canada et al. | Jun 1985 | A |
4523435 | Lord | Jun 1985 | A |
4523436 | Schedel et al. | Jun 1985 | A |
4527247 | Kaiser et al. | Jul 1985 | A |
4527399 | Lord | Jul 1985 | A |
4535607 | Mount | Aug 1985 | A |
4538420 | Nelson | Sep 1985 | A |
4538422 | Mount et al. | Sep 1985 | A |
4539820 | Zinsmeyer | Sep 1985 | A |
4540040 | Fukumoto et al. | Sep 1985 | A |
4545210 | Lord | Oct 1985 | A |
4545214 | Kinoshita | Oct 1985 | A |
4548549 | Murphy et al. | Oct 1985 | A |
4549403 | Lord et al. | Oct 1985 | A |
4549404 | Lord | Oct 1985 | A |
4550770 | Nussdorfer et al. | Nov 1985 | A |
4553400 | Branz | Nov 1985 | A |
4555057 | Foster | Nov 1985 | A |
4555910 | Sturges | Dec 1985 | A |
4557317 | Harmon, Jr. | Dec 1985 | A |
4558181 | Blanchard et al. | Dec 1985 | A |
4561260 | Nishi et al. | Dec 1985 | A |
4563624 | Yu | Jan 1986 | A |
4563877 | Harnish | Jan 1986 | A |
4563878 | Baglione | Jan 1986 | A |
4567733 | Mecozzi | Feb 1986 | A |
4568909 | Whynacht | Feb 1986 | A |
4574871 | Parkinson et al. | Mar 1986 | A |
4575318 | Blain | Mar 1986 | A |
4577977 | Pejsa | Mar 1986 | A |
4580947 | Shibata et al. | Apr 1986 | A |
4583373 | Shaw | Apr 1986 | A |
4589060 | Zinsmeyer | May 1986 | A |
4593367 | Slack et al. | Jun 1986 | A |
4598764 | Beckey | Jul 1986 | A |
4602484 | Bendikson | Jul 1986 | A |
4603556 | Suefuji et al. | Aug 1986 | A |
4604036 | Sutou et al. | Aug 1986 | A |
4611470 | Enstrom | Sep 1986 | A |
4612775 | Branz et al. | Sep 1986 | A |
4614089 | Dorsey | Sep 1986 | A |
4617804 | Fukushima et al. | Oct 1986 | A |
4620286 | Smith et al. | Oct 1986 | A |
4620424 | Tanaka et al. | Nov 1986 | A |
4621502 | Ibrahim et al. | Nov 1986 | A |
4626753 | Letterman | Dec 1986 | A |
4627245 | Levine | Dec 1986 | A |
4627483 | Harshbarger, III et al. | Dec 1986 | A |
4627484 | Harshbarger, Jr. et al. | Dec 1986 | A |
4630572 | Evans | Dec 1986 | A |
4630670 | Wellman et al. | Dec 1986 | A |
4642034 | Terauchi | Feb 1987 | A |
4642782 | Kemper et al. | Feb 1987 | A |
4644479 | Kemper et al. | Feb 1987 | A |
4646532 | Nose | Mar 1987 | A |
4648044 | Hardy et al. | Mar 1987 | A |
4649515 | Thompson et al. | Mar 1987 | A |
4649710 | Inoue et al. | Mar 1987 | A |
4653280 | Hansen et al. | Mar 1987 | A |
4653285 | Pohl | Mar 1987 | A |
4655688 | Bohn et al. | Apr 1987 | A |
4660386 | Hansen et al. | Apr 1987 | A |
4662184 | Pohl et al. | May 1987 | A |
4674292 | Ohya et al. | Jun 1987 | A |
4677830 | Sumikawa et al. | Jul 1987 | A |
4680940 | Vaughn | Jul 1987 | A |
4682473 | Rogers, III | Jul 1987 | A |
4684060 | Adams et al. | Aug 1987 | A |
4685615 | Hart | Aug 1987 | A |
4686835 | Alsenz | Aug 1987 | A |
4689967 | Han et al. | Sep 1987 | A |
4697431 | Alsenz | Oct 1987 | A |
4698978 | Jones | Oct 1987 | A |
4698981 | Kaneko et al. | Oct 1987 | A |
4701824 | Beggs et al. | Oct 1987 | A |
4703325 | Chamberlin et al. | Oct 1987 | A |
4706152 | DeFilippis et al. | Nov 1987 | A |
4706469 | Oguni et al. | Nov 1987 | A |
4712648 | Mattes et al. | Dec 1987 | A |
4713717 | Pejouhy et al. | Dec 1987 | A |
4715190 | Han et al. | Dec 1987 | A |
4715792 | Nishizawa et al. | Dec 1987 | A |
4716582 | Blanchard et al. | Dec 1987 | A |
4716957 | Thompson et al. | Jan 1988 | A |
4720980 | Howland | Jan 1988 | A |
4722018 | Pohl | Jan 1988 | A |
4722019 | Pohl | Jan 1988 | A |
4724678 | Pohl | Feb 1988 | A |
4735054 | Beckey | Apr 1988 | A |
4735060 | Alsenz | Apr 1988 | A |
4744223 | Umezu | May 1988 | A |
4745765 | Pettitt | May 1988 | A |
4745766 | Bahr | May 1988 | A |
4745767 | Ohya et al. | May 1988 | A |
4750332 | Jenski et al. | Jun 1988 | A |
4750672 | Beckey et al. | Jun 1988 | A |
4751501 | Gut | Jun 1988 | A |
4751825 | Voorhis et al. | Jun 1988 | A |
4754410 | Leech et al. | Jun 1988 | A |
4755957 | White et al. | Jul 1988 | A |
4765150 | Persem | Aug 1988 | A |
4768346 | Mathur | Sep 1988 | A |
4768348 | Noguchi | Sep 1988 | A |
4783752 | Kaplan et al. | Nov 1988 | A |
4787213 | Gras et al. | Nov 1988 | A |
4790142 | Beckey | Dec 1988 | A |
4796142 | Libert | Jan 1989 | A |
4796466 | Farmer | Jan 1989 | A |
4798055 | Murray et al. | Jan 1989 | A |
4805118 | Rishel | Feb 1989 | A |
4807445 | Matsuoka et al. | Feb 1989 | A |
4820130 | Eber et al. | Apr 1989 | A |
4829779 | Munson et al. | May 1989 | A |
4831560 | Zaleski | May 1989 | A |
4831832 | Alsenz | May 1989 | A |
4831833 | Duenes et al. | May 1989 | A |
4835706 | Asahi | May 1989 | A |
4835980 | Oyanagi et al. | Jun 1989 | A |
4838037 | Wood | Jun 1989 | A |
4841734 | Torrence | Jun 1989 | A |
4843575 | Crane | Jun 1989 | A |
4845956 | Berntsen et al. | Jul 1989 | A |
4848099 | Beckey et al. | Jul 1989 | A |
4848100 | Barthel et al. | Jul 1989 | A |
4850198 | Helt et al. | Jul 1989 | A |
4850204 | Bos et al. | Jul 1989 | A |
4852363 | Kampf et al. | Aug 1989 | A |
4853693 | Eaton-Williams | Aug 1989 | A |
4856286 | Sulfstede et al. | Aug 1989 | A |
4858676 | Bolfik et al. | Aug 1989 | A |
4866635 | Kahn et al. | Sep 1989 | A |
4866944 | Yamazaki | Sep 1989 | A |
4869073 | Kawai et al. | Sep 1989 | A |
4873836 | Thompson | Oct 1989 | A |
4875589 | Lacey et al. | Oct 1989 | A |
4877382 | Caillat et al. | Oct 1989 | A |
4878355 | Beckey et al. | Nov 1989 | A |
4881184 | Abegg, III et al. | Nov 1989 | A |
4882747 | Williams | Nov 1989 | A |
4882908 | White | Nov 1989 | A |
4884412 | Sellers et al. | Dec 1989 | A |
4885707 | Nichol et al. | Dec 1989 | A |
4885914 | Pearman | Dec 1989 | A |
4887436 | Enomoto et al. | Dec 1989 | A |
4887857 | VanOmmeren | Dec 1989 | A |
4889280 | Grald et al. | Dec 1989 | A |
4893480 | Matsui et al. | Jan 1990 | A |
4899551 | Weintraub | Feb 1990 | A |
4903500 | Hanson | Feb 1990 | A |
4903759 | Lapeyrouse | Feb 1990 | A |
4904993 | Sato | Feb 1990 | A |
4909041 | Jones | Mar 1990 | A |
4909076 | Busch et al. | Mar 1990 | A |
4910966 | Levine et al. | Mar 1990 | A |
4913625 | Gerlowski | Apr 1990 | A |
4916633 | Tychonievich et al. | Apr 1990 | A |
4916909 | Mathur et al. | Apr 1990 | A |
4916912 | Levine et al. | Apr 1990 | A |
4918690 | Markkula, Jr. et al. | Apr 1990 | A |
4918932 | Gustafson et al. | Apr 1990 | A |
4924404 | Reinke, Jr. | May 1990 | A |
4924418 | Bachman et al. | May 1990 | A |
4928750 | Nurczyk | May 1990 | A |
4932588 | Fedter et al. | Jun 1990 | A |
4939909 | Tsuchiyama et al. | Jul 1990 | A |
4943003 | Shimizu et al. | Jul 1990 | A |
4944160 | Malone et al. | Jul 1990 | A |
4945491 | Rishel | Jul 1990 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4949550 | Hanson | Aug 1990 | A |
4953784 | Yasufuku et al. | Sep 1990 | A |
4959970 | Meckler | Oct 1990 | A |
4964060 | Hartsog | Oct 1990 | A |
4964125 | Kim | Oct 1990 | A |
4966006 | Thuesen et al. | Oct 1990 | A |
4967567 | Proctor et al. | Nov 1990 | A |
4970496 | Kirkpatrick | Nov 1990 | A |
4974427 | Diab | Dec 1990 | A |
4974665 | Zillner, Jr. | Dec 1990 | A |
4975024 | Heckel | Dec 1990 | A |
4977751 | Hanson | Dec 1990 | A |
4985857 | Bajpai et al. | Jan 1991 | A |
4987748 | Meckler | Jan 1991 | A |
4990057 | Rollins | Feb 1991 | A |
4990893 | Kiluk | Feb 1991 | A |
4991770 | Bird et al. | Feb 1991 | A |
5000009 | Clanin | Mar 1991 | A |
5005365 | Lynch | Apr 1991 | A |
5009074 | Goubeaux et al. | Apr 1991 | A |
5009075 | Okoren | Apr 1991 | A |
5009076 | Winslow | Apr 1991 | A |
5012629 | Rehman et al. | May 1991 | A |
5018357 | Livingstone et al. | May 1991 | A |
5018665 | Sulmone | May 1991 | A |
RE33620 | Persem | Jun 1991 | E |
5022234 | Goubeaux et al. | Jun 1991 | A |
5039009 | Baldwin et al. | Aug 1991 | A |
5042264 | Dudley | Aug 1991 | A |
5051720 | Kittirutsunetorn | Sep 1991 | A |
5054294 | Dudley | Oct 1991 | A |
5056036 | Van Bork | Oct 1991 | A |
5056329 | Wilkinson | Oct 1991 | A |
5058388 | Shaw et al. | Oct 1991 | A |
5062278 | Sugiyama | Nov 1991 | A |
5065593 | Dudley et al. | Nov 1991 | A |
5067099 | McCown et al. | Nov 1991 | A |
RE33775 | Behr et al. | Dec 1991 | E |
5070468 | Niinomi et al. | Dec 1991 | A |
5071065 | Aalto et al. | Dec 1991 | A |
5073091 | Burgess et al. | Dec 1991 | A |
5073862 | Carlson | Dec 1991 | A |
5076067 | Prenger et al. | Dec 1991 | A |
5076494 | Ripka | Dec 1991 | A |
5077983 | Dudley | Jan 1992 | A |
5083438 | McMullin | Jan 1992 | A |
5086385 | Launey et al. | Feb 1992 | A |
5088297 | Maruyama et al. | Feb 1992 | A |
5094086 | Shyu | Mar 1992 | A |
5095712 | Narreau | Mar 1992 | A |
5095715 | Dudley | Mar 1992 | A |
5099654 | Baruschke et al. | Mar 1992 | A |
5102316 | Caillat et al. | Apr 1992 | A |
5103391 | Barrett | Apr 1992 | A |
5107500 | Wakamoto et al. | Apr 1992 | A |
5109222 | Welty | Apr 1992 | A |
5109676 | Waters et al. | May 1992 | A |
5109700 | Hicho | May 1992 | A |
5109916 | Thompson | May 1992 | A |
5115406 | Zatezalo et al. | May 1992 | A |
5115643 | Hayata et al. | May 1992 | A |
5115644 | Alsenz | May 1992 | A |
5115967 | Wedekind | May 1992 | A |
5118260 | Fraser, Jr. | Jun 1992 | A |
5119466 | Suzuki | Jun 1992 | A |
5119637 | Bard et al. | Jun 1992 | A |
5121610 | Atkinson et al. | Jun 1992 | A |
5123017 | Simpkins et al. | Jun 1992 | A |
5123252 | Hanson | Jun 1992 | A |
5123253 | Hanson et al. | Jun 1992 | A |
5123255 | Ohizumi | Jun 1992 | A |
5125067 | Erdman | Jun 1992 | A |
RE34001 | Wrobel | Jul 1992 | E |
5127232 | Paige et al. | Jul 1992 | A |
5131237 | Valbjorn | Jul 1992 | A |
5136855 | Lenarduzzi | Aug 1992 | A |
5140394 | Cobb, III et al. | Aug 1992 | A |
5141407 | Ramsey et al. | Aug 1992 | A |
5142877 | Shimizu | Sep 1992 | A |
5150584 | Tomasov et al. | Sep 1992 | A |
5156539 | Anderson et al. | Oct 1992 | A |
5167494 | Inagaki et al. | Dec 1992 | A |
5170935 | Federspiel et al. | Dec 1992 | A |
5170936 | Kubo et al. | Dec 1992 | A |
5181389 | Hanson et al. | Jan 1993 | A |
5186014 | Runk | Feb 1993 | A |
5197666 | Wedekind | Mar 1993 | A |
5199855 | Nakajima et al. | Apr 1993 | A |
5200872 | D'Entremont et al. | Apr 1993 | A |
5200987 | Gray | Apr 1993 | A |
5201862 | Pettitt | Apr 1993 | A |
5203178 | Shyu | Apr 1993 | A |
5203179 | Powell | Apr 1993 | A |
5209076 | Kauffman et al. | May 1993 | A |
5209400 | Winslow et al. | May 1993 | A |
5219041 | Greve | Jun 1993 | A |
5224354 | Ito et al. | Jul 1993 | A |
5224835 | Oltman | Jul 1993 | A |
5226472 | Benevelli et al. | Jul 1993 | A |
5228300 | Shim | Jul 1993 | A |
5228304 | Ryan | Jul 1993 | A |
5228307 | Koce | Jul 1993 | A |
5230223 | Hullar et al. | Jul 1993 | A |
5231844 | Park | Aug 1993 | A |
5233841 | Jyrek | Aug 1993 | A |
5235526 | Saffell | Aug 1993 | A |
5237830 | Grant | Aug 1993 | A |
5241664 | Ohba et al. | Aug 1993 | A |
5241833 | Ohkoshi | Sep 1993 | A |
5243827 | Hagita et al. | Sep 1993 | A |
5243829 | Bessler | Sep 1993 | A |
5245833 | Mei et al. | Sep 1993 | A |
5248244 | Ho et al. | Sep 1993 | A |
5251453 | Stanke et al. | Oct 1993 | A |
5251454 | Yoon | Oct 1993 | A |
5255977 | Eimer et al. | Oct 1993 | A |
5257506 | DeWolf et al. | Nov 1993 | A |
5262704 | Farr | Nov 1993 | A |
5265434 | Alsenz | Nov 1993 | A |
5269458 | Sol | Dec 1993 | A |
5271556 | Helt et al. | Dec 1993 | A |
5274571 | Hesse et al. | Dec 1993 | A |
5276630 | Baldwin et al. | Jan 1994 | A |
5279458 | DeWolf et al. | Jan 1994 | A |
5282728 | Swain | Feb 1994 | A |
5284026 | Powell | Feb 1994 | A |
5285646 | TaeDuk | Feb 1994 | A |
5289362 | Liebl et al. | Feb 1994 | A |
5290154 | Kotlarek et al. | Mar 1994 | A |
5291752 | Alvarez et al. | Mar 1994 | A |
5299504 | Abele | Apr 1994 | A |
5303112 | Zulaski et al. | Apr 1994 | A |
5303560 | Hanson et al. | Apr 1994 | A |
5311451 | Barrett | May 1994 | A |
5311562 | Palusamy et al. | May 1994 | A |
5316448 | Ziegler et al. | May 1994 | A |
5320506 | Fogt | Jun 1994 | A |
5333460 | Lewis et al. | Aug 1994 | A |
5335507 | Powell | Aug 1994 | A |
5336058 | Yokoyama | Aug 1994 | A |
5337576 | Dorfman et al. | Aug 1994 | A |
5347476 | McBean, Sr. | Sep 1994 | A |
5351037 | Martell et al. | Sep 1994 | A |
5362206 | Westerman et al. | Nov 1994 | A |
5362211 | Iizuka et al. | Nov 1994 | A |
5368446 | Rode | Nov 1994 | A |
5369958 | Kasai et al. | Dec 1994 | A |
5381669 | Bahel et al. | Jan 1995 | A |
5381692 | Winslow et al. | Jan 1995 | A |
5388176 | Dykstra et al. | Feb 1995 | A |
5395042 | Riley et al. | Mar 1995 | A |
5410230 | Bessler et al. | Apr 1995 | A |
5414792 | Shorey | May 1995 | A |
5415008 | Bessler | May 1995 | A |
5416781 | Ruiz | May 1995 | A |
5423190 | Friedland | Jun 1995 | A |
5423192 | Young et al. | Jun 1995 | A |
5426952 | Bessler | Jun 1995 | A |
5431026 | Jaster | Jul 1995 | A |
5432500 | Scripps | Jul 1995 | A |
5435145 | Jaster | Jul 1995 | A |
5435148 | Sandofsky et al. | Jul 1995 | A |
5440890 | Bahel et al. | Aug 1995 | A |
5440891 | Hindmon, Jr. et al. | Aug 1995 | A |
5440895 | Bahel et al. | Aug 1995 | A |
5446677 | Jensen et al. | Aug 1995 | A |
5450359 | Sharma et al. | Sep 1995 | A |
5452291 | Eisenhandler et al. | Sep 1995 | A |
5454229 | Hanson et al. | Oct 1995 | A |
5457965 | Blair et al. | Oct 1995 | A |
5460006 | Torimitsu | Oct 1995 | A |
5467011 | Hunt | Nov 1995 | A |
5467264 | Rauch et al. | Nov 1995 | A |
5469045 | Dove et al. | Nov 1995 | A |
5475986 | Bahel et al. | Dec 1995 | A |
5478212 | Sakai et al. | Dec 1995 | A |
5481481 | Frey et al. | Jan 1996 | A |
5481884 | Scoccia | Jan 1996 | A |
5483141 | Uesugi | Jan 1996 | A |
5491978 | Young et al. | Feb 1996 | A |
5495722 | Manson et al. | Mar 1996 | A |
5499512 | Jurewicz et al. | Mar 1996 | A |
5509786 | Mizutani et al. | Apr 1996 | A |
5511387 | Tinsler | Apr 1996 | A |
5512883 | Lane, Jr. | Apr 1996 | A |
5515267 | Alsenz | May 1996 | A |
5515692 | Sterber et al. | May 1996 | A |
5519301 | Yoshida et al. | May 1996 | A |
5519337 | Casada | May 1996 | A |
5528908 | Bahel et al. | Jun 1996 | A |
5532534 | Baker et al. | Jul 1996 | A |
5533347 | Ott et al. | Jul 1996 | A |
5535136 | Standifer | Jul 1996 | A |
5535597 | An | Jul 1996 | A |
5546015 | Okabe | Aug 1996 | A |
5546073 | Duff et al. | Aug 1996 | A |
5546756 | Ali | Aug 1996 | A |
5546757 | Whipple, III | Aug 1996 | A |
5548966 | Tinsler | Aug 1996 | A |
5555195 | Jensen | Sep 1996 | A |
5562426 | Watanabe et al. | Oct 1996 | A |
5563490 | Kawaguchi et al. | Oct 1996 | A |
5564280 | Schilling et al. | Oct 1996 | A |
5566084 | Cmar | Oct 1996 | A |
5570085 | Bertsch | Oct 1996 | A |
5570258 | Manning | Oct 1996 | A |
5572643 | Judson | Nov 1996 | A |
5577905 | Momber et al. | Nov 1996 | A |
5579648 | Hanson et al. | Dec 1996 | A |
5581229 | Hunt | Dec 1996 | A |
5586445 | Bessler | Dec 1996 | A |
5586446 | Torimitsu | Dec 1996 | A |
5590830 | Kettler et al. | Jan 1997 | A |
5592058 | Archer et al. | Jan 1997 | A |
5592824 | Sogabe et al. | Jan 1997 | A |
5596507 | Jones et al. | Jan 1997 | A |
5600960 | Schwedler et al. | Feb 1997 | A |
5602749 | Vosburgh | Feb 1997 | A |
5602757 | Haseley et al. | Feb 1997 | A |
5602761 | Spoerre et al. | Feb 1997 | A |
5610339 | Haseley et al. | Mar 1997 | A |
5611674 | Bass et al. | Mar 1997 | A |
5613841 | Bass et al. | Mar 1997 | A |
5615071 | Higashikata et al. | Mar 1997 | A |
5616829 | Balaschak et al. | Apr 1997 | A |
5623834 | Bahel et al. | Apr 1997 | A |
5628201 | Bahel et al. | May 1997 | A |
5630325 | Bahel et al. | May 1997 | A |
5635896 | Tinsley et al. | Jun 1997 | A |
5641270 | Sgourakes et al. | Jun 1997 | A |
5643482 | Sandelman et al. | Jul 1997 | A |
5650936 | Loucks et al. | Jul 1997 | A |
5651263 | Nonaka et al. | Jul 1997 | A |
5655379 | Jaster et al. | Aug 1997 | A |
5655380 | Calton | Aug 1997 | A |
5656765 | Gray | Aug 1997 | A |
5656767 | Garvey, III et al. | Aug 1997 | A |
5666815 | Aloise | Sep 1997 | A |
5682949 | Ratcliffe et al. | Nov 1997 | A |
5684463 | Diercks et al. | Nov 1997 | A |
5689963 | Bahel et al. | Nov 1997 | A |
5691692 | Herbstritt | Nov 1997 | A |
5694010 | Oomura et al. | Dec 1997 | A |
5696501 | Ouellette et al. | Dec 1997 | A |
5699670 | Jurewicz et al. | Dec 1997 | A |
5706007 | Fragnito et al. | Jan 1998 | A |
5707210 | Ramsey et al. | Jan 1998 | A |
5711785 | Maxwell | Jan 1998 | A |
5713724 | Centers et al. | Feb 1998 | A |
5714931 | Petite et al. | Feb 1998 | A |
5715704 | Cholkeri et al. | Feb 1998 | A |
5718822 | Richter | Feb 1998 | A |
5724571 | Woods | Mar 1998 | A |
5729474 | Hildebrand et al. | Mar 1998 | A |
5737931 | Ueno et al. | Apr 1998 | A |
5741120 | Bass et al. | Apr 1998 | A |
5743109 | Schulak | Apr 1998 | A |
5745114 | King et al. | Apr 1998 | A |
5749238 | Schmidt | May 1998 | A |
5751916 | Kon et al. | May 1998 | A |
5752385 | Nelson | May 1998 | A |
5754450 | Solomon et al. | May 1998 | A |
5754732 | Vlahu | May 1998 | A |
5757664 | Rogers et al. | May 1998 | A |
5757892 | Blanchard et al. | May 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5764509 | Gross et al. | Jun 1998 | A |
5772214 | Stark | Jun 1998 | A |
5772403 | Allison et al. | Jun 1998 | A |
5782101 | Dennis | Jul 1998 | A |
5784232 | Farr | Jul 1998 | A |
5790898 | Kishima et al. | Aug 1998 | A |
5795381 | Holder | Aug 1998 | A |
5798941 | McLeister | Aug 1998 | A |
5802860 | Barrows | Sep 1998 | A |
5805856 | Hanson | Sep 1998 | A |
5807336 | Russo et al. | Sep 1998 | A |
5808441 | Nehring | Sep 1998 | A |
5810908 | Gray et al. | Sep 1998 | A |
5812061 | Simons | Sep 1998 | A |
5825597 | Young | Oct 1998 | A |
5827963 | Selegatto et al. | Oct 1998 | A |
5839094 | French | Nov 1998 | A |
5839291 | Chang et al. | Nov 1998 | A |
5841654 | Verissimo et al. | Nov 1998 | A |
5857348 | Conry | Jan 1999 | A |
5860286 | Tulpule | Jan 1999 | A |
5861807 | Leyden et al. | Jan 1999 | A |
5867998 | Guertin | Feb 1999 | A |
5869960 | Brand | Feb 1999 | A |
5873257 | Peterson | Feb 1999 | A |
5875430 | Koether | Feb 1999 | A |
5875638 | Tinsler | Mar 1999 | A |
5884494 | Okoren et al. | Mar 1999 | A |
5887786 | Sandelman | Mar 1999 | A |
5900801 | Heagle et al. | May 1999 | A |
5904049 | Jaster et al. | May 1999 | A |
5918200 | Tsutsui et al. | Jun 1999 | A |
5924295 | Park | Jul 1999 | A |
5924486 | Ehlers et al. | Jul 1999 | A |
5926103 | Petite | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5930773 | Crooks et al. | Jul 1999 | A |
5934087 | Watanabe et al. | Aug 1999 | A |
5939974 | Heagle et al. | Aug 1999 | A |
5946922 | Viard et al. | Sep 1999 | A |
5947693 | Yang | Sep 1999 | A |
5947701 | Hugenroth | Sep 1999 | A |
5949677 | Ho | Sep 1999 | A |
5950443 | Meyer et al. | Sep 1999 | A |
5953490 | Wiklund et al. | Sep 1999 | A |
5956658 | McMahon | Sep 1999 | A |
5971712 | Kann | Oct 1999 | A |
5975854 | Culp, III et al. | Nov 1999 | A |
5984645 | Cummings | Nov 1999 | A |
5986571 | Flick | Nov 1999 | A |
5987903 | Bathla | Nov 1999 | A |
5988986 | Brinken et al. | Nov 1999 | A |
5995347 | Rudd et al. | Nov 1999 | A |
5995351 | Katsumata et al. | Nov 1999 | A |
6006142 | Seem et al. | Dec 1999 | A |
6006171 | Vines et al. | Dec 1999 | A |
6011368 | Kalpathi et al. | Jan 2000 | A |
6013108 | Karolys et al. | Jan 2000 | A |
6017192 | Clack et al. | Jan 2000 | A |
6020702 | Farr | Feb 2000 | A |
6023420 | McCormick et al. | Feb 2000 | A |
6026651 | Sandelman | Feb 2000 | A |
6028522 | Petite | Feb 2000 | A |
6035653 | Itoh et al. | Mar 2000 | A |
6035661 | Sunaga et al. | Mar 2000 | A |
6038871 | Gutierrez et al. | Mar 2000 | A |
6041605 | Heinrichs | Mar 2000 | A |
6041609 | Hornsleth et al. | Mar 2000 | A |
6041856 | Thrasher et al. | Mar 2000 | A |
6042344 | Lifson | Mar 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6047557 | Pham et al. | Apr 2000 | A |
6050098 | Meyer et al. | Apr 2000 | A |
6050780 | Hasegawa et al. | Apr 2000 | A |
6052731 | Holdsworth et al. | Apr 2000 | A |
6057771 | Lakra | May 2000 | A |
6065946 | Lathrop | May 2000 | A |
6068447 | Foege | May 2000 | A |
6070110 | Shah et al. | May 2000 | A |
6075530 | Lucas et al. | Jun 2000 | A |
6077051 | Centers et al. | Jun 2000 | A |
6081750 | Hoffberg et al. | Jun 2000 | A |
6082495 | Steinbarger et al. | Jul 2000 | A |
6082971 | Gunn et al. | Jul 2000 | A |
6085530 | Barito | Jul 2000 | A |
6088659 | Kelley et al. | Jul 2000 | A |
6088688 | Crooks et al. | Jul 2000 | A |
6092370 | Tremoulet, Jr. et al. | Jul 2000 | A |
6092378 | Das et al. | Jul 2000 | A |
6092992 | Imblum et al. | Jul 2000 | A |
6095674 | Verissimo et al. | Aug 2000 | A |
6098893 | Berglund et al. | Aug 2000 | A |
6102665 | Centers et al. | Aug 2000 | A |
6110260 | Kubokawa | Aug 2000 | A |
6119949 | Lindstrom | Sep 2000 | A |
6122603 | Budike, Jr. | Sep 2000 | A |
6125642 | Seener et al. | Oct 2000 | A |
6128583 | Dowling | Oct 2000 | A |
6128953 | Mizukoshi | Oct 2000 | A |
6129527 | Donahoe et al. | Oct 2000 | A |
6138461 | Park et al. | Oct 2000 | A |
6142741 | Nishihata et al. | Nov 2000 | A |
6144888 | Lucas et al. | Nov 2000 | A |
6145328 | Choi | Nov 2000 | A |
6147601 | Sandelman et al. | Nov 2000 | A |
6152375 | Robison | Nov 2000 | A |
6152376 | Sandelman et al. | Nov 2000 | A |
6153942 | Roseman et al. | Nov 2000 | A |
6153993 | Oomura et al. | Nov 2000 | A |
6154488 | Hunt | Nov 2000 | A |
6157310 | Milne et al. | Dec 2000 | A |
6158230 | Katsuki | Dec 2000 | A |
6160477 | Sandelman et al. | Dec 2000 | A |
6169979 | Johnson | Jan 2001 | B1 |
6172476 | Tolbert, Jr. et al. | Jan 2001 | B1 |
6174136 | Kilayko et al. | Jan 2001 | B1 |
6176683 | Yang | Jan 2001 | B1 |
6176686 | Wallis et al. | Jan 2001 | B1 |
6177884 | Hunt et al. | Jan 2001 | B1 |
6178362 | Woolard et al. | Jan 2001 | B1 |
6179214 | Key et al. | Jan 2001 | B1 |
6181033 | Wright | Jan 2001 | B1 |
6190442 | Redner | Feb 2001 | B1 |
6191545 | Kawabata et al. | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6199018 | Quist et al. | Mar 2001 | B1 |
6211782 | Sandelman et al. | Apr 2001 | B1 |
6213731 | Doepker et al. | Apr 2001 | B1 |
6215405 | Handley et al. | Apr 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6218953 | Petite | Apr 2001 | B1 |
6223543 | Sandelman | May 2001 | B1 |
6223544 | Seem | May 2001 | B1 |
6228155 | Tai | May 2001 | B1 |
6230501 | Bailey, Sr. et al. | May 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6234019 | Caldeira | May 2001 | B1 |
6240733 | Brandon et al. | Jun 2001 | B1 |
6240736 | Fujita et al. | Jun 2001 | B1 |
6244061 | Takagi et al. | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6260004 | Hays et al. | Jul 2001 | B1 |
6266968 | Redlich | Jul 2001 | B1 |
6268664 | Rolls et al. | Jul 2001 | B1 |
6272868 | Grabon et al. | Aug 2001 | B1 |
6276901 | Farr et al. | Aug 2001 | B1 |
6279332 | Yeo et al. | Aug 2001 | B1 |
6290043 | Ginder et al. | Sep 2001 | B1 |
6293114 | Kamemoto | Sep 2001 | B1 |
6293767 | Bass | Sep 2001 | B1 |
6302654 | Millet et al. | Oct 2001 | B1 |
6304934 | Pimenta et al. | Oct 2001 | B1 |
6320275 | Okamoto et al. | Nov 2001 | B1 |
6324854 | Jayanth | Dec 2001 | B1 |
6327541 | Pitchford et al. | Dec 2001 | B1 |
6332327 | Street et al. | Dec 2001 | B1 |
6334093 | More | Dec 2001 | B1 |
6349883 | Simmons et al. | Feb 2002 | B1 |
6350111 | Perevozchikov et al. | Feb 2002 | B1 |
6359410 | Randolph | Mar 2002 | B1 |
6360551 | Renders | Mar 2002 | B1 |
6366889 | Zaloom | Apr 2002 | B1 |
6368065 | Hugenroth et al. | Apr 2002 | B1 |
6375439 | Missio | Apr 2002 | B1 |
6378315 | Gelber et al. | Apr 2002 | B1 |
6381971 | Honda | May 2002 | B2 |
6385510 | Hoog et al. | May 2002 | B1 |
6389823 | Loprete et al. | May 2002 | B1 |
6390779 | Cunkelman | May 2002 | B1 |
6391102 | Bodden et al. | May 2002 | B1 |
6393848 | Roh et al. | May 2002 | B2 |
6397606 | Roh et al. | Jun 2002 | B1 |
6397612 | Kernkamp et al. | Jun 2002 | B1 |
6406265 | Hahn et al. | Jun 2002 | B1 |
6406266 | Hugenroth et al. | Jun 2002 | B1 |
6408228 | Seem et al. | Jun 2002 | B1 |
6408258 | Richer | Jun 2002 | B1 |
6412293 | Pham et al. | Jul 2002 | B1 |
6414594 | Guerlain | Jul 2002 | B1 |
6430268 | Petite | Aug 2002 | B1 |
6433791 | Selli et al. | Aug 2002 | B2 |
6437691 | Sandelman et al. | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6438981 | Whiteside | Aug 2002 | B1 |
6442953 | Trigiani et al. | Sep 2002 | B1 |
6449972 | Pham et al. | Sep 2002 | B2 |
6450771 | Centers et al. | Sep 2002 | B1 |
6451210 | Sivavec et al. | Sep 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
6454177 | Sasao et al. | Sep 2002 | B1 |
6454538 | Witham et al. | Sep 2002 | B1 |
6456928 | Johnson | Sep 2002 | B1 |
6457319 | Ota et al. | Oct 2002 | B1 |
6457948 | Pham | Oct 2002 | B1 |
6460731 | Estelle et al. | Oct 2002 | B2 |
6462654 | Sandelman et al. | Oct 2002 | B1 |
6463747 | Temple | Oct 2002 | B1 |
6466971 | Humpleman et al. | Oct 2002 | B1 |
6467280 | Pham et al. | Oct 2002 | B2 |
6471486 | Centers et al. | Oct 2002 | B1 |
6474084 | Gauthier et al. | Nov 2002 | B2 |
6484520 | Kawaguchi et al. | Nov 2002 | B2 |
6487457 | Hull et al. | Nov 2002 | B1 |
6490506 | March | Dec 2002 | B1 |
6492923 | Inoue et al. | Dec 2002 | B1 |
6497554 | Yang et al. | Dec 2002 | B2 |
6501240 | Ueda et al. | Dec 2002 | B2 |
6501629 | Marriott | Dec 2002 | B1 |
6502409 | Gatling et al. | Jan 2003 | B1 |
6505087 | Lucas et al. | Jan 2003 | B1 |
6505475 | Zugibe et al. | Jan 2003 | B1 |
6510350 | Steen, III et al. | Jan 2003 | B1 |
6522974 | Sitton | Feb 2003 | B2 |
6523130 | Hickman et al. | Feb 2003 | B1 |
6526766 | Hiraoka et al. | Mar 2003 | B1 |
6529590 | Centers | Mar 2003 | B1 |
6529839 | Uggerud et al. | Mar 2003 | B1 |
6533552 | Centers et al. | Mar 2003 | B2 |
6535123 | Sandelman et al. | Mar 2003 | B2 |
6535270 | Murayama | Mar 2003 | B1 |
6535859 | Yablonowski et al. | Mar 2003 | B1 |
6537034 | Park et al. | Mar 2003 | B2 |
6542062 | Herrick | Apr 2003 | B1 |
6549135 | Singh et al. | Apr 2003 | B2 |
6551069 | Narney, II et al. | Apr 2003 | B2 |
6553774 | Ishio et al. | Apr 2003 | B1 |
6558126 | Hahn et al. | May 2003 | B1 |
6560976 | Jayanth | May 2003 | B2 |
6571280 | Hubacher | May 2003 | B1 |
6571566 | Temple et al. | Jun 2003 | B1 |
6571586 | Ritson et al. | Jun 2003 | B1 |
6574561 | Alexander et al. | Jun 2003 | B2 |
6577959 | Chajec et al. | Jun 2003 | B1 |
6577962 | Afshari | Jun 2003 | B1 |
6578373 | Barbier | Jun 2003 | B1 |
6583720 | Quigley | Jun 2003 | B1 |
6589029 | Heller | Jul 2003 | B1 |
6591620 | Kikuchi et al. | Jul 2003 | B2 |
6595475 | Svabek et al. | Jul 2003 | B2 |
6595757 | Shen | Jul 2003 | B2 |
6598056 | Hull et al. | Jul 2003 | B1 |
6601397 | Pham et al. | Aug 2003 | B2 |
6604093 | Etzion et al. | Aug 2003 | B1 |
6609070 | Lueck | Aug 2003 | B1 |
6609078 | Starling et al. | Aug 2003 | B2 |
6615594 | Jayanth et al. | Sep 2003 | B2 |
6616415 | Renken et al. | Sep 2003 | B1 |
6618578 | Petite | Sep 2003 | B1 |
6618709 | Sneeringer | Sep 2003 | B1 |
6621443 | Selli et al. | Sep 2003 | B1 |
6622925 | Carner et al. | Sep 2003 | B2 |
6622926 | Sartain et al. | Sep 2003 | B1 |
6628764 | Petite | Sep 2003 | B1 |
6629420 | Renders | Oct 2003 | B2 |
6630749 | Takagi et al. | Oct 2003 | B1 |
6631298 | Pagnano et al. | Oct 2003 | B1 |
6636893 | Fong | Oct 2003 | B1 |
6643567 | Kolk et al. | Nov 2003 | B2 |
6644848 | Clayton et al. | Nov 2003 | B1 |
6647735 | Street et al. | Nov 2003 | B2 |
6658345 | Miller | Dec 2003 | B2 |
6658373 | Rossi et al. | Dec 2003 | B2 |
6662584 | Whiteside | Dec 2003 | B1 |
6662653 | Scaliante et al. | Dec 2003 | B1 |
6671586 | Davis et al. | Dec 2003 | B2 |
6672846 | Rajendran et al. | Jan 2004 | B2 |
6675591 | Singh et al. | Jan 2004 | B2 |
6679072 | Pham et al. | Jan 2004 | B2 |
6684349 | Gullo et al. | Jan 2004 | B2 |
6685438 | Yoo et al. | Feb 2004 | B2 |
6698218 | Goth et al. | Mar 2004 | B2 |
6701725 | Rossi et al. | Mar 2004 | B2 |
6708083 | Orthlieb et al. | Mar 2004 | B2 |
6708508 | Demuth et al. | Mar 2004 | B2 |
6709244 | Pham | Mar 2004 | B2 |
6711470 | Hartenstein et al. | Mar 2004 | B1 |
6711911 | Grabon et al. | Mar 2004 | B1 |
6717513 | Sandelman et al. | Apr 2004 | B1 |
6721770 | Morton et al. | Apr 2004 | B1 |
6725182 | Pagnano et al. | Apr 2004 | B2 |
6732538 | Trigiani et al. | May 2004 | B2 |
6745107 | Miller | Jun 2004 | B1 |
6747557 | Petite et al. | Jun 2004 | B1 |
6757665 | Unsworth et al. | Jun 2004 | B1 |
6758050 | Jayanth et al. | Jul 2004 | B2 |
6758051 | Jayanth et al. | Jul 2004 | B2 |
6760207 | Wyatt et al. | Jul 2004 | B2 |
6772096 | Murakami et al. | Aug 2004 | B2 |
6772598 | Rinehart | Aug 2004 | B1 |
6775995 | Bahel et al. | Aug 2004 | B1 |
6784807 | Petite et al. | Aug 2004 | B2 |
6785592 | Smith et al. | Aug 2004 | B1 |
6786473 | Alles | Sep 2004 | B1 |
6799951 | Lifson et al. | Oct 2004 | B2 |
6804993 | Selli | Oct 2004 | B2 |
6811380 | Kim | Nov 2004 | B2 |
6813897 | Bash et al. | Nov 2004 | B1 |
6816811 | Seem | Nov 2004 | B2 |
6823680 | Jayanth | Nov 2004 | B2 |
6829542 | Reynolds et al. | Dec 2004 | B1 |
6832120 | Frank et al. | Dec 2004 | B1 |
6832898 | Yoshida et al. | Dec 2004 | B2 |
6836737 | Petite et al. | Dec 2004 | B2 |
6837922 | Gorin | Jan 2005 | B2 |
6839790 | Barros De Almeida et al. | Jan 2005 | B2 |
6854345 | Alves et al. | Feb 2005 | B2 |
6862498 | Davis et al. | Mar 2005 | B2 |
6868678 | Mei et al. | Mar 2005 | B2 |
6868686 | Ueda et al. | Mar 2005 | B2 |
6869272 | Odachi et al. | Mar 2005 | B2 |
6870486 | Souza et al. | Mar 2005 | B2 |
6885949 | Selli | Apr 2005 | B2 |
6889173 | Singh | May 2005 | B2 |
6891838 | Petite et al. | May 2005 | B1 |
6892546 | Singh et al. | May 2005 | B2 |
6897772 | Scheffler et al. | May 2005 | B1 |
6900738 | Crichlow | May 2005 | B2 |
6901066 | Helgeson | May 2005 | B1 |
6904385 | Budike, Jr. | Jun 2005 | B1 |
6914533 | Petite | Jul 2005 | B2 |
6914893 | Petite | Jul 2005 | B2 |
6922155 | Evans et al. | Jul 2005 | B1 |
6931445 | Davis | Aug 2005 | B2 |
6934862 | Sharood et al. | Aug 2005 | B2 |
6952658 | Greulich et al. | Oct 2005 | B2 |
6953630 | Wells | Oct 2005 | B2 |
6956344 | Robertson et al. | Oct 2005 | B2 |
6964558 | Hahn et al. | Nov 2005 | B2 |
6966759 | Hahn et al. | Nov 2005 | B2 |
6968295 | Carr | Nov 2005 | B1 |
6973410 | Seigel | Dec 2005 | B2 |
6973793 | Douglas et al. | Dec 2005 | B2 |
6973794 | Street et al. | Dec 2005 | B2 |
6976366 | Starling et al. | Dec 2005 | B2 |
6978225 | Retlich et al. | Dec 2005 | B2 |
6981384 | Dobmeier et al. | Jan 2006 | B2 |
6983321 | Trinon et al. | Jan 2006 | B2 |
6983889 | Alles | Jan 2006 | B2 |
6986469 | Gauthier et al. | Jan 2006 | B2 |
6987450 | Marino et al. | Jan 2006 | B2 |
6990821 | Singh et al. | Jan 2006 | B2 |
6992452 | Sachs et al. | Jan 2006 | B1 |
6996441 | Tobias | Feb 2006 | B1 |
6997390 | Alles | Feb 2006 | B2 |
6998807 | Phillips et al. | Feb 2006 | B2 |
6998963 | Flen et al. | Feb 2006 | B2 |
6999996 | Sunderland | Feb 2006 | B2 |
7000422 | Street et al. | Feb 2006 | B2 |
7003378 | Poth | Feb 2006 | B2 |
7009510 | Douglass et al. | Mar 2006 | B1 |
7010925 | Sienel et al. | Mar 2006 | B2 |
7019667 | Petite et al. | Mar 2006 | B2 |
7024665 | Ferraz et al. | Apr 2006 | B2 |
7024870 | Singh et al. | Apr 2006 | B2 |
7030752 | Tyroler | Apr 2006 | B2 |
7031880 | Seem et al. | Apr 2006 | B1 |
7035693 | Cassiolato et al. | Apr 2006 | B2 |
7039532 | Hunter | May 2006 | B2 |
7042180 | Terry et al. | May 2006 | B2 |
7042350 | Patrick et al. | May 2006 | B2 |
7043339 | Maeda et al. | May 2006 | B2 |
7043459 | Peevey | May 2006 | B2 |
7047753 | Street et al. | May 2006 | B2 |
7053766 | Fisler et al. | May 2006 | B2 |
7053767 | Petite et al. | May 2006 | B2 |
7054271 | Brownrigg et al. | May 2006 | B2 |
7062580 | Donaires | Jun 2006 | B2 |
7062830 | Alles | Jun 2006 | B2 |
7063537 | Selli et al. | Jun 2006 | B2 |
7072797 | Gorinevsky | Jul 2006 | B2 |
7075327 | Dimino et al. | Jul 2006 | B2 |
7079810 | Petite et al. | Jul 2006 | B2 |
7079967 | Rossi et al. | Jul 2006 | B2 |
7082380 | Wiebe et al. | Jul 2006 | B2 |
7089125 | Sonderegger | Aug 2006 | B2 |
7091847 | Capowski et al. | Aug 2006 | B2 |
7092767 | Pagnano et al. | Aug 2006 | B2 |
7092794 | Hill et al. | Aug 2006 | B1 |
7096153 | Guralnik et al. | Aug 2006 | B2 |
7102490 | Flen et al. | Sep 2006 | B2 |
7103511 | Petite | Sep 2006 | B2 |
7110843 | Pagnano et al. | Sep 2006 | B2 |
7110898 | Montijo et al. | Sep 2006 | B2 |
7113376 | Nomura et al. | Sep 2006 | B2 |
7114343 | Kates | Oct 2006 | B2 |
7123020 | Hill et al. | Oct 2006 | B2 |
7123458 | Mohr et al. | Oct 2006 | B2 |
7124728 | Carey et al. | Oct 2006 | B2 |
7126465 | Faltesek | Oct 2006 | B2 |
7130170 | Wakefield et al. | Oct 2006 | B2 |
7130832 | Bannai et al. | Oct 2006 | B2 |
7134295 | Maekawa | Nov 2006 | B2 |
7137550 | Petite | Nov 2006 | B1 |
7142125 | Larson et al. | Nov 2006 | B2 |
7145438 | Flen et al. | Dec 2006 | B2 |
7145462 | Dewing et al. | Dec 2006 | B2 |
7159408 | Sadegh et al. | Jan 2007 | B2 |
7162884 | Alles | Jan 2007 | B2 |
7163158 | Rossi et al. | Jan 2007 | B2 |
7171372 | Daniel et al. | Jan 2007 | B2 |
7174728 | Jayanth | Feb 2007 | B2 |
7180412 | Bonicatto et al. | Feb 2007 | B2 |
7184861 | Petite | Feb 2007 | B2 |
7188482 | Sadegh et al. | Mar 2007 | B2 |
7188779 | Alles | Mar 2007 | B2 |
7201006 | Kates | Apr 2007 | B2 |
7207496 | Alles | Apr 2007 | B2 |
7209840 | Petite et al. | Apr 2007 | B2 |
7212887 | Shah et al. | May 2007 | B2 |
7222493 | Jayanth et al. | May 2007 | B2 |
7224740 | Hunt | May 2007 | B2 |
7225193 | Mets et al. | May 2007 | B2 |
7227450 | Garvy et al. | Jun 2007 | B2 |
7228691 | Street et al. | Jun 2007 | B2 |
7230528 | Kates | Jun 2007 | B2 |
7234313 | Bell et al. | Jun 2007 | B2 |
7236765 | Bonicatto et al. | Jun 2007 | B2 |
7244294 | Kates | Jul 2007 | B2 |
7246014 | Forth et al. | Jul 2007 | B2 |
7255285 | Troost et al. | Aug 2007 | B2 |
7257501 | Zhan et al. | Aug 2007 | B2 |
7260505 | Felke et al. | Aug 2007 | B2 |
7261762 | Kang et al. | Aug 2007 | B2 |
7263073 | Petite et al. | Aug 2007 | B2 |
7263446 | Morin et al. | Aug 2007 | B2 |
7266812 | Pagnano | Sep 2007 | B2 |
7270278 | Street et al. | Sep 2007 | B2 |
7274995 | Zhan et al. | Sep 2007 | B2 |
7275377 | Kates | Oct 2007 | B2 |
7286945 | Zhan et al. | Oct 2007 | B2 |
7290398 | Wallace et al. | Nov 2007 | B2 |
7290989 | Jayanth | Nov 2007 | B2 |
7295128 | Petite | Nov 2007 | B2 |
7295896 | Norbeck | Nov 2007 | B2 |
7317952 | Bhandiwad et al. | Jan 2008 | B2 |
7328192 | Stengard et al. | Feb 2008 | B1 |
7330886 | Childers et al. | Feb 2008 | B2 |
7331187 | Kates | Feb 2008 | B2 |
7336168 | Kates | Feb 2008 | B2 |
7337191 | Haeberle et al. | Feb 2008 | B2 |
7343750 | Lifson et al. | Mar 2008 | B2 |
7343751 | Kates | Mar 2008 | B2 |
7346463 | Petite et al. | Mar 2008 | B2 |
7346472 | Moskowitz et al. | Mar 2008 | B1 |
7349824 | Seigel | Mar 2008 | B2 |
7350112 | Fox et al. | Mar 2008 | B2 |
7351274 | Helt et al. | Apr 2008 | B2 |
7352545 | Wyatt et al. | Apr 2008 | B2 |
7363200 | Lu | Apr 2008 | B2 |
7376712 | Granatelli et al. | May 2008 | B1 |
7377118 | Esslinger | May 2008 | B2 |
7383030 | Brown et al. | Jun 2008 | B2 |
7383158 | Krocker et al. | Jun 2008 | B2 |
7392661 | Alles | Jul 2008 | B2 |
7397907 | Petite | Jul 2008 | B2 |
7400240 | Shrode et al. | Jul 2008 | B2 |
7412842 | Pham | Aug 2008 | B2 |
7414525 | Costea et al. | Aug 2008 | B2 |
7421351 | Navratil | Sep 2008 | B2 |
7421374 | Zhan et al. | Sep 2008 | B2 |
7421850 | Street et al. | Sep 2008 | B2 |
7424343 | Kates | Sep 2008 | B2 |
7424345 | Norbeck | Sep 2008 | B2 |
7424527 | Petite | Sep 2008 | B2 |
7432824 | Flen et al. | Oct 2008 | B2 |
7433854 | Joseph et al. | Oct 2008 | B2 |
7434742 | Mueller et al. | Oct 2008 | B2 |
7437150 | Morelli et al. | Oct 2008 | B1 |
7440560 | Barry | Oct 2008 | B1 |
7440767 | Ballay et al. | Oct 2008 | B2 |
7443313 | Davis et al. | Oct 2008 | B2 |
7444251 | Nikovski et al. | Oct 2008 | B2 |
7445665 | Hsieh et al. | Nov 2008 | B2 |
7447603 | Bruno | Nov 2008 | B2 |
7447609 | Guralnik et al. | Nov 2008 | B2 |
7451606 | Harrod | Nov 2008 | B2 |
7454439 | Gansner et al. | Nov 2008 | B1 |
7458223 | Pham | Dec 2008 | B2 |
7468661 | Petite et al. | Dec 2008 | B2 |
7469546 | Kates | Dec 2008 | B2 |
7474992 | Ariyur | Jan 2009 | B2 |
7480501 | Petite | Jan 2009 | B2 |
7483810 | Jackson et al. | Jan 2009 | B2 |
7484376 | Pham | Feb 2009 | B2 |
7490477 | Singh et al. | Feb 2009 | B2 |
7491034 | Jayanth | Feb 2009 | B2 |
7503182 | Bahel et al. | Mar 2009 | B2 |
7510126 | Rossi et al. | Mar 2009 | B2 |
7523619 | Kojima et al. | Apr 2009 | B2 |
7528711 | Kates | May 2009 | B2 |
7533070 | Guralnik et al. | May 2009 | B2 |
7537172 | Rossi et al. | May 2009 | B2 |
7552030 | Guralnik et al. | Jun 2009 | B2 |
7552596 | Galante et al. | Jun 2009 | B2 |
7555364 | Poth et al. | Jun 2009 | B2 |
7574333 | Lu | Aug 2009 | B2 |
7580812 | Ariyur et al. | Aug 2009 | B2 |
7594407 | Singh et al. | Sep 2009 | B2 |
7596959 | Singh et al. | Oct 2009 | B2 |
7606683 | Bahel et al. | Oct 2009 | B2 |
7631508 | Braun et al. | Dec 2009 | B2 |
7636901 | Munson et al. | Dec 2009 | B2 |
7644591 | Singh et al. | Jan 2010 | B2 |
7648077 | Rossi et al. | Jan 2010 | B2 |
7648342 | Jayanth | Jan 2010 | B2 |
7650425 | Davis et al. | Jan 2010 | B2 |
7660700 | Moskowitz et al. | Feb 2010 | B2 |
7660774 | Mukherjee et al. | Feb 2010 | B2 |
7664613 | Hansen | Feb 2010 | B2 |
7665315 | Singh et al. | Feb 2010 | B2 |
7686872 | Kang | Mar 2010 | B2 |
7693809 | Gray | Apr 2010 | B2 |
7697492 | Petite | Apr 2010 | B2 |
7703694 | Mueller et al. | Apr 2010 | B2 |
7704052 | Iimura et al. | Apr 2010 | B2 |
7706320 | Davis et al. | Apr 2010 | B2 |
7724131 | Chen | May 2010 | B2 |
7726583 | Maekawa | Jun 2010 | B2 |
7734451 | MacArthur et al. | Jun 2010 | B2 |
7738999 | Petite | Jun 2010 | B2 |
7739378 | Petite | Jun 2010 | B2 |
7742393 | Bonicatto et al. | Jun 2010 | B2 |
7752853 | Singh et al. | Jul 2010 | B2 |
7752854 | Singh et al. | Jul 2010 | B2 |
7756086 | Petite et al. | Jul 2010 | B2 |
7791468 | Bonicatto et al. | Sep 2010 | B2 |
7844366 | Singh | Nov 2010 | B2 |
7845179 | Singh et al. | Dec 2010 | B2 |
7848827 | Chen | Dec 2010 | B2 |
7848900 | Steinberg et al. | Dec 2010 | B2 |
7877218 | Bonicatto et al. | Jan 2011 | B2 |
7878006 | Pham | Feb 2011 | B2 |
7885959 | Horowitz et al. | Feb 2011 | B2 |
7885961 | Horowitz et al. | Feb 2011 | B2 |
7905098 | Pham | Mar 2011 | B2 |
7908116 | Steinberg et al. | Mar 2011 | B2 |
7908117 | Steinberg et al. | Mar 2011 | B2 |
7922914 | Verdegan et al. | Apr 2011 | B1 |
7937623 | Ramacher et al. | May 2011 | B2 |
7941294 | Shahi et al. | May 2011 | B2 |
7949494 | Moskowitz et al. | May 2011 | B2 |
7949615 | Ehlers et al. | May 2011 | B2 |
7963454 | Sullivan et al. | Jun 2011 | B2 |
7966152 | Stluka et al. | Jun 2011 | B2 |
7967218 | Alles | Jun 2011 | B2 |
7978059 | Petite et al. | Jul 2011 | B2 |
7987679 | Tanaka et al. | Aug 2011 | B2 |
7996045 | Bauer et al. | Aug 2011 | B1 |
7999668 | Cawthorne et al. | Aug 2011 | B2 |
8000314 | Brownrigg et al. | Aug 2011 | B2 |
8002199 | Habegger | Aug 2011 | B2 |
8005640 | Chiefetz et al. | Aug 2011 | B2 |
8010237 | Cheung et al. | Aug 2011 | B2 |
8013732 | Petite et al. | Sep 2011 | B2 |
8018182 | Roehm et al. | Sep 2011 | B2 |
8019567 | Steinberg et al. | Sep 2011 | B2 |
8029608 | Breslin | Oct 2011 | B1 |
8031455 | Paik et al. | Oct 2011 | B2 |
8031650 | Petite et al. | Oct 2011 | B2 |
8034170 | Kates | Oct 2011 | B2 |
8036844 | Ling et al. | Oct 2011 | B2 |
8040231 | Kuruvila et al. | Oct 2011 | B2 |
8041539 | Guralnik et al. | Oct 2011 | B2 |
8046107 | Zugibe et al. | Oct 2011 | B2 |
8061417 | Gray | Nov 2011 | B2 |
8064412 | Petite | Nov 2011 | B2 |
8065886 | Singh et al. | Nov 2011 | B2 |
8068997 | Ling et al. | Nov 2011 | B2 |
8090477 | Steinberg | Jan 2012 | B1 |
8090559 | Parthasarathy et al. | Jan 2012 | B2 |
8090824 | Tran et al. | Jan 2012 | B2 |
8095337 | Kolbet et al. | Jan 2012 | B2 |
8108200 | Anne et al. | Jan 2012 | B2 |
8125230 | Bharadwaj et al. | Feb 2012 | B2 |
8131497 | Steinberg et al. | Mar 2012 | B2 |
8131506 | Steinberg et al. | Mar 2012 | B2 |
8134330 | Alles | Mar 2012 | B2 |
8150720 | Singh et al. | Apr 2012 | B2 |
8156208 | Bornhoevd et al. | Apr 2012 | B2 |
8160827 | Jayanth et al. | Apr 2012 | B2 |
8170968 | Colclough et al. | May 2012 | B2 |
8171136 | Petite | May 2012 | B2 |
8175846 | Khalak et al. | May 2012 | B2 |
8180492 | Steinberg | May 2012 | B2 |
8182579 | Woo et al. | May 2012 | B2 |
8214175 | Moskowitz et al. | Jul 2012 | B2 |
8228648 | Jayanth et al. | Jul 2012 | B2 |
8239922 | Sullivan et al. | Aug 2012 | B2 |
8258763 | Nakamura et al. | Sep 2012 | B2 |
8279565 | Hall et al. | Oct 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8328524 | Iimura et al. | Dec 2012 | B2 |
8335657 | Jayanth et al. | Dec 2012 | B2 |
8380556 | Singh et al. | Feb 2013 | B2 |
8393169 | Pham | Mar 2013 | B2 |
8625244 | Paik et al. | Jan 2014 | B2 |
9168315 | Scaringe et al. | Oct 2015 | B1 |
9310439 | Pham et al. | Apr 2016 | B2 |
9765979 | Alsaleem et al. | Sep 2017 | B2 |
20010005320 | Ueda et al. | Jun 2001 | A1 |
20010023596 | Fujita et al. | Sep 2001 | A1 |
20010025349 | Sharood et al. | Sep 2001 | A1 |
20010054291 | Roh et al. | Dec 2001 | A1 |
20010054293 | Gustafson et al. | Dec 2001 | A1 |
20010054294 | Tsuboi | Dec 2001 | A1 |
20020000092 | Sharood et al. | Jan 2002 | A1 |
20020013679 | Petite | Jan 2002 | A1 |
20020016639 | Smith et al. | Feb 2002 | A1 |
20020017057 | Weder | Feb 2002 | A1 |
20020018724 | Millet et al. | Feb 2002 | A1 |
20020020175 | Street et al. | Feb 2002 | A1 |
20020029575 | Okamoto | Mar 2002 | A1 |
20020031101 | Petite et al. | Mar 2002 | A1 |
20020035495 | Spira et al. | Mar 2002 | A1 |
20020040280 | Morgan | Apr 2002 | A1 |
20020059803 | Jayanth | May 2002 | A1 |
20020064463 | Park et al. | May 2002 | A1 |
20020067999 | Suitou et al. | Jun 2002 | A1 |
20020082747 | Kramer | Jun 2002 | A1 |
20020082924 | Koether | Jun 2002 | A1 |
20020093259 | Sunaga et al. | Jul 2002 | A1 |
20020095269 | Natalini et al. | Jul 2002 | A1 |
20020103655 | Boies et al. | Aug 2002 | A1 |
20020108384 | Higashiyama | Aug 2002 | A1 |
20020113877 | Welch | Aug 2002 | A1 |
20020117992 | Hirono et al. | Aug 2002 | A1 |
20020118106 | Brenn | Aug 2002 | A1 |
20020127120 | Hahn et al. | Sep 2002 | A1 |
20020138217 | Shen et al. | Sep 2002 | A1 |
20020139128 | Suzuki et al. | Oct 2002 | A1 |
20020143482 | Karanam et al. | Oct 2002 | A1 |
20020152298 | Kikta et al. | Oct 2002 | A1 |
20020157408 | Egawa et al. | Oct 2002 | A1 |
20020157409 | Pham et al. | Oct 2002 | A1 |
20020159890 | Kajiwara et al. | Oct 2002 | A1 |
20020161545 | Starling et al. | Oct 2002 | A1 |
20020163436 | Singh et al. | Nov 2002 | A1 |
20020170299 | Jayanth et al. | Nov 2002 | A1 |
20020173929 | Seigel | Nov 2002 | A1 |
20020187057 | Loprete et al. | Dec 2002 | A1 |
20020189267 | Singh et al. | Dec 2002 | A1 |
20020193890 | Pouchak | Dec 2002 | A1 |
20020198629 | Ellis | Dec 2002 | A1 |
20030004660 | Hunter | Jan 2003 | A1 |
20030004765 | Wiegand | Jan 2003 | A1 |
20030005710 | Singh et al. | Jan 2003 | A1 |
20030006884 | Hunt | Jan 2003 | A1 |
20030014218 | Trigiani et al. | Jan 2003 | A1 |
20030019221 | Rossi et al. | Jan 2003 | A1 |
20030036810 | Petite | Feb 2003 | A1 |
20030037555 | Street et al. | Feb 2003 | A1 |
20030050737 | Osann | Mar 2003 | A1 |
20030050824 | Suermondt et al. | Mar 2003 | A1 |
20030051490 | Jayanth | Mar 2003 | A1 |
20030055603 | Rossi et al. | Mar 2003 | A1 |
20030055663 | Struble | Mar 2003 | A1 |
20030061825 | Sullivan | Apr 2003 | A1 |
20030063983 | Ancel et al. | Apr 2003 | A1 |
20030070438 | Kikuchi et al. | Apr 2003 | A1 |
20030070544 | Mulvaney et al. | Apr 2003 | A1 |
20030074285 | Hoffman et al. | Apr 2003 | A1 |
20030077179 | Collins et al. | Apr 2003 | A1 |
20030078677 | Hull et al. | Apr 2003 | A1 |
20030078742 | VanderZee et al. | Apr 2003 | A1 |
20030089493 | Takano et al. | May 2003 | A1 |
20030094004 | Pham et al. | May 2003 | A1 |
20030108430 | Yoshida et al. | Jun 2003 | A1 |
20030115890 | Jayanth et al. | Jun 2003 | A1 |
20030135786 | Vollmar et al. | Jul 2003 | A1 |
20030137396 | Durej et al. | Jul 2003 | A1 |
20030150924 | Peter | Aug 2003 | A1 |
20030150926 | Rosen | Aug 2003 | A1 |
20030150927 | Rosen | Aug 2003 | A1 |
20030171851 | Brickfield et al. | Sep 2003 | A1 |
20030183085 | Alexander | Oct 2003 | A1 |
20030191606 | Fujiyama et al. | Oct 2003 | A1 |
20030199247 | Striemer | Oct 2003 | A1 |
20030205143 | Cheng | Nov 2003 | A1 |
20030213256 | Ueda et al. | Nov 2003 | A1 |
20030213851 | Burd et al. | Nov 2003 | A1 |
20030216837 | Reich et al. | Nov 2003 | A1 |
20030216888 | Ridolfo | Nov 2003 | A1 |
20030233172 | Granqvist et al. | Dec 2003 | A1 |
20040016241 | Street et al. | Jan 2004 | A1 |
20040016244 | Street et al. | Jan 2004 | A1 |
20040016251 | Street et al. | Jan 2004 | A1 |
20040016253 | Street et al. | Jan 2004 | A1 |
20040019584 | Greening et al. | Jan 2004 | A1 |
20040024495 | Sunderland | Feb 2004 | A1 |
20040026522 | Keen et al. | Feb 2004 | A1 |
20040037706 | Hahn et al. | Feb 2004 | A1 |
20040042904 | Kim | Mar 2004 | A1 |
20040047406 | Hunt | Mar 2004 | A1 |
20040049715 | Jaw | Mar 2004 | A1 |
20040059691 | Higgins | Mar 2004 | A1 |
20040068390 | Saunders | Apr 2004 | A1 |
20040078695 | Bowers et al. | Apr 2004 | A1 |
20040079093 | Gauthier et al. | Apr 2004 | A1 |
20040093879 | Street et al. | May 2004 | A1 |
20040095237 | Chen et al. | May 2004 | A1 |
20040111186 | Rossi et al. | Jun 2004 | A1 |
20040117166 | Cassiolato | Jun 2004 | A1 |
20040133314 | Ehlers et al. | Jul 2004 | A1 |
20040133367 | Hart | Jul 2004 | A1 |
20040140772 | Gullo et al. | Jul 2004 | A1 |
20040140812 | Scallante et al. | Jul 2004 | A1 |
20040144106 | Douglas et al. | Jul 2004 | A1 |
20040153437 | Buchan | Aug 2004 | A1 |
20040159113 | Singh et al. | Aug 2004 | A1 |
20040159114 | Demuth et al. | Aug 2004 | A1 |
20040183687 | Petite et al. | Sep 2004 | A1 |
20040184627 | Kost et al. | Sep 2004 | A1 |
20040184928 | Millet et al. | Sep 2004 | A1 |
20040184929 | Millet et al. | Sep 2004 | A1 |
20040184930 | Millet et al. | Sep 2004 | A1 |
20040184931 | Millet et al. | Sep 2004 | A1 |
20040187502 | Jayanth et al. | Sep 2004 | A1 |
20040191073 | Iimura et al. | Sep 2004 | A1 |
20040199480 | Unsworth et al. | Oct 2004 | A1 |
20040210419 | Wiebe et al. | Oct 2004 | A1 |
20040213384 | Alles et al. | Oct 2004 | A1 |
20040230582 | Pagnano et al. | Nov 2004 | A1 |
20040230899 | Pagnano et al. | Nov 2004 | A1 |
20040239266 | Lee et al. | Dec 2004 | A1 |
20040258542 | Wiertz et al. | Dec 2004 | A1 |
20040261431 | Singh et al. | Dec 2004 | A1 |
20050040249 | Wacker et al. | Feb 2005 | A1 |
20050043923 | Forster et al. | Feb 2005 | A1 |
20050053471 | Hong et al. | Mar 2005 | A1 |
20050056031 | Jeong | Mar 2005 | A1 |
20050066675 | Manole et al. | Mar 2005 | A1 |
20050073532 | Scott et al. | Apr 2005 | A1 |
20050086341 | Enga et al. | Apr 2005 | A1 |
20050100449 | Hahn et al. | May 2005 | A1 |
20050103036 | Maekawa | May 2005 | A1 |
20050125439 | Nourbakhsh et al. | Jun 2005 | A1 |
20050126190 | Lifson et al. | Jun 2005 | A1 |
20050131624 | Gaessler et al. | Jun 2005 | A1 |
20050149570 | Sasaki et al. | Jul 2005 | A1 |
20050154495 | Shah | Jul 2005 | A1 |
20050159924 | Shah et al. | Jul 2005 | A1 |
20050166610 | Jayanth | Aug 2005 | A1 |
20050169636 | Aronson et al. | Aug 2005 | A1 |
20050172647 | Thybo et al. | Aug 2005 | A1 |
20050188842 | Hsieh et al. | Sep 2005 | A1 |
20050195775 | Petite et al. | Sep 2005 | A1 |
20050196285 | Jayanth | Sep 2005 | A1 |
20050198063 | Thomas et al. | Sep 2005 | A1 |
20050201397 | Petite | Sep 2005 | A1 |
20050204756 | Dobmeier et al. | Sep 2005 | A1 |
20050207741 | Shah et al. | Sep 2005 | A1 |
20050214148 | Ogawa et al. | Sep 2005 | A1 |
20050222715 | Ruhnke et al. | Oct 2005 | A1 |
20050228607 | Simons | Oct 2005 | A1 |
20050229612 | Hrejsa et al. | Oct 2005 | A1 |
20050229777 | Brown et al. | Oct 2005 | A1 |
20050232781 | Herbert et al. | Oct 2005 | A1 |
20050235660 | Pham | Oct 2005 | A1 |
20050235661 | Pham | Oct 2005 | A1 |
20050235662 | Pham | Oct 2005 | A1 |
20050235663 | Pham | Oct 2005 | A1 |
20050235664 | Pham | Oct 2005 | A1 |
20050247194 | Kang et al. | Nov 2005 | A1 |
20050251293 | Seigel | Nov 2005 | A1 |
20050252220 | Street et al. | Nov 2005 | A1 |
20050262856 | Street et al. | Dec 2005 | A1 |
20050262923 | Kates | Dec 2005 | A1 |
20060010898 | Suharno et al. | Jan 2006 | A1 |
20060015777 | Loda | Jan 2006 | A1 |
20060020426 | Singh | Jan 2006 | A1 |
20060021362 | Sadegh et al. | Feb 2006 | A1 |
20060032245 | Kates | Feb 2006 | A1 |
20060032246 | Kates | Feb 2006 | A1 |
20060032247 | Kates | Feb 2006 | A1 |
20060032248 | Kates | Feb 2006 | A1 |
20060032379 | Kates | Feb 2006 | A1 |
20060036349 | Kates | Feb 2006 | A1 |
20060041335 | Rossi et al. | Feb 2006 | A9 |
20060042276 | Doll et al. | Mar 2006 | A1 |
20060071089 | Kates | Apr 2006 | A1 |
20060071666 | Unsworth et al. | Apr 2006 | A1 |
20060074917 | Chand et al. | Apr 2006 | A1 |
20060097063 | Zeevi | May 2006 | A1 |
20060098576 | Brownrigg et al. | May 2006 | A1 |
20060117773 | Street et al. | Jun 2006 | A1 |
20060123807 | Sullivan et al. | Jun 2006 | A1 |
20060129339 | Bruno | Jun 2006 | A1 |
20060130500 | Gauthier et al. | Jun 2006 | A1 |
20060137364 | Braun et al. | Jun 2006 | A1 |
20060137368 | Kang et al. | Jun 2006 | A1 |
20060138866 | Bergmann et al. | Jun 2006 | A1 |
20060140209 | Cassiolato et al. | Jun 2006 | A1 |
20060151037 | Lepola et al. | Jul 2006 | A1 |
20060179854 | Esslinger | Aug 2006 | A1 |
20060182635 | Jayanth | Aug 2006 | A1 |
20060185373 | Butler et al. | Aug 2006 | A1 |
20060196196 | Kates | Sep 2006 | A1 |
20060196197 | Kates | Sep 2006 | A1 |
20060201168 | Kates | Sep 2006 | A1 |
20060222507 | Jayanth | Oct 2006 | A1 |
20060229739 | Morikawa | Oct 2006 | A1 |
20060235650 | Vinberg et al. | Oct 2006 | A1 |
20060238388 | Jayanth | Oct 2006 | A1 |
20060242200 | Horowitz et al. | Oct 2006 | A1 |
20060244641 | Jayanth et al. | Nov 2006 | A1 |
20060256488 | Benzing et al. | Nov 2006 | A1 |
20060259276 | Rossi et al. | Nov 2006 | A1 |
20060271589 | Horowitz et al. | Nov 2006 | A1 |
20060271623 | Horowitz et al. | Nov 2006 | A1 |
20060280627 | Jayanth | Dec 2006 | A1 |
20070002505 | Watanabe et al. | Jan 2007 | A1 |
20070006124 | Ahmed et al. | Jan 2007 | A1 |
20070027735 | Rokos | Feb 2007 | A1 |
20070067512 | Donaires et al. | Mar 2007 | A1 |
20070089434 | Singh et al. | Apr 2007 | A1 |
20070089435 | Singh et al. | Apr 2007 | A1 |
20070089438 | Singh et al. | Apr 2007 | A1 |
20070089439 | Singh et al. | Apr 2007 | A1 |
20070089440 | Singh et al. | Apr 2007 | A1 |
20070101750 | Pham et al. | May 2007 | A1 |
20070159978 | Anglin et al. | Jul 2007 | A1 |
20070186569 | Street et al. | Aug 2007 | A1 |
20070204635 | Tanaka et al. | Sep 2007 | A1 |
20070204921 | Alles | Sep 2007 | A1 |
20070205296 | Bell et al. | Sep 2007 | A1 |
20070229305 | Bonicatto et al. | Oct 2007 | A1 |
20070239894 | Thind et al. | Oct 2007 | A1 |
20080000241 | Larsen et al. | Jan 2008 | A1 |
20080015797 | Kates | Jan 2008 | A1 |
20080016888 | Kates | Jan 2008 | A1 |
20080033674 | Nikovski et al. | Feb 2008 | A1 |
20080051945 | Kates | Feb 2008 | A1 |
20080058970 | Perumalsamy et al. | Mar 2008 | A1 |
20080078289 | Sergi et al. | Apr 2008 | A1 |
20080109185 | Cheung et al. | May 2008 | A1 |
20080114569 | Seigel | May 2008 | A1 |
20080121729 | Gray | May 2008 | A1 |
20080183424 | Seem | Jul 2008 | A1 |
20080186898 | Petite | Aug 2008 | A1 |
20080209925 | Pham | Sep 2008 | A1 |
20080216494 | Pham et al. | Sep 2008 | A1 |
20080216495 | Kates | Sep 2008 | A1 |
20080223051 | Kates | Sep 2008 | A1 |
20080234869 | Yonezawa et al. | Sep 2008 | A1 |
20080315000 | Gorthala et al. | Dec 2008 | A1 |
20080319688 | Kim | Dec 2008 | A1 |
20090007777 | Cohen et al. | Jan 2009 | A1 |
20090030555 | Gray | Jan 2009 | A1 |
20090037142 | Kates | Feb 2009 | A1 |
20090038010 | Ma et al. | Feb 2009 | A1 |
20090055465 | DePue et al. | Feb 2009 | A1 |
20090057424 | Sullivan et al. | Mar 2009 | A1 |
20090057428 | Geadelmann et al. | Mar 2009 | A1 |
20090068947 | Petite | Mar 2009 | A1 |
20090071175 | Pham | Mar 2009 | A1 |
20090072985 | Patel | Mar 2009 | A1 |
20090093916 | Parsonnet et al. | Apr 2009 | A1 |
20090094998 | McSweeney et al. | Apr 2009 | A1 |
20090096605 | Petite et al. | Apr 2009 | A1 |
20090099699 | Steinberg et al. | Apr 2009 | A1 |
20090106601 | Ngai et al. | Apr 2009 | A1 |
20090112672 | Flamig et al. | Apr 2009 | A1 |
20090119036 | Jayanth et al. | May 2009 | A1 |
20090125151 | Steinberg et al. | May 2009 | A1 |
20090125257 | Jayanth et al. | May 2009 | A1 |
20090140880 | Flen et al. | Jun 2009 | A1 |
20090151374 | Kasahara | Jun 2009 | A1 |
20090187281 | Kates | Jul 2009 | A1 |
20090215424 | Petite | Aug 2009 | A1 |
20090229469 | Campbell et al. | Sep 2009 | A1 |
20090241570 | Kuribayashi et al. | Oct 2009 | A1 |
20090296832 | Hunt | Dec 2009 | A1 |
20090324428 | Tolbert, Jr. et al. | Dec 2009 | A1 |
20100006042 | Pitonyak et al. | Jan 2010 | A1 |
20100011962 | Totsugi | Jan 2010 | A1 |
20100017465 | Brownrigg et al. | Jan 2010 | A1 |
20100039984 | Brownrigg | Feb 2010 | A1 |
20100044449 | Tessier | Feb 2010 | A1 |
20100070084 | Steinberg et al. | Mar 2010 | A1 |
20100070234 | Steinberg et al. | Mar 2010 | A1 |
20100070666 | Brindle | Mar 2010 | A1 |
20100078493 | Alles | Apr 2010 | A1 |
20100081357 | Alles | Apr 2010 | A1 |
20100081372 | Alles | Apr 2010 | A1 |
20100089076 | Schuster et al. | Apr 2010 | A1 |
20100102136 | Hadzidedic et al. | Apr 2010 | A1 |
20100111709 | Jayanth | May 2010 | A1 |
20100168924 | Tessier et al. | Jul 2010 | A1 |
20100169030 | Parlos | Jul 2010 | A1 |
20100179703 | Singh et al. | Jul 2010 | A1 |
20100191487 | Rada et al. | Jul 2010 | A1 |
20100194582 | Petite | Aug 2010 | A1 |
20100214709 | Hall et al. | Aug 2010 | A1 |
20100217550 | Crabtree et al. | Aug 2010 | A1 |
20100250054 | Petite | Sep 2010 | A1 |
20100257410 | Cottrell et al. | Oct 2010 | A1 |
20100262299 | Cheung et al. | Oct 2010 | A1 |
20100265909 | Petite et al. | Oct 2010 | A1 |
20100280667 | Steinberg | Nov 2010 | A1 |
20100282857 | Steinberg | Nov 2010 | A1 |
20100287489 | Alles | Nov 2010 | A1 |
20100293397 | Pham et al. | Nov 2010 | A1 |
20100305718 | Clark et al. | Dec 2010 | A1 |
20100308119 | Steinberg et al. | Dec 2010 | A1 |
20100312881 | Davis et al. | Dec 2010 | A1 |
20100318227 | Steinberg et al. | Dec 2010 | A1 |
20100330985 | Addy | Dec 2010 | A1 |
20110004350 | Cheifetz et al. | Jan 2011 | A1 |
20110022429 | Yates et al. | Jan 2011 | A1 |
20110023045 | Yates et al. | Jan 2011 | A1 |
20110023945 | Hayashi et al. | Feb 2011 | A1 |
20110040785 | Steenberg et al. | Feb 2011 | A1 |
20110042541 | Spencer et al. | Feb 2011 | A1 |
20110045454 | McManus et al. | Feb 2011 | A1 |
20110054842 | Kates | Mar 2011 | A1 |
20110071960 | Singh | Mar 2011 | A1 |
20110077896 | Steinberg et al. | Mar 2011 | A1 |
20110083450 | Turner et al. | Apr 2011 | A1 |
20110102159 | Olson et al. | May 2011 | A1 |
20110103460 | Bonicatto | May 2011 | A1 |
20110106471 | Curtis et al. | May 2011 | A1 |
20110112814 | Clark | May 2011 | A1 |
20110118905 | Mylaraswamy et al. | May 2011 | A1 |
20110121952 | Bonicatto et al. | May 2011 | A1 |
20110144932 | Alles | Jun 2011 | A1 |
20110144944 | Pham | Jun 2011 | A1 |
20110166828 | Steinberg et al. | Jul 2011 | A1 |
20110181438 | Millstein et al. | Jul 2011 | A1 |
20110184563 | Foslien et al. | Jul 2011 | A1 |
20110185895 | Freen | Aug 2011 | A1 |
20110190910 | Lombard et al. | Aug 2011 | A1 |
20110212700 | Petite | Sep 2011 | A1 |
20110218957 | Coon et al. | Sep 2011 | A1 |
20110264324 | Petite et al. | Oct 2011 | A1 |
20110264409 | Jayanth et al. | Oct 2011 | A1 |
20110290893 | Steinberg | Dec 2011 | A1 |
20110307103 | Cheung et al. | Dec 2011 | A1 |
20110309953 | Petite et al. | Dec 2011 | A1 |
20110310929 | Petite et al. | Dec 2011 | A1 |
20110315019 | Lyon et al. | Dec 2011 | A1 |
20110320050 | Petite et al. | Dec 2011 | A1 |
20120005590 | Lombard et al. | Jan 2012 | A1 |
20120054242 | Ferrara et al. | Mar 2012 | A1 |
20120065783 | Fadell et al. | Mar 2012 | A1 |
20120065935 | Steinberg et al. | Mar 2012 | A1 |
20120066168 | Fadell et al. | Mar 2012 | A1 |
20120075092 | Petite et al. | Mar 2012 | A1 |
20120092154 | Petite | Apr 2012 | A1 |
20120125559 | Fadell et al. | May 2012 | A1 |
20120125592 | Fadell et al. | May 2012 | A1 |
20120126019 | Warren et al. | May 2012 | A1 |
20120126020 | Filson et al. | May 2012 | A1 |
20120126021 | Warren et al. | May 2012 | A1 |
20120128025 | Huppi et al. | May 2012 | A1 |
20120130546 | Matas et al. | May 2012 | A1 |
20120130547 | Fadell et al. | May 2012 | A1 |
20120130548 | Fadell et al. | May 2012 | A1 |
20120130679 | Fadell et al. | May 2012 | A1 |
20120131504 | Fadell et al. | May 2012 | A1 |
20120143528 | Kates | Jun 2012 | A1 |
20120179300 | Warren et al. | Jul 2012 | A1 |
20120186774 | Matsuoka et al. | Jul 2012 | A1 |
20120191257 | Corcoran et al. | Jul 2012 | A1 |
20120199660 | Warren et al. | Aug 2012 | A1 |
20120203379 | Sloo et al. | Aug 2012 | A1 |
20120221150 | Arensmeier | Aug 2012 | A1 |
20120229521 | Hales, IV et al. | Sep 2012 | A1 |
20120232969 | Fadell et al. | Sep 2012 | A1 |
20120233478 | Mucignat et al. | Sep 2012 | A1 |
20120239207 | Fadell et al. | Sep 2012 | A1 |
20120239221 | Mighdoll et al. | Sep 2012 | A1 |
20120245968 | Beaulieu et al. | Sep 2012 | A1 |
20120248210 | Warren et al. | Oct 2012 | A1 |
20120248211 | Warren et al. | Oct 2012 | A1 |
20120260804 | Kates | Oct 2012 | A1 |
20120265491 | Drummy | Oct 2012 | A1 |
20120265586 | Mammone | Oct 2012 | A1 |
20120271673 | Riley | Oct 2012 | A1 |
20120291629 | Tylutki et al. | Nov 2012 | A1 |
20120318135 | Hoglund et al. | Dec 2012 | A1 |
20120318137 | Ragland et al. | Dec 2012 | A1 |
20130066479 | Shetty et al. | Mar 2013 | A1 |
20130156607 | Jayanth | Jun 2013 | A1 |
20130166231 | Jayanth et al. | Jun 2013 | A1 |
20130174588 | Pham | Jul 2013 | A1 |
20130176649 | Wallis et al. | Jul 2013 | A1 |
20130182285 | Matsuhara et al. | Jul 2013 | A1 |
20130287063 | Kates | Oct 2013 | A1 |
20130294933 | Pham | Nov 2013 | A1 |
20140000290 | Kates | Jan 2014 | A1 |
20140000291 | Kates | Jan 2014 | A1 |
20140000292 | Kates | Jan 2014 | A1 |
20140000293 | Kates | Jan 2014 | A1 |
20140000294 | Kates | Jan 2014 | A1 |
20140012422 | Kates | Jan 2014 | A1 |
20140069121 | Pham | Mar 2014 | A1 |
20140074730 | Arensmeier et al. | Mar 2014 | A1 |
20140084836 | Pham et al. | Mar 2014 | A1 |
20140229014 | Pham et al. | Aug 2014 | A1 |
20140260342 | Pham | Sep 2014 | A1 |
20140260390 | Pham | Sep 2014 | A1 |
20140262134 | Arensmeier et al. | Sep 2014 | A1 |
20140266755 | Arensmeier et al. | Sep 2014 | A1 |
20140297208 | Arensmeier | Oct 2014 | A1 |
20140299289 | Alsaleem et al. | Oct 2014 | A1 |
20150135748 | Alsaleem et al. | May 2015 | A1 |
20150155701 | Wallis et al. | Jun 2015 | A1 |
20150261230 | Kates | Sep 2015 | A1 |
20150367463 | Pham | Dec 2015 | A1 |
20160076536 | Jayanth et al. | Mar 2016 | A1 |
20160223238 | Kates | Aug 2016 | A1 |
20160226416 | Pham et al. | Aug 2016 | A1 |
20170179709 | Wallis et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
1147440 | May 1983 | CA |
1151265 | Aug 1983 | CA |
2528778 | Dec 2004 | CA |
2567264 | Jul 2007 | CA |
173493 | Nov 1934 | CH |
1133425 | Oct 1996 | CN |
1169619 | Jan 1998 | CN |
1297522 | May 2001 | CN |
1354347 | Jun 2002 | CN |
1356472 | Jul 2002 | CN |
1654893 | Aug 2005 | CN |
1742427 | Mar 2006 | CN |
1906453 | Jan 2007 | CN |
1922445 | Feb 2007 | CN |
101048713 | Oct 2007 | CN |
101124436 | Feb 2008 | CN |
101156033 | Apr 2008 | CN |
101270908 | Sep 2008 | CN |
101361244 | Feb 2009 | CN |
101466193 | Jun 2009 | CN |
101506600 | Aug 2009 | CN |
101802521 | Aug 2010 | CN |
101821693 | Sep 2010 | CN |
102354206 | Feb 2012 | CN |
842351 | Jun 1952 | DE |
764179 | Apr 1953 | DE |
1144461 | Feb 1963 | DE |
1403516 | Oct 1968 | DE |
1403467 | Oct 1969 | DE |
3118638 | May 1982 | DE |
3133502 | Jun 1982 | DE |
3508353 | Sep 1985 | DE |
3422398 | Dec 1985 | DE |
29723145 | Apr 1998 | DE |
0008524 | Mar 1980 | EP |
0060172 | Sep 1982 | EP |
0085246 | Aug 1983 | EP |
0124603 | Nov 1984 | EP |
0254253 | Jan 1988 | EP |
0346152 | Dec 1989 | EP |
0351272 | Jan 1990 | EP |
0351833 | Jan 1990 | EP |
0355255 | Feb 1990 | EP |
0361394 | Apr 1990 | EP |
0398436 | Nov 1990 | EP |
0410330 | Jan 1991 | EP |
0419857 | Apr 1991 | EP |
0432085 | Jun 1991 | EP |
0453302 | Oct 1991 | EP |
0479421 | Apr 1992 | EP |
0557023 | Aug 1993 | EP |
0579374 | Jan 1994 | EP |
0660213 | Jun 1995 | EP |
0747598 | Dec 1996 | EP |
0877462 | Nov 1998 | EP |
0982497 | Mar 2000 | EP |
1008816 | Jun 2000 | EP |
1087142 | Mar 2001 | EP |
1087184 | Mar 2001 | EP |
1138949 | Oct 2001 | EP |
1139037 | Oct 2001 | EP |
1187021 | Mar 2002 | EP |
1209427 | May 2002 | EP |
1241417 | Sep 2002 | EP |
1245912 | Oct 2002 | EP |
1245913 | Oct 2002 | EP |
1393034 | Mar 2004 | EP |
1435002 | Jul 2004 | EP |
1487077 | Dec 2004 | EP |
1541869 | Jun 2005 | EP |
2180270 | Apr 2010 | EP |
2472862 | Jul 1981 | FR |
2582430 | Nov 1986 | FR |
2589561 | May 1987 | FR |
2628558 | Sep 1989 | FR |
2660739 | Oct 1991 | FR |
2062919 | May 1981 | GB |
2064818 | Jun 1981 | GB |
2075774 | Nov 1981 | GB |
2116635 | Sep 1983 | GB |
2229295 | Sep 1990 | GB |
2347217 | Aug 2000 | GB |
56010639 | Feb 1981 | JP |
59145392 | Aug 1984 | JP |
61046485 | Mar 1986 | JP |
62116844 | May 1987 | JP |
63061783 | Mar 1988 | JP |
63302238 | Dec 1988 | JP |
01014554 | Jan 1989 | JP |
02110242 | Apr 1990 | JP |
02294580 | Dec 1990 | JP |
04080578 | Mar 1992 | JP |
06058273 | Mar 1994 | JP |
08021675 | Jan 1996 | JP |
08087229 | Apr 1996 | JP |
08284842 | Oct 1996 | JP |
H08261541 | Oct 1996 | JP |
2000350490 | Dec 2000 | JP |
2002155868 | May 2002 | JP |
2003018883 | Jan 2003 | JP |
2003176788 | Jun 2003 | JP |
2004316504 | Nov 2004 | JP |
2005188790 | Jul 2005 | JP |
2005241089 | Sep 2005 | JP |
2005345096 | Dec 2005 | JP |
2006046219 | Feb 2006 | JP |
2006046519 | Feb 2006 | JP |
2006274807 | Oct 2006 | JP |
2009002651 | Jan 2009 | JP |
2009229184 | Oct 2009 | JP |
2010048433 | Mar 2010 | JP |
10-1998-0036844 | Aug 1998 | KR |
20000000261 | Jan 2000 | KR |
1020000000261 | Jan 2000 | KR |
1020000025265 | May 2000 | KR |
1020020041977 | Jun 2002 | KR |
20030042857 | Jun 2003 | KR |
1020040021281 | Mar 2004 | KR |
1020060020353 | Mar 2006 | KR |
30009 | Jun 2003 | RU |
55218 | Jul 2006 | RU |
WO-8601262 | Feb 1986 | WO |
WO-8703988 | Jul 1987 | WO |
WO-8705097 | Aug 1987 | WO |
WO-8802527 | Apr 1988 | WO |
WO-8806703 | Sep 1988 | WO |
WO-9718636 | May 1997 | WO |
WO-9748161 | Dec 1997 | WO |
WO-9917066 | Apr 1999 | WO |
WO-9961847 | Dec 1999 | WO |
WO-9965681 | Dec 1999 | WO |
WO-0021047 | Apr 2000 | WO |
WO-0051223 | Aug 2000 | WO |
WO-0169147 | Sep 2001 | WO |
WO-0214968 | Feb 2002 | WO |
WO-0249178 | Jun 2002 | WO |
WO-0275227 | Sep 2002 | WO |
WO-02090840 | Nov 2002 | WO |
WO-02090913 | Nov 2002 | WO |
WO-02090914 | Nov 2002 | WO |
WO-03031996 | Apr 2003 | WO |
WO-03090000 | Oct 2003 | WO |
WO-04049088 | Jun 2004 | WO |
WO-2005022049 | Mar 2005 | WO |
WO-2005065355 | Jul 2005 | WO |
WO-05073686 | Aug 2005 | WO |
WO-2005108882 | Nov 2005 | WO |
WO-06023075 | Mar 2006 | WO |
WO-2006025880 | Mar 2006 | WO |
WO-2006091521 | Aug 2006 | WO |
WO-2008010988 | Jan 2008 | WO |
WO-2008079108 | Jul 2008 | WO |
WO-08144864 | Dec 2008 | WO |
WO-2009058356 | May 2009 | WO |
WO-2009061370 | May 2009 | WO |
WO-10138831 | Dec 2010 | WO |
WO-11069170 | Jun 2011 | WO |
WO-12092625 | Jul 2012 | WO |
WO-2012118550 | Sep 2012 | WO |
Entry |
---|
Written Opinion of the International Searching Authority regarding Application No. PCT/US2012/026973, dated Sep. 3, 2012. |
“Manual for Freezing and Air Conditioning Technology,” Fan Jili, Liaoning Science and Technology Press, Sep. 1995 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009). |
“Small-type Freezing and Air Conditioning Operation,” Chinese State Economy and Trading Committee, China Meteorological Press, Mar. 2003 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009). |
Home Comfort Zones, Save Energy with MyTemp™ Zone Control, Dec. 2009. |
Home Comfort Zones, MyTemp Room-by-Room Zone Control, Nov. 2009. |
Li et al., “Development, Evaluation, and Demonstration of a Virtual Refrigerant Charge Sensor,” Jan. 2009, HVAC&R Research, Oct. 27, 2008, 21 pages. |
Home Comfort Zones, MyTemp User Manual v4.3, May 2008. |
Home Comfort Zones, Smart Controller™ MyTemp™ Room by Room Temperature Control and Energy Management, User Manual, Aug. 2007. |
“A Practical Example of a Building's Automatic Control,” cited in First Office Action from the Patent Office of the People's Republic of China dated Jun. 29, 2007, regarding Application No. 200510005907.8, including translation by CCPIT Patent and Trademark Law Office. |
“Product Performance Introduction of York Company,” cited in First Office Action from the Patent Office of the People's Republic of China dated Jun. 29, 2007 regarding Application No. 200510005907.8, including translation by CCPIT Patent and Trademark Law Office. |
Torcellini, P., et al., “Evaluation of the Energy Performance and Design Process of the Thermal Test Facility at the National Renewable Energy Laboratory”, dated Feb. 2005. |
Cost Cutting Techniques Used by the Unscrupulous, http://www.kellyshvac.com/howto.html, Oct. 7, 2004, 3 pages. |
About CABA: CABA eBulletin, http://www.caba.org/aboutus/ebulletin/issue17/domosys.html, 2 pages, dated Sep. 22, 2004. |
The LS2000 Energy Management System, User Guide, http://www.surfnetworks.com/htmlmanuals/IonWorksEnergyManagement-LS2000-Load-Shed-System-by-Surf-Networks,Inc.html, Sep. 2004, 20 pages. |
Case Studies: Automated Meter Reading and Load Shed System, http://groupalpha.com/CaseStudies2.html, Aug. 23, 2004, 1 page. |
Nickles, Donald, “Broadband Communications Over Power Transmission Lines,” A Guest Lecture From the Dr. Shreekanth Mandaynam Engineering Frontiers Lecture Series, May 5, 2004, 21 pages. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Appendix C, pp. 1060-1063, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 4, pp. 176-201, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 5, pp. 239-245, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section IV, Chapter 9, pp. 494-504, Copyright 2004. |
HVAC Service Assistant, ACRx Efficiency and Capacity Estimating Technology, Field Diagnostics, 2004. |
Udelhoven, Darrell, “Air Conditioning System Sizing for Optimal Efficiency,” http://www.udarrell.com/ airconditioning-sizing.html, Oct. 6, 2003, 7 pages. |
Texas Instruments, Inc., Product catalog for “TRF690 1 Single-Chip RF Transceiver,” Copyright 2001-2003, Revised Oct. 2003, 27 pages. |
Advanced Utility Metering: Period of Performance, Subcontractor Report, National Renewable Energy Laboratory, Sep. 2003, 59 pages. |
Honeywell, Advanced Portable A/C Diagnostics, The HVAC Service Assistant, 2003. |
Vandenbrink et al.,“Design of a Refrigeration Cycle Evaporator Unit,” Apr. 18, 2003. |
Udelhoven, Darrell, “Air Conditioner EER, SEER Ratings, BTUH Capacity Ratings, & Evaporator Heat Load,” http://www.udarrell.com/air-conditioner-capacity-seer.html, Apr. 3, 2003, 15 pages. |
The Honeywell HVAC Service Assistant, A Tool for Reducing Electrical Power Demand and Energy Consumption, Field Diagnostics, 2003. |
Trane EarthWise™ CenTra Vac™ Water-Cooled Liquid Chillers 165-3950 Tons 50 and 60 Hz; CTV PRC007-EN; Oct. 2002; 56 pages. |
Honeywell, HVAC Service Assistant, TRGpro PalmTM OS Interface and HVAC Service Assistant A7075A1000, 2002. |
Honeywell, A7075A1000 HVAC Service Assistant, 2001. |
LIPA Launches Free, First-in-Nation Internet-Based Air Conditioner Control Program to Help LIPA and Its Customers Conserve Electricity & Save Money, Apr. 19, 2001, http://www.lipower.org/newscmter/pr/2001/aprill9_0I.html, 3 pages. |
K. A. Manske et al.; Evaporative Condenser Control in Industrial Refrigeration Systems; University of Wisconsin-Madison, Mechanical Engineering Department; International Journal of Refrigeration, vol. 24, No. 7; pp. 676-691; 2001, 21 pages. |
Frequently Asked Questions, http://www.lipaedge.com/faq.asp, Copyright © 2001, 5 pages. |
Translation of claims and Abstract of KR Patent Laying-Open No. 2000-0000261. |
BChydro, “Power Factor” Guides to Energy Management: The GEM Series, Oct. 1999. |
Ultrasite 32 User's Guide, Computer Process Controls, Sep. 28, 1999. |
Refrigeration Monitor and Case Control Installation and Operation Manual, Computer Process Controls, Aug. 12, 1999. |
Liao et al., A Correlation of Optimal Heat Rejection Pressures in Transcritical Carbon Dioxide Cycles, Applied Thermal Engineering 20 (2000), Jul. 25, 1999, 831-841. |
Einstein RX-300 Refrigeration Controller Installation and Operation Manual, Computer Process Controls, Apr. 1, 1998, 329 pages. |
Building Control Unit (BCU) Installation and Operation Manual, Computer Process Controls, Jan. 28, 1998, 141 pages. |
Low-Cost Multi-Service Home Gateway Creates New Business Opportunities, Coactive Networks, Copyright 1998-1999, 7 pages. |
Pin, C. et al., “Predictive Models as Means to Quantify the Interactions of Spoilage Organisms,” International Journal of Food Microbiology, vol. 41, No. 1, 1998, pp. 59-72, XP-002285119. |
Watt, James; Development of Empirical Temperature and Humidity-Based Degraded-Condition Indicators for Low-Tonnage Air Conditioners; ESL-TH-97/12-03; Dec. 1997. |
Ultrasite User's Guide BEC Supplement, Computer Process Controls, Oct. 6, 1997. |
Ultrasite User's Guide BCU Supplement, Computer Process Controls, Sep. 4, 1997. |
Ultrasite User's Guide RMCC Supplement, Computer Process Controls, Jun. 9, 1997. |
Texas Instruments, Inc. Mechanical Data for “PT (S-PQFP-G48) Plastic Quad Flatpack,” Revised Dec. 1996, 2 pages. |
Honeywell, Excel 5000® System, Excel Building Supervisor, 74-2033-1, Copyright © 1996, Rev. 6-96, 12 pages. |
UltraSite User's Guide, Computer Process Controls, Apr. 1, 1996. |
Honeywell, Excel 5000® System, Excel Building Supervisor—Integrated, 74-2034, Copyright © 1994, Rev. 11-94, 12 pages. |
Tamarkin, Tom D., “Automatic Meter Reading,” Public Power magazine, vol. 50, No. 5, Sep.-Oct. 1992, http://www.energycite.com/news/amr.html, 6 pages. |
Palani, M. et al, Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench, ESL-TR-92/05-05, May 1992. |
European Search Report for EP 82306809.3; dated Apr. 28, 1983; 1 Page. |
European Search Report for EP 91 30 3518; dated Jul. 22, 1991; 1 Page. |
European Search Report for EP 93 30 4470; dated Oct. 26, 1993; 1 Page. |
European Search Report for EP 96 30 4219; dated Dec. 1, 1998; 2 Pages. |
International Search Report; International Application No. PCT/US98/18710; dated Jan. 26, 1999; 1 Page. |
European Search Report for EP 94 30 3484; dated Apr. 3, 1997; 1 Page. |
European Search Report for EP 98 30 3525; dated May 28, 1999; 2 Pages. |
European Search Report for EP 99 30 6052; dated Dec. 28, 1999; 3 Pages. |
European Search Report for EP 01 30 7547; dated Feb. 20, 2002; 1 Page. |
European Search Report for Application No. EP 01 30 1752, dated Mar. 26, 2002. |
International Search Report, International Application No. PCT/US02/13456, dated Aug. 22, 2002, 2 pages. |
International Search Report for PCT/US02/13459; ISA/US; dated Sep. 19, 2002. |
European Search Report for Application No. EP 02 25 1531, dated Sep. 30, 2002. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Jan. 14, 2003. |
Written Opinion regarding PCT/US02/13459, dated Apr. 23, 2003. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Jun. 18, 2003. |
International Preliminary Examination Report regarding PCT/US02/13456, dated Sep. 15, 2003. |
Office Action regarding U.S. Appl. No. 10/061,964, dated Oct. 3, 2003. |
Response to Rule 312 Communication regarding U.S. Appl. No. 09/977,552, dated Oct. 31, 2003. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Dec. 3, 2003. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Apr. 26, 2004. |
Office Action regarding U.S. Appl. No. 10/286,419, dated Jun. 10, 2004. |
European Search Report for EP 02 72 9050, dated Jun. 17, 2004, 2 pages. |
Supplementary European Search Report for EP 02 73 1544, dated Jun. 18, 2004, 2 Pages. |
Notice of Allowance regarding U.S. Appl. No. 10/061,964, dated Jul. 19, 2004. |
International Search Report, International Application No. PCT/US04/13384; dated Aug. 1, 2004; 1 Page. |
International Search Report, International Application No. PCT/US2004/027654, dated Aug. 25, 2004, 4 Pages. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Sep. 7, 2004. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Oct. 18, 2004. |
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/286,419, dated Dec. 2, 2004. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Feb. 4, 2005. |
European Search Report regarding Application No. EP02729051, dated Feb. 17, 2005. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Jun. 29, 2005. |
Restriction Requirement regarding U.S. Appl. No. 10/940,877, dated Jul. 25, 2005. |
International Search Report for International Application No. PCT/US2005/11154, dated Oct. 19, 2005. |
Office Action dated Oct. 27, 2005 from Related U.S. Appl. No. 10/916,223. |
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,601. |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 09/977,552, dated Nov. 10, 2005. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 14, 2005. |
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/675,137, dated Dec. 16, 2005. |
First Examination Communication regarding European Application No. EP02729051.9, dated Dec. 23, 2005. |
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,601. |
Examiner's First Report on Australian Patent Application No. 2002259066, dated Mar. 1, 2006. |
International Search Report for International Application No. PCT/US04/43859, dated Mar. 2, 2006. |
Office Action dated Mar. 30, 2006 from Related U.S. Appl. No. 11/130,569. |
Office Action dated Apr. 19, 2006 from Related U.S. Appl. No. 10/916,223. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated May 2, 2006. |
Office Action dated Jun. 22, 2009 from Related U.S. Appl. No. 12/050,821. |
Second Examination Communication regarding European Application No. EP02729051.9, dated Jul. 3, 2006. |
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 10/916,222. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Jul. 12, 2006. |
Notice of Allowance dated Jul. 13, 2006 from Related U.S. Appl. No. 11/130,601. |
Office Action dated Jul. 27, 2006 from Related U.S. Appl. No. 11/130,871. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2006. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Oct. 27, 2006. |
Office Action dated Nov. 14, 2006 from Related U.S. Appl. No. 11/130,569. |
Office Action dated Nov. 16, 2006 from Related U.S. Appl. No. 10/916,223. |
Office Action dated Jan. 23, 2007 from Related U.S. Appl. No. 10/916,222. |
Election/Restriction Requirement regarding U.S. Appl. No. 09/977,552, dated Jan. 25, 2007. |
Office Action dated Feb. 1, 2007 from Related U.S. Appl. No. 11/130,562. |
First Office Action received from the Chinese Patent Office dated Feb. 2, 2007 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office. |
Notice of Allowance dated Feb. 12, 2007 from Related U.S. Appl. No. 11/130,871. |
International Search Report, International Application No. PCT/US2006/040964, dated Feb. 15, 2007, 2 Pages. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 2, 2007. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Apr. 12, 2007. |
Office Action Communication regarding U.S. Appl. No. 09/977,552, dated Apr. 18, 2007. |
Office Action regarding U.S. Appl. No. 10/940,877, dated May 21, 2007. |
First Office Action from the Patent Office of the People's Republic of China dated Jun. 8, 2007, Application No. 200480027753.6 and Translation provided by CCPIT. |
Notice of Allowance dated Jun. 11, 2007 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Jun. 27, 2007 from Related U.S. Appl. No. 11/417,557. |
First Office Action from the Patent Office of the People's Republic of China regarding Application No. 200510005907.8, dated Jun. 29, 2007. |
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,609. |
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,701. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Jul. 23, 2007. |
Notice of Allowance dated Jul. 25, 2007 from Related U.S. Appl. No. 10/916,223. |
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,609. |
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,701. |
Office Action dated Sep. 18, 2007 from Related U.S. Appl. No. 11/130,562. |
Office Action regarding U.S. Appl. No. 11/098,582, dated Sep. 21, 2007. |
International Search Report and Written Opinion of the International Searching Authority regarding International Application No. PCT/US06/33702, dated Sep. 26, 2007. |
International Search Report, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007. |
Written Opinion of the International Searching Authority, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2007. |
International Search Report for International Application No. PCT/US2007/016135 dated Oct. 22, 2007. |
Notice of Allowance dated Oct. 26, 2007 from Related U.S. Appl. No. 10/916,223. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 13, 2007. |
Notice of Allowance dated Dec. 3, 2007 from Related U.S. Appl. No. 11/130,562. |
Notice of Allowance dated Dec. 21, 2007 from Related U.S. Appl. No. 11/417,609. |
International Search Report for International Application No. PCT/US07/019563, dated Jan. 15, 2008, 3 Pages. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2007/019563, dated Jan. 15, 2008. |
Office Action dated Feb. 15, 2008 from Related U.S. Appl. No. 11/417,557. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 25, 2008. |
Office Action regarding U.S. Appl. No. 11/337,918, dated Mar. 25, 2008. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Mar. 26, 2008. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Jun. 5, 2008. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Jun. 5, 2008. |
Office Action dated Jul. 1, 2008 from Related U.S. Appl. No. 11/927,425. |
Office Action regarding U.S. Appl. No. 11/098,582, dated Jul. 7, 2008. |
Office Action dated Jul. 24, 2008 from Related U.S. Appl. No. 11/417,557. |
International Search Report from PCT /US2008/060900, dated Aug. 4, 2008, 6 pages. |
First Office Action issued by the Chinese Patent Office for Application No. 200480015875.3, dated Sep. 5, 2008. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Sep. 9, 2008. |
Examiner Interview regarding U.S. Appl. No. 11/256,641, dated Sep. 16, 2008. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Oct. 22, 2008. |
Office Action regarding U.S. Appl. No. 11/337/918, dated Oct. 28, 2008. |
Notice of Allowance dated Nov. 3, 2008 from Related U.S. Appl. No. 11/417,701. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Nov. 5, 2008. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008. |
International Search Report for International Application No. PCT/US2008/009618, dated Dec. 8, 2008. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008. |
First Official Report regarding Australian Patent Application No. 2007214381, dated Dec. 12, 2008. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Dec. 15, 2008. |
Office Action for U.S. Appl. No. 11/497,644, dated Dec. 19, 2008. |
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,871. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Jan. 29, 2009. |
Final Office Action regarding U.S. Appl. No. 11/256,641, dated Feb. 2, 2009. |
Office Action dated Feb. 3, 2009 from Related U.S. Appl. No. 11/866,295. |
International Search Report for International Application No. PCT/US2008/012362, dated Feb. 12, 2009. |
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/033,765. |
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/050,821. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/098,582, dated Feb. 24, 2009. |
Second Office Action issued by the Chinese Patent Office for Application No. 200480015875.3, dated Feb. 27, 2009. |
International Preliminary Report on Patentability regarding International Application No. PCT/US2007/019563 dated Mar. 10, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/012364 dated Mar. 12, 2009. |
International Search Report for International Application No. PCT/US2008/012364 dated Mar. 13, 2009. |
Office Action dated May 6, 2009 from Related U.S. Appl. No. 11/830,729. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/256,641, dated May 19, 2009. |
Final Office Action regarding U.S. Appl. No. 11/214,179, dated May 29, 2009. |
Office Action dated Jun. 17, 2009 from Related U.S. Appl. No. 12/033,765. |
Office Action dated Jun. 19, 2009 from Related U.S. Appl. No. 11/866,295. |
Second Office action issued by the Chinese Patent Office dated Jun. 19, 2009 regarding Application No. 200510005907.8, translation provided by CCPIT Patent and Trademark Law Office. |
Office Action for U.S. Appl. No. 11/497,644, dated Jul. 10, 2009. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Jul. 13, 2009. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Jul. 20, 2009. |
Notice of Panel Decision from Pre-Appeal Brief Review regarding U.S. Appl. No. 09/977,552, dated Aug. 4, 2009. |
Office Action regarding U.S. Appl. No. 11/337,918, dated Aug. 17, 2009. |
Advisory Action regarding U.S. Appl. No. 11/214,179, dated Aug. 28, 2009. |
Notice of Allowance regarding U.S. Appl. No. 10/940,877, dated Sep. 4, 2009. |
Office Action regarding U.S. Appl. No. 11/394,380, dated Sep. 25, 2009. |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/098,575, dated Sep. 28, 2009. |
Office Action for U.S. Appl. No. 11/497,579, dated Oct. 27, 2009. |
Examination Report received from Australian Government IP Australia dated Oct. 29, 2009 regarding patent application No. 2008202088. |
Second Official Report regarding Australian Patent Application No. 2007214381, dated Oct. 30, 2009. |
Supplementary European Search Report regarding Application No. PCT/US2006/005917, dated Nov. 23, 2009. |
Examiner-Initiated Interview Summary regarding U.S. Appl. No. 11/214,179, dated Dec. 11, 2009. |
Examiner's Answer regarding U.S. Appl. No. 09/977,552, dated Dec. 17, 2009. |
First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009. |
Non-Final Office Action for U.S. Appl. No. 11/098,575 dated Jan. 27, 2010. |
Office Action regarding U.S. Appl. No. 11/497,644, dated Jan. 29, 2010. |
Restriction Requirement regarding U.S. Appl. No. 11/214,179, dated Feb. 2, 2010. |
Final Office action regarding U.S. Appl. No. 11/337,918, dated Feb. 4, 2010. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Feb. 17, 2010. |
Interview Summary regarding U.S. Appl. No. 11/098,582, dated Apr. 27, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/012362, dated May 4, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/012364, dated May 4, 2010. |
Interview Summary regarding U.S. Appl. No. 11/497,644, dated May 4, 2010. |
Final Office Action regarding U.S. Appl. No. 11/497,579, dated May 14, 2010. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jun. 8, 2010. |
Office Action regarding U.S. Appl. No. 11/497,644, dated Jun. 14, 2010. |
Supplementary European Search Report regarding European Application No. EP06790063, dated Jun. 15, 2010. |
Final Office Action regarding U.S. Appl. No. 11/098,575, dated Jun. 17, 2010. |
First Office Action from the State Intellectual Property Office of the People's Republic of China regarding Chinese Patent Application No. 200890100287.3, dated Oct. 25, 2010. Translation provided by Unitalen Attorneys at Law. |
Interview Summary regarding U.S. Appl. No. 11/497,579, dated Jul. 15, 2010. |
Second Office Action regarding Chinese Patent Application No. 200780030810X, dated Aug. 4, 2010. English translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action dated Aug. 13, 2010 for U.S. Appl. No. 12/054,011. |
Office Action regarding U.S. Appl. No. 11/850,846, dated Aug. 13, 2010. |
Office Action regarding U.S. Appl. No. 11/776,879, dated Sep. 17, 2010. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/098,582, dated Sep. 24, 2010. |
First Office Action regarding Chinese Patent Application No. 200780032977.X, dated Sep. 27, 2010. English translation provided by Unitalen Attorneys at Law. |
Final Office Action dated Dec. 7, 2010 for U.S. Appl. No. 12/054,011. |
First Office Action regarding Chinese Patent Application No. 201010117657.8, dated Dec. 29, 2010. English translation provided by Unitalen Attorneys at Law. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/036601, dated Dec. 29, 2010. |
Official Action regarding Australian Patent Application No. 2008325240, dated Jan. 19, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jan. 24, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jan. 27, 2011. |
Second Office Action regarding Chinese Patent Application No. 200890100287.3, dated Jan. 27, 2011. English translation provided by Unitalen Attorneys at Law. |
Examiner's First Report on Australian Patent Application No. 2008319275, dated Jan. 31, 2011. |
Final Office Action regarding U.S. Appl. No. 11/337,918, dated Feb. 17, 2011. |
Non-Final Office Action dated Mar. 3, 2011 for U.S. Appl. No. 12/054,011. |
Notice of Allowance regarding U.S. Appl. No. 12/685,424, dated Apr. 25, 2011. |
First Office Action regarding Chinese Application No. 200880106319.5, dated May 25, 2011. English translation provided by Unitalen Attorneys at Law. |
Communication from European Patent Office concerning Substantive Examination regarding European Patent Application No. 06790063.9, dated Jun. 6, 2011. |
International Search Report regarding Application No. PCT/US2010/056315, dated Jun. 28, 2011. |
Final Office Action for U.S. Appl. No. 12/054,011, dated Jun. 30, 2011. |
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jul. 7, 2011. |
Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jul. 21, 2011. |
Office Action regarding U.S. Appl. No. 12/261,677, dated Aug. 4, 2011. |
Third Office Action regarding Chinese Application No. 2005100059078 from the State Intellectual Property Office of People's Republic of China, dated Aug. 24, 2011. Translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action for U.S. Appl. No. 12/054,011, dated Oct. 20, 2011. |
Office Action regarding U.S. Appl. No. 12/261,643, dated Nov. 2, 2011. |
Notice of Allowance and Fees Due, Interview Summary and Notice of Allowability regarding U.S. Appl. No. 11/214,179, dated Nov. 23, 2011. |
Notice of Allowance regarding U.S. Appl. No. 12/261,677, dated Dec. 15, 2011. |
Examiner's First Report on Australian Patent Application No. 2007292917 dated Jan. 10, 2012. |
Non-Final Office Action in U.S. Appl. No. 12/685,375, dated Jan. 19, 2012. |
Office Action regarding U.S. Appl. No. 12/261,643, dated Feb. 15, 2012. |
Examiner's Report No. 2 regarding Australian Patent Application No. 2008325240, dated Mar. 5, 2012. |
Issue Notification regarding U.S. Appl. No. 11/214,179, dated Mar. 14, 2012. |
Non-Final Office Action for U.S. Appl. No. 11/776,879, dated Mar. 16, 2012. |
Office Action regarding U.S. Appl. No. 13/303,286, dated Mar. 26, 2012. |
Non-Final Office Action for U.S. Appl. No. 12/054,011, dated Apr. 10, 2012. |
Non-Final office Action regarding U.S. Appl. No. 11/850,846, dated Apr. 24, 2012. |
First Office Action regarding Chinese Patent Application No. 200910211779.0, dated May 3, 2012. English translation provided by Unitalen Attorneys at Law. |
International Preliminary Report on Patentability regarding Application No. PCT/US2010/056315, dated May 24, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 13/176,021, dated May 8, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 13/435,543, dated Jun. 21, 2012. |
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jun. 27, 2012. |
Notice of Allowance regarding U.S. Appl. No. 11/776,879, dated Jul. 9, 2012. |
Notice of Allowance regarding U.S. Appl. No. 13/303,286, dated Jul. 19, 2012. |
Patent Examination Report No. 3 regarding Australian Patent Application No. 2008325240, dated Jul. 19, 2012. |
Non-Final Office Action for U.S. Appl. No. 12/685,375, dated Aug. 6, 2012. |
Final Office Action for U.S. Appl. No. 11/850,846, dated Aug. 13, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 12/955,355, dated Sep. 11, 2012. |
Notice of Allowance and Fee(s) Due regarding U.S. Appl. No. 12/789,562, dated Oct. 26, 2012. |
European Search Report for Application No. EP 12 182 243.1, dated Oct. 29, 2012. |
Extended European Search Report regarding Application No. 12182243.1-2311, dated Oct. 29, 2012. |
Non-Final Office Action for U.S. Appl. No. 13/030,549, dated Nov. 5, 2012. |
Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880122964.6, dated Nov. 5, 2012. Translation provided by Unitalen Attorneys at Law. |
Record of Oral Hearing regarding U.S. Appl. No. 09/977,552, dated Nov. 29, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 12/943,626, dated Dec. 20, 2012. |
First Examination Report regarding Australian Patent Application No. 2010319488, dated Jan. 10, 2013. |
Second Office Action regarding Chinese Patent Application No. 200910211779.0, dated Feb. 4, 2013. English translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Mar. 12, 2013. |
International Search Report regarding Application No. PCT/US2013/021161, dated May 8, 2013. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/021161, dated May 8, 2013. |
Non-Final Office Action in U.S. Appl. No. 11/850,846, dated May 24, 2013. |
Non-Final Office Action in U.S. Appl. No. 13/784,890, dated Jun. 11, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jul. 3, 2013. |
First Office Action regarding Canadian Patent Application No. 2,777,349, dated Jul. 19, 2013. |
Third Office Action regarding Chinese Patent Application No. 200910211779.0, dated Sep. 4, 2013. English translation provided by Unitalen Attorneys at Law. |
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Sep. 16, 2013. |
First Examination Report regarding Australian Patent Application No. 2012241185, dated Sep. 27, 2013. |
Notice of Grounds for Refusal regarding Korean Patent Application No. 10-2009-7000850, dated Oct. 4, 2013. English translation provided by Y.S. Chang & Associates. |
Final Office Action regarding U.S. Appl. No. 13/770,123, dated Nov. 15, 2013. |
First Office Action regarding Chinese Patent Application No. 201110349785.X, dated Nov. 21, 2013, and Search Report. English translation provided by Unitalen Attorneys at Law. |
Advisory Action regarding U.S. Appl. No. 12/261,643, dated Nov. 22, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 13/932,611, dated Nov. 25, 2013. |
Office Action regarding U.S. Appl. No. 13/737,566, dated Dec. 20, 2013. |
Final Office Action regarding U.S. Appl. No. 13/784,890, dated Dec. 30, 2013. |
Fourth Office Action regarding Chinese Patent Application No. 200910211779.0, dated Jan. 6, 2014. English translation provided by Unitalen Attorneys at Law. |
European Search Report regarding Application No. 07811712.4-1608 / 2069638 PCT/US2007019563, dated Jan. 7, 2014. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,479, dated Jan. 16, 2014. |
Final Office Action regarding U.S. Appl. No. 11/850,846, dated Jan. 17, 2014. |
International Search Report for PCT/US2012/026973, dated Sep. 3, 2012, 5 pages. |
International Search Report for PCT/US2013/061389, Jan. 22, 2014, 7 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Oct. 4, 2013; 11 pages. |
Restriction from related U.S. Appl. No. 13/269,188 dated Apr. 9, 2013; 5 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Aug. 14, 2012; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Jul. 17, 2014; 10 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Feb. 20, 2014; 9 pages. |
Final Office Action from related U.S. Appl. No. 13/269,188 dated May 23, 2013; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Oct. 24, 2013; 8 pages. |
Final Office Action from related U.S. Appl. No. 13/767,479 dated Mar. 14, 2014; 6 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,742 dated Oct. 7, 2013; 9 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jan. 31, 2014; 7 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jun. 2, 2014; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,810 dated Nov. 15, 2013; 9 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,810 dated Mar. 20, 2014; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Oct. 30, 2013; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Apr. 2, 2014; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Oct. 23, 2013; 8 pages. |
Final Office Action from related U.S. Appl. No. 13/836,043 dated Mar. 12, 2014; 5 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Jul. 11, 2014; 5 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Oct. 15, 2013; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Feb. 20, 2014; 10 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,244 dated Jul. 2, 2014; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,453 dated Aug. 20, 2013; 8 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Jan. 14, 2014; 8 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Apr. 21, 2014; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/369,067 dated Jan. 16, 2014; 16 pages. |
Final Office Action from related U.S. Appl. No. 13/369,067 dated May 1, 2014; 19 pages. |
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Jul. 23, 2014; 9 pages. |
Final Office Action regarding U.S. Appl. No. 13/932,611, dated May 28, 2014. |
Supplementary European Search Report regarding Application No. EP 07 81 1712, dated Jan. 7, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/261,643, dated Jun. 23, 2014. |
Extended European Search Report regarding Application No. 07796879.0-1602 / 2041501 PCT/US2007016135, dated Jul. 14, 2014. |
Interview Summary from related U.S. Appl. No. 12/054,011 dated Jan. 30, 2012. |
Written Opinion from related PCT Application No. PCT/US2014/028074 dated Jun. 19, 2014. |
Advisory Action from related U.S. Appl. No. 13/784,890 dated Mar. 14, 2014. |
International Search Report from related PCT Application No. PCT/US2014/028074 dated Jun. 19, 2014. |
Examiner's Answer from related U.S. Appl. No. 13/784,890 dated Jul. 3, 2014. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Aug. 4, 2014. |
Non Final Office Action for related U.S. Appl. No. 13/835,621 dated Aug. 8, 2014. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 6, p. 322, Copyright 2004. |
Reh, F. John, “Cost Benefit Analysis”, http://management.about.com/cs/money/a/CostBenefit.htm, Dec. 8, 2003. |
“Air Conditioning Equipment and Diagnostic Primer,” Field Diagnostic Services, Inc., Sep. 9, 2002. |
Udelhoven, Darrell, “Optimizing Air Conditioning Efficiency TuneUp Optimizing the Condensor Output, Seer, Air, HVAC Industry,” http://www.udarrell.com/air-conditioning-efficiency.html, Jul. 19, 2002, 13 pages. |
Flow & Level Measurement: Mass Flowmeters, http://www.omega.com/literature/transactions/volume4/T9904-10-MASS.html, 2001, 19 pages. |
Palani, M. et al, The Effect of Reducted Evaporator Air Flow on the Performance of a Residential Central Air Conditioner, ESL-HH-92-05-04, Energy Systems Laboratory, Mechanical Engineering Department, Texas A&M University, Eighth Symposium on Improving Building System in Hot and Humid Climates. May 13-14, 1992. |
International Search Report; International Application No. PCT/IB96/01435; dated May 23, 1997; 1 Page. |
European Search Report for EP 02 25 0266; dated May 17, 2002; 3 Pages. |
Final Office Action regarding U.S. Appl. No. 10/061,964, dated Mar. 8, 2004. |
Office Action regarding U.S. Appl. No. 10/698,048, dated Mar. 21, 2005. |
Office Action dated May 4, 2005 from Related U.S. Appl. No. 10/916,223. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated May 13, 2005. |
Notice of Allowance for U.S. Appl. No. 10/698,048, dated Sep. 1, 2005. |
Office Action dated Nov. 8, 2005 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,871. |
Notice of Allowance dated May 29, 2007 from Related U.S. Appl. No. 11/130,569. |
Office Action dated Aug. 21, 2007 from Related U.S. Appl. No. 11/417,557. |
Office Action regarding U.S. Appl. No. 11/256,641, dated Apr. 29, 2008. |
Office Action dated Jul. 16, 2008 from Related U.S. Appl. No. 11/417,701. |
Written Opinion of International Searching Authority for International Application No. PCT/US2008/009618, dated Dec. 8, 2008. |
Office Action for U.S. Appl. No. 11/394,380, dated Jan. 6, 2009. |
Interview Summary regarding U.S. Appl. No. 11/214,179, dated Jan. 30, 2009. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Apr. 27, 2009. |
Third Office Action issued by the Chinese Patent Office dated Jun. 19, 2009 regarding Application No. 200580013451.8, translated by CCPIT Patent and Trademark Law Office. |
Office Action regarding U.S. Appl. No. 11/098,582, dated Aug. 4, 2009. |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/098,575, dated Nov. 16, 2009. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/009618, dated Mar. 24, 2010. |
Examiner Interview Summary regarding U.S. Appl. No. 11/394,380, dated Jul. 29, 2010. |
Final Office Action regarding U.S. Appl. No. 11/497,644, dated Dec. 22, 2010. |
International Search Report regarding Application No. PCT/US2010/036601, dated Dec. 29, 2010. |
Notice of Allowance for related U.S. Appl. No. 13/835,810 dated Aug. 5, 2014. |
Non Final Office Action for related U.S. Appl. No. 13/369,067 dated Aug. 12, 2014. |
Building Environmental Control (BEC) Installation and Operation Manual, Computer Process Controls, Jan. 5, 1998. |
European Search Report for Application No. EP 04 81 5853, dated Jul. 17, 2007, 2 Pages. |
European Search Report for Application No. EP 06 02 6263, dated Jul. 17, 2007, 4 Pages. |
First Office Action issued by the Chinese Patent Office dated May 30, 2008 regarding Application No. 200580013451.8, 8 Pages. |
Office Action regarding U.S. Appl. No. 11/098,582 dated Mar. 3, 2010. |
Second Office Action issued by the Chinese Patent Office dated Mar. 6, 2009 regarding Application No. 200580013451.8, 7 Pages. |
Second Office Action received from the Chinese Patent Office dated Jun. 26, 2009 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Jan. 11, 2008. |
Invitation to Indicate Claims to be Searched regarding European Patent Application No. 07 796 879.0, dated Feb. 20, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 13/784,890, dated Jun. 11, 2013. |
Restriction Requirement regarding U.S. Appl. No. 11/776,879, dated Jun. 4, 2010. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2007/016135, dated Oct. 22, 2007. |
International Search Report and Written Opinion of the ISA regarding International Application No. PCT/US2014/032927, ISA/KR dated Aug. 21, 2014. |
Honeywell, Alerts and Delta T Diagnostics with Prestige® 2.0 IAQ Thermostat, 69-2678-02, Sep. 2011. |
Honeywell, Prestige System Installation Guide, THX9321/9421 Prestige® IAQ and RF EIM, 64-2490-03, Jul. 2011. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/061389, dated Jan. 22, 2014. |
Honeywell, RedLINK™ Wireless Comfort Systems brochure, 50-1194, Sep. 2011. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/943,626, dated Jun. 19, 2014. |
Fourth Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Applicaiton No. 200510005907.8, dated Dec. 8, 2011. Translation provided by Unitalen Attorneys at Law. |
European Search Report regarding Application No. 04022784.5-2315 / 1500821, dated Aug. 14, 2012. |
The International Search Report regarding International Application No. PCT/US2007/019563, dated Jan. 15, 2008. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Jun. 18, 2014. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jun. 11, 2014. |
Notice of Allowance for related U.S. Appl. No. 13/836,043, dated Oct. 9, 2014. |
Notice of Allowance for related U.S. Appl. No. 13/836,244, dated Oct. 30, 2014. |
Office Action for related U.S. Appl. No. 13/269,188, dated Oct. 6, 2014. |
Office Action for related U.S. Appl. No. 13/767,479, dated Oct. 21, 2014. |
International Search Report and Written Opinion for related PCT Application No. PCT/US2014/028859, dated Aug. 22, 2014. |
Non Final Office Action for U.S. Appl. No. 13/407,180, dated Dec. 2, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Sep. 24, 2014. |
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 201110349785.X, dated Jul. 25, 2014. Translation provided by Unitalen Attorneys at Law. |
Examiner's Report No. 1 regarding Australian Patent Application No. 2013202431, dated Nov. 25, 2014. |
Patent Examination Report for Austrialian Application No. 2012223466 dated Jan. 6, 2015. |
Notice of Allowance for U.S. Appl. No. 13/835,742 dated Dec. 24, 2014. |
Notice of Allowance for U.S. Appl. No. 13/835,810 dated Jan. 2, 2015. |
Notice of Allowance for U.S. Appl. No. 13/836,453 dated Dec. 24, 2014. |
Office Action for U.S. Appl. No. 13/835,621 dated Dec. 29, 2014. |
Final Office Action for U.S. Appl. No. 13/770,123 dated Dec. 22, 2014. |
Notice of Allowance for U.S. Appl. No. 13/836,043 dated Feb. 4, 2015. |
Office Action for U.S. Appl. No. 13/767,479 dated Feb. 6, 2015. |
Office Action for U.S. Appl. No. 13/269,188 dated Feb. 10, 2015. |
Office Action for Canadian Application No. 2,828,740 dated Jan. 12, 2015. |
Third Chinese Office Action regarding Application No. 201110349785.X, dated Jan. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action regarding U.S. Appl. No. 13/932,611, dated Jan. 30, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/835,621, dated Mar. 10, 2015. |
Interview Summary regarding U.S. Appl. No. 13/269,188, dated Mar. 18, 2015. |
Final Office Action and Interview Summary regarding U.S. Appl. No. 13/407,180, dated Mar. 13, 2015. |
Office Action regarding U.S. Appl. No. 13/770,479, dated Mar. 16, 2015. |
Office Action regarding U.S. Appl. No. 13/770,123, dated Apr. 2, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/767,479, dated Mar. 31, 2015. |
Office Action from U.S. Appl. No. 13/369,067 dated Apr. 3, 2015. |
Haiad et al., “EER & SEER as Predictors of Seasonal Energy Performance ”, Oct. 2004, Southern California Edison, http://www.doe2.com/download/DEER/SEER%2BProgThermostats/EER-SEER_CASE_ProjectSummary_Oct2004_V6a.pdf. |
Notice of Allowance regarding U.S. Appl. No. 13/835,742, dated Apr. 17, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/836,453, dated Apr. 15, 2015. |
Advisory Action regarding U.S. Appl. No. 13/269,188, dated Apr. 13, 2015. |
U.S. Office Action regarding Application No. 13/269,188, dated May 8, 2015. |
U.S. Office Action regarding U.S. Appl. No. 14/212,632, dated May 15, 2015. |
First Chinese Office Action regarding Application No. 201380005300.2, dated Apr. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Advisory Action and Interview Summary regarding U.S. Appl. No. 13/407,180, dated May 27, 2015. |
Interview Summary regarding U.S. Appl. No. 13/407,180, dated Jun. 11, 2015. |
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Jun. 16, 2015. |
Extended European Search Report regarding European Application No. 08845689.2-1608/22079864, dated Jun. 19, 2015. |
Extended European Search Report regarding European Application No. 08848538.8-1608 / 2220372, dated Jun. 19, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/932,611, dated Jul. 6, 2015. |
Restriction Requirement regarding U.S. Appl. No. 14/244,967, dated Jul. 14, 2015. |
Interview Summary regarding U.S. Appl. No. 13/369,067, dated Jul. 16, 2015. |
Applicant-Initiated Interview Summary and Advisory Action regarding U.S. Appl. No. 13/369,067, dated Jul. 23, 2015. |
Faramarzi et al., “Performance Evaluation of Rooftop Air Conditioning Units at High Ambient Temperatures,” 2004 ACEEE Summer Study on Energy Efficiency in Buildings—http://aceee.org/files/proceedings/2004/data/papers/SSO4_Panel3_Paper05.pdf. |
Notice of Allowance regarding U.S. Appl. No. 12/261,643, dated Jul. 29, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/770,123, dated Aug. 13, 2015. |
Notice of Allowance and Interview Summary regarding U.S. Appl. No. 13/269,188, dated Aug. 26, 2015. |
Office Action regarding Indian Patent Application No. 733/KOLNP/2009, dated Aug. 12, 2015. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 14/212,632, dated Sep. 2, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/369,067, dated Sep. 2, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/407,180, dated Sep. 4, 2015. |
Final Office Action regarding U.S. Appl. No. 13/770,479, dated Sep. 4, 2015. |
Office Action regarding U.S. Appl. No. 14/209,415, dated Sep. 10, 2015. |
Search Report regarding European Patent Application No. 13736303.2-1806, dated Sep. 17, 2015. |
First Office Action regarding Chinese Patent Application No. 201280010796.8, dated Sep. 14, 2015. Translation provided by Unitalen Attorneys At Law. |
Notice of Allowance regarding U.S. Appl. No. 13/770,123, dated Oct. 1, 2015. |
Office Action regarding Australian Patent Application No. 2013323760, dated Sep. 25, 2015. |
Office Action and Interview Summary regarding U.S. Appl. No. 14/244,967, dated Oct. 7, 2015. |
Office Action regarding U.S. Appl. No. 14/255,519, dated Nov. 9, 2015. |
Office Action regarding U.S. Appl. No. 14/212,632, dated Nov. 19, 2015. |
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Nov. 25, 2015. |
Office Action regarding Chinese Patent Application No. 201380049458.X, dated Nov. 13, 2015. Translation provided by Unitalen Attorneys at Law. |
Search Report regarding European Patent Application No. 08251185.8-1605 / 2040016, dated Dec. 4, 2015. |
Interview Summary regarding U.S. Appl. No. 12/054,011, dated Jan. 30, 2012. |
Office Action regarding U.S. Appl. No. 14/193,568, dated Nov. 3, 2015. |
Office Action regarding Chinese Patent Application No. 201380005300.2, dated Jan. 4, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Australian Patent Application No. 2015207920, dated Dec. 4, 2015. |
First Office Action issued by the Chinese Patent Office dated May 30, 2008 regarding Application No. 200580013451.8, 8 Pages. Translation provided by CCPIT Patent and Trademark Law Office. |
Second Office Action issued by the Chinese Patent Office dated Mar. 6, 2009 regarding Application No. 200580013451.8, 7 Pages. Translation provided by CCPIT Patent and Trademark Law Office. |
Advisory Action regarding U.S. Appl. No. 14/212,632, dated Feb. 9, 2016. |
Office Action regarding U.S. Appl. No. 14/244,967, dated Feb. 12, 2016. |
Office Action regarding European Patent Application No. 08848538.8-1608, dated Feb. 3, 2016. |
Advisory Action regarding U.S. Appl. No. 14/212,632, dated Mar. 8, 2016. |
Office Action regarding U.S. Appl. No. 14/209,415, dated Mar. 10, 2016. |
Office Action regarding U.S. Appl. No. 14/212,632, dated Apr. 7, 2016. |
Office Action regarding U.S. Appl. No. 12/943,626, dated May 4, 2016. |
Office Action regarding Australian Patent Application No. 2014229103, dated Apr. 28, 2016. |
Office Action regarding U.S. Appl. No. 14/617,451, dated Jun. 2, 2016. |
Office Action regarding U.S. Appl. No. 14/193,568, dated Jun. 1, 2016. |
Office Action regarding U.S. Appl. No. 14/080,473, dated Jun. 6, 2016. |
Interview Summary regarding U.S. Appl. No. 14/209,415, dated Jun. 20, 2016. |
Search Report regarding European Patent Application No. 13841699.5, dated Jun. 30, 2016. |
Office Action regarding Chinese Patent Application No. 201480016023.X, dated Jun. 22, 2016. Translation provided by Unitalen Attorneys at Law. |
Interview Summary regarding U.S. Appl. No. 14/617,451, dated Jul. 28, 2016. |
Office Action regarding U.S. Appl. No. 14/208,636, dated Aug. 4, 2016. |
Advisory Action regarding U.S. Appl. No. 14/193,568, dated Aug. 10, 2016. |
Office Action regarding U.S. Appl. No. 14/727,756, dated Aug. 22, 2016. |
Office Action regarding U.S. Appl. No. 14/244,967, dated Aug. 29, 2016. |
Office Action regarding U.S. Appl. No. 13/770,479, dated Sep. 7, 2016. |
Office Action regarding U.S. Appl. No. 15/096,196, dated Sep. 13, 2016. |
Office Action regarding Canadian Patent Application No. 2,904,734, dated Sep. 13, 2016. |
Office Action regarding U.S. Appl. No. 14/300,782, dated Sep. 30, 2016. |
Office Action regarding U.S. Appl. No. 14/255,519, dated Oct. 5, 2016. |
Office Action regarding Australian Patent Application No. 2015255255, dated Sep. 8, 2016. |
Office Action regarding Canadian Patent Application No. 2,908,362, dated Sep. 21, 2016. |
Search Report regarding European Patent Application No. 14764311.8, dated Oct. 27, 2016. |
Search Report regarding European Patent Application No. 14763232.7, dated Oct. 27, 2016. |
Office Action regarding U.S. Appl. No. 12/943,626, dated Nov. 4, 2016. |
Louis Goodman et al. “Vertical Motion of Neutrally Buoyant Floats.” Journal of Atmospheric and Oceanic Technology. vol. 7. Feb. 1990. |
Search Report regarding European Patent Application No. 14780284.7, dated Nov. 2, 2016. |
Office Action regarding U.S. Appl. No. 14/080,473, dated Nov. 16, 2016. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 13/770,479, dated Dec. 9, 2016. |
Office Action regarding U.S. Appl. No. 14/244,967, dated Jan. 20, 2017. |
Search Report regarding European Patent Application No. 16187893.9, dated Jan. 19, 2017. |
Advisory Action regarding U.S. Appl. No. 14/080,473, dated Jan. 30, 2017. |
Office Action regarding U.S. Appl. No. 14/208,636, dated Jan. 26, 2017. |
Office Action regarding Indian Patent Application No. 102/KOLNP/2009, dated Mar. 10, 2017. |
Office Action regarding U.S. Appl. No. 14/080,473, dated Mar. 14, 2017. |
Office Action regarding U.S. Appl. No. 13/770,479, dated Mar. 17, 2017. |
Advisory Action regarding U.S. Appl. No. 14/208,636, dated Mar. 23, 2017. |
Richard E. Lofftus, Jr. “System Charge and Performance Evaluation.” HVAC/R Training, Vatterott College. Jan. 2007. |
Search Report regarding European Patent Application No. 12752872.7, dated May 4, 2017. |
Interview Summary regarding U.S. Appl. No. 13/770,479, dated May 10, 2017. |
Advisory Action and Examiner-Initiated Interview Summary regarding U.S. Appl. No. 13/770,479, dated May 23, 2017. |
Office Action regarding Canadian Patent Application No. 2,934,860, dated May 4, 2017. |
Restriction Requirement regarding U.S. Appl. No. 14/607,782, dated Jun. 29, 2017. |
Search Report regarding European Patent Application No. 10830696.0, dated Jul. 18, 2017. |
Office Action regarding European Patent Application No. 07811712.4, dated Jul. 25, 2017. |
Office Action regarding U.S. Appl. No. 14/607,782, dated Sep. 21, 2017. |
Examiner's Answer regarding U.S. Appl. No. 12/943,626, dated Sep. 19, 2017. |
Office Action regarding Indian Patent Application No. 456/MUMNP/2010, dated Oct. 3, 2017. |
Office Action regarding European Patent Application No. 07796879.0, dated Oct. 19, 2017. |
Office Action regarding Australian Patent Application No. 2014248049, dated Oct. 10, 2017. |
Corrected Notice of Allowability regarding U.S. Appl. No. 14/080,473 dated Dec. 27, 2017. |
Office Action regarding Chinese Patent Application No. 201480016177.9, dated Apr. 7, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/208,636 dated Jan. 3, 2018. |
Office Action regarding Chinese Patent Application No. 201480025776.7, dated Jan. 10, 2018. Translation provided by Unitalen Attorneys At Law. |
Final Office Action regarding U.S. Appl. No. 15/583,942 dated Apr. 18, 2018. |
First Office Action regarding Chinese Application No. 201610422700.4 dated Apr. 2, 2018. Translation provided by Unitalen Attorneys at Law. |
Search Report regarding Chinese Patent Application No. 201610244700.4, dated Mar. 25, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/607,782 dated May 21, 2018. |
Kim, Minsung et al., “Performance of a Residential Heat Pump Operating in the Cooling Mode With Single Faults Imposed”, Sep. 2006, U.S. Department of Commerce, NISTIR 7350 (175 pages). |
Non-Final Office Action regarding U.S. Appl. No. 14/949,090 dated Jul. 5, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/607,782 dated Jul. 3, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/208,636 dated Jul. 30, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/583,942 dated Aug. 7, 2018. |
Non-Final Office Action regarding U.S. Appl. No. 15/613,375 dated Aug. 30, 2018. |
Number | Date | Country | |
---|---|---|---|
20170308072 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
61548009 | Oct 2011 | US | |
61447681 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14300782 | Jun 2014 | US |
Child | 15645970 | US | |
Parent | 13407180 | Feb 2012 | US |
Child | 14300782 | US |