Remote HVAC monitoring and diagnosis

Information

  • Patent Grant
  • 10884403
  • Patent Number
    10,884,403
  • Date Filed
    Monday, March 18, 2019
    5 years ago
  • Date Issued
    Tuesday, January 5, 2021
    3 years ago
Abstract
A monitoring system for a heating, ventilation, and air conditioning (HVAC) system of a building receives, from a monitoring device located at the building, a frequency domain representation and a time domain current value that are based on an aggregate current supplied to a plurality of components of an indoor air handler of the HVAC system. The monitoring system assesses, based on the received frequency domain representation and time domain current value, whether a first fault has occurred in a first component of the plurality of components of the indoor air handler and whether a second fault has occurred in a second component of the plurality of components of the indoor air handler. The monitoring system generates and transmits an alert in response to assessing occurrence of at least one of the first fault and the second fault. The monitoring system is located remotely from the building.
Description
FIELD

The present disclosure relates to environmental comfort systems and more particularly to remote monitoring and diagnosis of residential environmental comfort systems.


BACKGROUND

The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.


A residential HVAC (heating, ventilation, and air conditioning) system controls environmental parameters, such as temperature and humidity, of a residence. The HVAC system may include, but is not limited to, components that provide heating, cooling, humidification, and dehumidification. The target values for the environmental parameters, such as a temperature set point, may be specified by a homeowner.


Referring now to FIG. 1, a block diagram of an example HVAC system is presented. In this particular example, a forced air system with a gas furnace is shown. Return air is pulled from the residence through a filter 110 by a blower 114. The blower 114, also referred to as a fan, is controlled by a control module 118. The control module 118 receives signals from a thermostat 122. For example only, the thermostat 122 may include one or more temperature set points specified by the homeowner.


The thermostat 122 may direct that the blower 114 be turned on at all times or only when a heat request or cool request is present. The blower 114 may also be turned on at a scheduled time or on demand. In various implementations, the blower 114 can operate at multiple speeds or at any speed within a predetermined range. One or more switching relays (not shown) may be used to control the blower 114 and/or to select a speed of the blower 114.


The thermostat 122 also provides the heat and/or cool requests to the control module 118. When a heat request is made, the control module 118 causes a burner 126 to ignite. Heat from combustion is introduced to the return air provided by the blower 114 in a heat exchanger 130. The heated air is supplied to the residence and is referred to as supply air.


The burner 126 may include a pilot light, which is a small constant flame for igniting the primary flame in the burner 126. Alternatively, an intermittent pilot may be used in which a small flame is first lit prior to igniting the primary flame in the burner 126. A sparker may be used for an intermittent pilot implementation or for direct burner ignition. Another ignition option includes a hot surface igniter, which heats a surface to a high enough temperature that when gas is introduced, the heated surface causes combustion to begin. Fuel for combustion, such as natural gas, may be provided by a gas valve (not shown).


The products of combustion are exhausted outside of the residence, and an inducer blower 134 may be turned on prior to ignition of the burner 126. The inducer blower 134 provides a draft to remove the products of combustion from the burner 126. The inducer blower 134 may remain running while the burner 126 is operating. In addition, the inducer blower 134 may continue running for a set period of time after the burner 126 turns off. In a high efficiency furnace, the products of combustion may not be hot enough to have sufficient buoyancy to exhaust via conduction. Therefore, the inducer blower 134 creates a draft to exhaust the products of combustion.


A single enclosure, which will be referred to as an air handler 208, may include the filter 110, the blower 114, the control module 118, the burner 126, the heat exchanger 130, the inducer blower 134, the expansion valve 188, the evaporator 192, and the condensate pan 196.


In the HVAC system of FIG. 1, a split air conditioning system is also shown. Refrigerant is circulated through a compressor 180, a condenser 184, an expansion valve 188, and an evaporator 192. The evaporator 192 is placed in series with the supply air so that when cooling is desired, the evaporator removes heat from the supply air, thereby cooling the supply air. During cooling, the evaporator 192 is cold, which causes water vapor to condense. This water vapor is collected in a condensate pan 196, which drains or is pumped out.


A compressor control module 200 receives a cool request from the control module 118 and controls the compressor 180 accordingly. The compressor control module 200 also controls a condenser fan 204, which increases heat exchange between the condenser 184 and outside air. In such a split system, the compressor 180, the condenser 184, the compressor control module 200, and the condenser fan 204 are located outside of the residence, often in a single outdoor enclosure 212.


In various implementations, the compressor control module 200 may simply include a run capacitor, a start capacitor, and a contactor or relay. In fact, in certain implementations, the start capacitor may be omitted, such as when a scroll compressor instead of a reciprocating compressor is being used. The compressor 180 may be a variable capacity compressor and may respond to a multiple-level cool request. For example, the cool request may indicate a mid-capacity call for cool or a high capacity call for cool.


The electrical lines provided to the outdoor enclosure 212 may include a 240 volt mains power line and a 24 volt switched control line. The 24 volt control line may correspond to the cool request shown in FIG. 1. The 24 volt control line controls operation of the contactor. When the control line indicates that the compressor should be on, the contactor contacts close, connecting the 240 volt power supply to the compressor. In addition, the contactor may connect the 240 volt power supply to a condenser fan 204. In various implementations, such as when the outdoor enclosure 212 is located in the ground as part of a geothermal system, the condenser fan 204 may be omitted. When the 240 volt mains power supply arrives in two legs, as is common in the U.S., the contactor may have two sets of contacts, and is referred to as a double-pole single-throw switch.


Monitoring of operation of components in the outdoor enclosure 212 and the air handler 208 has traditionally been performed by multiple discrete sensors, measuring current individually to each component. For example, a sensor may sense the current drawn by a motor, another sensor measures resistance or current flow of an igniter, and yet another sensor monitors a state of a gas valve. However, the cost of these sensors and the time required for installation has made monitoring cost prohibitive.


SUMMARY

A monitoring system for a heating, ventilation, and air conditioning (HVAC) system of a residence includes a monitoring device installed at the residence and a server located remotely from the residence. The monitoring device measures an aggregate current supplied to a plurality of components of the HVAC system and transmits current data based on the measured aggregate current. The server receives the transmitted current data and, based on the received current, assesses whether a failure has occurred in a first component of the plurality of components of the HVAC system and assesses whether a failure has occurred in a second component of the plurality of components of the HVAC system.


In other features, the monitoring device samples the aggregate current over a time period, performs a frequency domain analysis on the samples over the time period, and transmits frequency domain data to the server. The server identifies transition points in the current data and analyzes the frequency domain data around the identified transition points. The server determines whether the failure has occurred in the first component by comparing the frequency domain data to baseline data. The server adapts the baseline data based on normal operation of the HVAC system. The monitoring device determines a single current value for the time period and transmits the single current value to the server without transmitting the samples to the server.


In further features, the single current value is one of a root mean squared current, an average current, and a peak current. The monitoring device measures the aggregate current over a series of consecutive time periods and transmits a frame of information to the server for each of the time periods. For a first period of the time periods, the monitoring device transmits a first frame including (i) a single value of the aggregate current during the first period and (ii) a frequency domain representation of the aggregate current during the first period.


In still other features, the first frame does not include individual samples of the aggregate current. The first frame includes a voltage measurement of power arriving at the HVAC system, a temperature measurement, and a representation of status of HVAC control lines during the first period. The monitoring device records control signals from a thermostat and transmits information based on the control signals to the server. The control signals include at least one of call for heat, call for fan, and call for cool.


In other features, the monitoring device is located in close proximity to an air handler unit of the HVAC system. A second monitoring device is located in close proximity to a second enclosure of the HVAC system, wherein the second enclosure includes at least one of a compressor and a heat pump heat exchanger. The second monitoring device (i) measures an aggregate current supplied to a plurality of components of the second enclosure and (ii) transmits current data based on the measured aggregate current to the server. The second monitoring device transmits the current data to the server via the monitoring device.


In further features, the monitoring device includes a switch that selectively interrupts an enabling signal to a compressor of the HVAC system. The monitoring device interrupts the enabling signal in response to at least one of (i) a value from a water sensor, (ii) a locked rotor condition of the compressor, and (iii) a command from the server. The server (i) generates an alert in response to determining presence of a fault of either the first component or the second component and (ii) sends the alert to at least one of a homeowner of the residence and an installation contractor.


In still other features, the server (i) selectively predicts an impending failure of the first component based on the received current data, (ii) selectively predicts an impending failure of the second component based on the received current data, and (iii) generates an alert in response to prediction of impending failure. The plurality of components of the HVAC system includes at least two components selected from: a flame sensor, a solenoid-operated gas valve, a hot surface igniter, a circulator blower motor, an inducer blower motor, a compressor, a pressure switch, a capacitor, an air filter, a condensing coil, an evaporating coil, and a contactor.


A method of monitoring a heating, ventilation, and air conditioning (HVAC) system of a residence includes using a monitoring device installed at the residence, measuring an aggregate current supplied to a plurality of components of the HVAC system, and transmitting current data based on the measured aggregate current to a server located remotely from the residence. The method includes receiving the transmitted current data at the server and based on the received current, assessing whether a failure has occurred in a first component of the plurality of components of the HVAC system. The method further includes, based on the received current, assessing whether a failure has occurred in a second component of the plurality of components of the HVAC system.


In other features, the method includes sampling the aggregate current over a time period, performing a frequency domain analysis on the samples over the time period, and transmitting frequency domain data to the server. The method includes identifying transition points in the current data, and analyzing the frequency domain data around the identified transition points. The method further includes determining whether the failure has occurred in the first component by comparing the frequency domain data to baseline data, and adapting the baseline data based on normal operation of the HVAC system.


In still other features, the method includes determining a single current value for the time period and transmitting the single current value to the server without transmitting the samples to the server. The single current value is one of a root mean squared current, an average current, and a peak current. The method includes measuring the aggregate current over a series of consecutive time periods, and transmitting a frame of information to the server for each of the time periods.


In still further features, the method includes, for a first period of the time periods, transmitting a first frame including (i) a single value of the aggregate current during the first period and (ii) a frequency domain representation of the aggregate current during the first period. The first frame does not include individual samples of the aggregate current. The first frame includes a voltage measurement of power arriving at the HVAC system, a temperature measurement, and a representation of status of HVAC control lines during the first period.


In other features, the method includes recording control signals from a thermostat, and transmitting information based on the control signals to the server. The control signals include at least one of call for heat, call for fan, and call for cool. The monitoring device is located in close proximity to an air handler unit of the HVAC system, and the method further includes measuring an aggregate current supplied to a plurality of components of a second enclosure of the HVAC system. The second enclosure includes at least one of a compressor and a heat pump heat exchanger, and the method includes transmitting current data based on the measured aggregate current to the server.


In still other features, the method includes transmitting the current data from the second monitoring device to the server via the monitoring device, and communicating with the monitoring device using power line communication. The method includes selectively interrupting an enabling signal to a compressor of the HVAC system in response to at least one of (i) a value from a water sensor, (ii) a locked rotor condition of the compressor, and (iii) a command from the server. The method includes sending an alert in response to determining presence of a fault of either the first component or the second component, wherein the alert is sent to at least one of a homeowner of the residence and an installation contractor.


In further features, the method includes selectively predicting an impending failure of the first component based on the received current data, selectively predicting an impending failure of the second component based on the received current data, and generating an alert in response to prediction of impending failure. The plurality of components of the HVAC system includes at least two components selected from: a flame sensor, a solenoid-operated gas valve, a hot surface igniter, a circulator blower motor, an inducer blower motor, a compressor, a pressure switch, a capacitor, an air filter, a condensing coil, an evaporating coil, and a contactor. The method includes transmitting the current data to a gateway wirelessly, wherein the gateway forwards the current data to the server over the Internet.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a block diagram of an example HVAC system according to the prior art;



FIG. 2 is a functional block diagram of an example system showing an HVAC system of a single residence;



FIGS. 3A-3C are functional block diagrams of control signal interaction with the air handler monitor module;



FIG. 4A is a functional block diagram of an example implementation of the air handler monitor module;



FIG. 4B is a functional block diagram of an example implementation of the compressor monitor module;



FIGS. 5A-5I are block diagrams of example implementations of the air handler monitor module;



FIG. 5J is a data flow diagram of a monitor module according to the principles of the present disclosure;



FIG. 6 is a flowchart depicting a brief overview of an example module installation in a retrofit application;



FIG. 7 is a flowchart of example operation in capturing frames of data;



FIG. 8 is an example functional schematic of example HVAC components;



FIG. 9 is an example time domain trace of aggregate current for a beginning of a heat cycle;



FIGS. 10A-10C are example time domain representations of aggregate current related to the hot surface igniter;



FIGS. 11A-11B show example frequency content corresponding to FIGS. 10A and 10C, respectively;



FIG. 11C shows a frequency domain comparison of FIGS. 11A and 11B;



FIGS. 12A-12B are example time domain plots depicting a solenoid-operated gas valve functioning and failing to function, respectively;



FIG. 12C is a frequency domain comparison of FIGS. 12A and 12B;



FIGS. 13A-13B are time domain traces of current and voltage of a motor;



FIG. 13C is a time domain subtraction of FIGS. 13A and 13B;



FIGS. 14A-14B are frequency domain analyses of FIGS. 13A and 13B, respectively;



FIG. 14C is a frequency domain comparison of FIGS. 14A and 14B;



FIGS. 15A-15G depict example implementation of cloud processing of captured data; and



FIGS. 16A and 16B present example failures and features for indoor and outdoor units, respectively, that can be detected and/or predicted in addition to example data used in various implementations to perform the detection and/or prediction.





DETAILED DESCRIPTION

According to the present disclosure, sensing/monitoring modules can be integrated with a residential HVAC (heating, ventilation, and air conditioning) system. As used in this application, the term HVAC encompasses all environmental comfort systems in a home or business, including heating, cooling, humidifying, and dehumidifying, and covers devices such as furnaces, heat pumps, humidifiers, dehumidifiers, and air conditioners. The term HVAC is a broad term, in that an HVAC system according to this application does not necessarily include both heating and air conditioning, and may instead have only one or the other.


In split HVAC systems with an air handler unit (often, indoors) and a compressor unit (often, outdoors), an air handler monitor module and a compressor monitor module, respectively, can be used. The air handler monitor module and the compressor monitor module may be integrated by the manufacturer of the HVAC system, may be added at the time of the installation of the HVAC system, and/or may be retrofitted to an existing system.


The air handler monitor and compressor monitor modules monitor operating parameters of associated components of the HVAC system. For example, the operating parameters may include power supply current, power supply voltage, operating and ambient temperatures, fault signals, and control signals. The air handler monitor and compressor monitor modules may communicate data between each other, while one or both of the air handler monitor and compressor monitor modules uploads data to a remote location. The remote location may be accessible via any suitable network, including the Internet.


The remote location includes one or more computers, which will be referred to as servers. The servers execute a monitoring system on behalf of a monitoring company. The monitoring system receives and processes the data from the air handler monitor and compressor monitor modules of homeowners who have such systems installed. The monitoring system can provide performance information, diagnostic alerts, and error messages to a homeowner and/or third parties, such as a designated HVAC contractor.


The air handler monitor and compressor monitor modules may each sense an aggregate current for the respective unit without measuring individual currents of individual components. The aggregate current data may be processed using frequency domain analysis, statistical analysis, and state machine analysis to determine operation of individual components based on the aggregate current data. This processing may happen partially or entirely in a server environment, outside of the homeowner's residence.


Based on measurements from the air handler monitor and compressor monitor modules, the monitoring company can determine whether HVAC components are operating at their peak performance and can advise the homeowner and the contractor when performance is reduced. This performance reduction may be measured for the system as a whole, such as in terms of efficiency, and/or may be monitored for one or more individual components.


In addition, the monitoring system may detect and/or predict failures of one or more components of the system. When a failure is detected, the homeowner can be notified and potential remediation steps can be taken immediately. For example, components of the HVAC system may be shut down to minimize damage or HVAC components and/or prevent water damage. The contractor can also be notified that a service call will be required. Depending on the contractual relationship between the homeowner and the contractor, the contractor may immediately schedule a service call to the residence.


The monitoring system may provide specific information to the contractor, including identifying information of the homeowner's HVAC system, including make and model numbers, as well as indications of the specific part numbers that appear to be failing. Based on this information, the contractor can allocate the correct repair personnel that have experience with the specific HVAC system and/or component. In addition, the service technician is able to bring replacement parts, avoiding return trips after diagnosis.


Depending on the severity of the failure, the homeowner and/or contractor may be advised of relevant factors in determining whether to repair the HVAC system or replace some or all of the components of the HVAC system. For example only, these factors may include relative costs of repair versus replacement, and may include quantitative or qualitative information about advantages of replacement equipment. For example, expected increases in efficiency and/or comfort with new equipment may be provided. Based on historical usage data and/or electricity or other commodity prices, the comparison may also estimate annual savings resulting from the efficiency improvement.


As mentioned above, the monitoring system may also predict impending failures. This allows for preventative maintenance and repair prior to an actual failure. Alerts regarding detected or impending failures reduce the time when the HVAC system is out of operation and allows for more flexible scheduling for both the homeowner and contractor. If the homeowner is out of town, these alerts may prevent damage from occurring when the homeowner is not present to detect the failure of the HVAC system. For example, failure of heat in winter may lead to pipes freezing and bursting.


Alerts regarding potential or impending failures may specify statistical timeframes before the failure is expected. For example only, if a sensor is intermittently providing bad data, the monitoring system may specify an expected amount of time before it is likely that the sensor effectively stops working due to the prevalence of bad data. Further, the monitoring system may explain, in quantitative or qualitative terms, how the current operation and/or the potential failure will affect operation of the HVAC system. This enables the homeowner to prioritize and budget for repairs.


For the monitoring service, the monitoring company may charge a periodic rate, such as a monthly rate. This charge may be billed directly to the homeowner and/or may be billed to the contractor. The contractor may pass along these charges to the homeowner and/or may make other arrangements, such as by requiring an up-front payment upon installation and/or applying surcharges to repairs and service visits.


For the air handler monitor and compressor monitor modules, the monitoring company or contractor may charge the homeowner the equipment cost, including the installation cost, at the time of installation and/or may recoup these costs as part of the monthly fee. Alternatively, rental fees may be charged for the air handler monitor and compressor monitor modules, and once the monitoring service is stopped, the air handler monitor and compressor monitor modules may be returned.


The monitoring service may allow a homeowner and/or contractor to remotely monitor and/or control HVAC components, such as setting temperature, enabling or disabling heating and/or cooling, etc. In addition, the homeowner may be able to track energy usage, cycling times of the HVAC system, and/or historical data. Efficiency and/or operating costs of the homeowner's HVAC system may be compared against HVAC systems of neighbors, whose homes will be subject to the same environmental conditions. This allows for direct comparison of HVAC system and overall home efficiency because environmental variables, such as temperature and wind, are controlled.


The monitoring system can be used by the contractor during and after installation and during and after repair to verify operation of the air handler monitor and compressor monitor modules as well as to verify correct installation of the components of the HVAC system. In addition, the homeowner may review this data in the monitoring system for assurance that the contractor correctly installed and configured the HVAC system. In addition to being uploaded to the cloud, monitored data may be transmitted to a local device in the residence. For example, a smartphone, laptop, or proprietary portable device may receive monitoring information to diagnose problems and receive real-time performance data. Alternatively, data may be uploaded to the cloud and then downloaded onto a local computing device, such as via the Internet from an interactive web site.


The historical data collected by the monitoring system may allow the contractor to properly specify new HVAC components and to better tune configuration, including dampers and set points of the HVAC system. The information collected may be helpful in product development and assessing failure modes. The information may be relevant to warranty concerns, such as determining whether a particular problem is covered by a warranty. Further, the information may help to identify conditions, such as unauthorized system modifications, that could potentially void warranty coverage.


Original equipment manufacturers may subsidize partially or fully the cost of the monitoring system and air handler and compressor monitor modules in return for access to this information. Installation and service contractors may also subsidize some or all of these costs in return for access to this information, and for example, in exchange for being recommended by the monitoring system. Based on historical service data and homeowner feedback, the monitoring system may provide contractor recommendations to homeowners.


Referring now to FIG. 2, a functional block diagram of an example system showing a single homeowner residence 300 is presented. The homeowner residence 300 includes, for example only, a split system with an air handler unit 304 and a compressor/condenser unit 308. The compressor/condenser unit 308 includes a compressor, a condenser, a condenser fan, and associated electronics. In many systems, the air handler unit 304 is located inside the homeowner residence 300, while the compressor/condenser unit 308 is located outside the homeowner residence 300, such as in an outdoor enclosure 312.


The present disclosure is not limited, and applies to other systems including, as examples only, systems where the components of the air handler unit 304 and the compressor/condenser unit 308 are located in close proximity to each other or even in a single enclosure. The single enclosure may be located inside or outside of the homeowner residence 300. In various implementations, the air handler unit 304 may be located in a basement, garage, or attic. In ground source systems, where heat is exchanged with the earth, the air handler unit 304 and the compressor/condenser unit 308 may be located near the earth, such as in a basement, crawlspace, garage, or on the first floor, such as when the first floor is separated from the earth by only a concrete slab.


According to the principles of the present disclosure, a compressor monitor module 316 is interconnected with the compressor/condenser unit 308, and may be located within or in close proximity to the outdoor enclosure 312. The compressor monitor module 316 monitors parameters of the compressor/condenser unit 308 including current, voltage, and temperatures.


In one implementation, the current measured is a single power supply current that represents the aggregate current draw of the entire outdoor enclosure 312 from an electrical panel 318. A current sensor 320 measures the current supplied to the compressor/condenser unit 308 and provides measured data to the compressor monitor module 316. For example only, the compressor/condenser unit 308 may receive an AC line voltage of approximately 240 volts. The current sensor 320 may sense current of one of the legs of the 240 volt power supply. A voltage sensor (not shown) may sense the voltage of one or both of the legs of the AC voltage supply. The current sensor 320 may include a current transformer, a current shunt, and/or a hall effect device. In various implementations, a power sensor may be used in addition to or in place of the current sensor 320. Current may be calculated based on the measured power, or profiles of the power itself may be used to evaluate operation of components of the compressor/condenser unit 308.


An air handler monitor module 322 monitors the air handler unit 304. For example, the air handler monitor module 322 may monitor current, voltage, and various temperatures. In one implementation, the air handler monitor module 322 monitors an aggregate current drawn by the entire air handler unit 304, and when the air handler unit 304 provides power to an HVAC control module 360, also the current drawn by the HVAC control module 360. A current sensor 324 measures current delivered to the air handler unit 304 by the electrical panel 318. The current sensor 324 may be similar to the current sensor 320. Voltage sensors (not shown) may be located near the current sensors 324 and 320. The voltage sensors provide voltage data to the air handler unit 304 and the compressor/condenser unit 308.


The air handler unit 304 and the compressor/condenser unit 308 may evaluate the voltage to determine various parameters. For example, frequency, amplitude, RMS voltage and DC offset may be calculated based on the measured voltage. In situations where 3-phase power is used, the order of the phases may be determined. Information about when the voltage crosses zero may be used to synchronize various measurements and to determine frequency based on counting the number of zero crossings within a predetermine time period.


The air handler unit 304 includes a blower, a burner, and an evaporator. In various implementations, the air handler unit 304 includes an electrical heating device instead of or in addition to the burner. The electrical heating device may provide backup or secondary heat. The compressor monitor module 316 and the air handler monitor module 322 share collected data with each other. When the current measured is the aggregate current draw, in either the air handler monitor module 322 or the compressor monitor module 316, contributions to the current profile are made by each component. It may be difficult, therefore, to easily determine in the time domain how the measured current corresponds to individual components. However, when additional processing is available, such as in a monitoring system, which may include server and other computing resources, additional analysis, such as frequency domain analysis, can be performed.


The frequency domain analysis may allow individual contributions of HVAC system components to be determined. Some of the advantages of using an aggregate current measurement may include reducing the number of current sensors that would otherwise be necessary to monitor each of the HVAC system components. This reduces bill of materials costs, as well as installation costs and potential installation problems. Further, providing a single time domain current stream may reduce the amount of bandwidth necessary to upload the current data. Nevertheless, the present disclosure could also be used with additional current sensors.


Further, although not shown in the figures, additional sensors, such as pressure sensors, may be included and connected to the air handler monitor module 322 and/or the compressor monitor module 316. The pressure sensors may be associated with return air pressure or supply air pressure, and/or with pressures at locations within the refrigerant loop. Air flow sensors may measure mass air flow of the supply air and/or the return air. Humidity sensors may measure relative humidity of the supply air and/or the return air, and may also measure ambient humidity inside or outside the homeowner residence 300.


In various implementations, the principles of the present disclosure may be applied to monitoring other systems, such as a hot water heater, a boiler heating system, a refrigerator, a refrigeration case, a pool heater, a pool pump/filter, etc. As an example, the hot water heater may include an igniter, a gas valve (which may be operated by a solenoid), an igniter, an inducer blower, and a pump. Aggregate current readings can be analyzed by the monitoring company to assess operation of the individual components of the hot water heater. Aggregate loads, such as the hot water heater or the air handler unit 304, may be connected to an AC power source via a smart outlet, a smart plug, or a high amp load control switch, each of which may provide an indication when a connected device is activated.


In one implementation, which is shown in FIG. 2, the compressor monitor module 316 provides data to the air handler monitor module 322, and the air handler monitor module 322 provides data from both the air handler monitor module 322 and the compressor monitor module 316 to a remote monitoring system 330. The monitoring system 330 is reachable via a distributed network such as the Internet 334. Alternatively, any other suitable network, such as a wireless mesh network or a proprietary network, may be used.


In various other implementations, the compressor monitor module 316 may transmit data from the air handler monitor module 322 and the compressor monitor module 316 to an external wireless receiver. The external wireless receiver may be a proprietary receiver for a neighborhood in which the homeowner residence 300 is located, or may be an infrastructure receiver, such as a metropolitan area network (such as WiMAX), a WiFi access point, or a mobile phone base station.


In the implementation of FIG. 2, the air handler monitor module 322 relays data between the compressor monitor module 316 and the monitoring system 330. For example, the air handler monitor module 322 may access the Internet 334 using a router 338 of the homeowner. The homeowner router 338 may already be present to provide Internet access to other devices within the homeowner residence 300, such as a homeowner computer 342 and/or various other devices having Internet connectivity, such as a DVR (digital video recorder) or a video gaming system.


The air handler monitor module 322 may communicate with the homeowner router 338 via a gateway 346. The gateway 346 translates information received from the air handler monitor module 322 into TCP/IP (Transmission Control Protocol/Internet Protocol) packets and vice versa. The gateway 346 then forwards those packets to the homeowner router 338. The gateway 346 may connect to the homeowner router 338 using a wired or wireless connection. The air handler monitor module 322 may communicate with the gateway 346 using a wired or wireless connection. For example, the interface between the gateway 346 and the homeowner router 338 may be Ethernet (IEEE 802.3) or WiFi (IEEE 802.11).


The interface between the air handler monitor module 322 and the gateway 346 may include a wireless protocol, such as Bluetooth, ZigBee (IEEE 802.15.4), 900 Megahertz, 2.4 Gigahertz, WiFi (IEEE 802.11), and proprietary protocols. The air handler monitor module 322 may communicate with the compressor monitor module 316 using wired or wireless protocols. For example only, the air handler monitor module 322 and the compressor monitor module 316 may communicate using power line communications, which may be sent over a line voltage (such as 240 volts) or a stepped-down voltage, such as 24 volts, or a dedicated communications line.


The air handler monitor module 322 and the compressor monitor module 316 may transmit data within frames conforming to the ClimateTalk™ standard, which may include the ClimateTalk Alliance HVAC Application Profile v1.1, released Jun. 23, 2011, the ClimateTalk Alliance Generic Application Profile, v1.1, released Jun. 23, 2011, and the ClimateTalk Alliance Application Specification, v1.1, released Jun. 23, 2011, the disclosures of which are hereby incorporated by reference in their entirety. In various implementations, the gateway 346 may encapsulate ClimateTalk™ frames into IP packets, which are transmitted to the monitoring system 330. The monitoring system 330 then extracts the ClimateTalk™ frames and parses the data contained within the ClimateTalk™ frames. The monitoring system 330 may send return information, including monitoring control signals and/or HVAC control signals, using ClimateTalk′.


The HVAC control module 360 controls operation of the air handler unit 304 and the compressor/condenser unit 308. The HVAC control module 360 may operate based on control signals from a thermostat 364. The thermostat 364 may transmit requests for fan, heat, and cool to the HVAC control module 360. One or more of the control signals may be intercepted by the air handler monitor module 322. Various implementations of interaction between the control signals and the air handler monitor module 322 are shown below in FIGS. 3A-3C.


Additional control signals may be present in various HVAC systems. For example only, a heat pump may include additional control signals, such as a control signal for a reversing valve. The thermostat 364 and/or the HVAC control module 360 may include control signals for secondary heating and/or secondary cooling, which may be activated when the primary heating or primary cooling is insufficient. In dual fuel systems, such as systems operating from either electricity or natural gas, control signals related to the selection of the fuel may be monitored. Further, additional status and error signals may be monitored, such as a defrost status signal, which may be asserted when the compressor is shut off and a defrost heater operates to melt frost from an evaporator.


In various implementations, the thermostat 364 may use the gateway 346 to communicate with the Internet 334. In one implementation, the thermostat 364 does not communicate directly with the air handler monitor module 322 or the compressor monitor module 316. Instead, the thermostat 364 communicates with the monitoring system 330, which may then provide information or control signals to the air handler monitor module 322 and/or the compressor monitor module 316 based on information from the thermostat 364. Using the monitoring system 330, the homeowner or contractor may send signals to the thermostat 364 to manually enable heating or cooling (regardless of current temperature settings), or to change set points, such as desired instant temperature and temperature schedules. In addition, information from the thermostat 364, such as current temperature and historical temperature trends, may be viewed.


The monitoring system 330 may provide alerts for situations such as detected or predicted failures to the homeowner computer 342 and/or to any other electronic device of the homeowner. For example, the monitoring system 330 may provide an alert to a mobile device 368 of the homeowner, such as a mobile phone or a tablet. The alerts are shown in FIG. 2 with dashed lines indicating that the alerts may not travel directly to the homeowner computer 342 or the mobile device 368 but may traverse, for example, the Internet 334 and/or a mobile provider network (not shown). The alerts may take any suitable form, including text messages, emails, social networking messages, voicemails, phone calls, etc.


The monitoring system 330 also interacts with a contractor computer 372. The contractor computer 372 may then interface with mobile devices carried by individual contractors. Alternatively, the monitoring system 330 may directly provide alerts to predetermined mobile devices of the contractor. In the event of an impending or detected failure, the monitoring system 330 may provide information regarding identification of the homeowner, identification of the HVAC system, the part or parts related to the failure, and/or the skills required to perform the maintenance.


In various implementations, the monitoring system 330 may transmit a unique identifier of the homeowner or the residence to the contractor computer 372. The contractor computer 372 may include a database indexed by the unique identifier, which stores information about the homeowner including the homeowner's address, contractual information such as service agreements, and detailed information about the installed HVAC equipment.


The air handler monitor module 322 and the compressor monitor module 316 may receive respective sensor signals, such as water sensor signals. For example, the air handler monitor module 322 may receive signals from a float switch 376, a condensate sensor 380, and a conduction sensor 384. The condensate sensor 380 may include a device as described in commonly assigned patent application Ser. No. 13/162,798, filed Jun. 17, 2011, titled Condensate Liquid Level Sensor and Drain Fitting, the disclosure of which is hereby incorporated by reference in its entirety.


Where the air handler unit 304 is performing air conditioning, condensation occurs and is captured in a condensate pan. The condensate pan drains, often via a hose, into a floor drain or a condensate pump, which pumps the condensate to a suitable drain. The condensate sensor 380 detects whether the drain hose has been plugged, a condition which will eventually cause the condensate pan to overflow, potentially causing damage to the HVAC system and to surrounding portions of the homeowner residence 300.


The air handler unit 304 may be located on a catch pan, especially in situations where the air handler unit 304 is located above living space of the homeowner residence 300. A catch pan may include the float switch 376. When enough liquid accumulates in the catch pan, the float switch 376 provides an over-level signal to the air handler monitor module 322.


The conduction sensor 384 may be located on the floor or other surface where the air handler unit 304 is located. The conduction sensor 384 may sense water leaks that are for one reason or another not detected by the float switch 376 or the condensate sensor 380, including leaks from other systems such as a hot water heater.


Referring now to FIG. 3A, an example of control signal interaction with the air handler monitor module 322 is presented. In this example, the air handler monitor module 322 taps into the fan and heat request signals. For example only, the HVAC control module 360 may include terminal blocks where the fan and heat signals are received. These terminals blocks may include additional connections where leads can be attached between these additional connections and the air handler monitor module 322.


Alternatively, leads from the air handler monitor module 322 may be attached to the same location as the fan and heat signals, such as by putting multiple spade lugs underneath a signal screw head. The cool signal from the thermostat 364 may be disconnected from the HVAC control module 360 and attached to the air handler monitor module 322. The air handler monitor module 322 then provides a switched cool signal to the HVAC control module 360. This allows the air handler monitor module 322 to interrupt operation of the air conditioning system, such as upon detection of water by one of the water sensors. The air handler monitor module 322 may also interrupt operation of the air conditioning system based on information from the compressor monitor module 316, such as detection of a locked rotor condition in the compressor.


Referring now to FIG. 3B, the fan, heat, and cool signals are connected to the air handler monitor module 322 instead of to the HVAC control module 360. The air handler monitor module 322 then provides fan, heat, and switched cool signals to the HVAC control module 360. In various other implementations, the air handler monitor module 322 may also switch the fan and/or heat signals.


Referring now to FIG. 3C, the thermostat 400 may use a proprietary or digital form of communication instead of discrete request lines such as those used by the thermostat 364. Especially in installations where the thermostat 400 is added after the HVAC control module 360 has been installed, an adapter 404 may translate the proprietary signals into individual fan, heat, and cool request signals. The air handler monitor module 322 can then be connected similarly to FIG. 3A (as shown) or FIG. 3B.


Referring now to FIG. 4A, a functional block diagram of an example implementation of the air handler monitor module 322 is presented. A control line monitor module 504 receives the fan, heat, and cool request signals. A compressor interrupt module 508 also receives the cool request signal. Based on a disable signal, the compressor interrupt module 508 deactivates the switched cool signal. Otherwise, the compressor interrupt module 508 may pass the cool signal through as the switched cool signal.


The control line monitor module 504 may also receive additional control signals, depending on application, including second stage heat, second stage cool, reversing valve direction, defrost status signal, and dual fuel selection.


A wireless transceiver 512 communicates using an antenna 516 with a wireless host, such as a gateway 346, a mobile phone base station, or a WiFi (IEEE 802.11) or WiMax (IEEE 802.16) base station. A formatting module 520 forms data frames, such as ClimateTalk™ frames, including data acquired by the air handler monitor module 322. The formatting module 520 provides the data frames to the wireless transceiver 512 via a switching module 524.


The switching module 524 receives data frames from the monitoring system 330 via the wireless transceiver 512. Additionally or alternatively, the data frames may include control signals. The switching module 524 provides the data frames received from the wireless transceiver 512 to the formatting module 520. However, if the data frames are destined for the compressor monitor module 316, the switching module 524 may instead transmit those frames to a power-line communication module 528 for transmission to the compressor monitor module 316.


A power supply 532 provides power to some or all of the components of the air handler monitor module 322. The power supply 532 may be connected to line voltage, which may be single phase 120 volt AC power. Alternatively, the power supply 532 may be connected to a stepped down voltage, such as a 24 volt power supply already present in the HVAC system. When the power received by the power supply 532 is also provided to the compressor monitor module 316, the power-line communication module 528 can communicate with the compressor monitor module 316 via the power supply 532. In other implementations, the power supply 532 may be distinct from the power-line communication module 528. The power-line communication module 528 may instead communicate with the compressor monitor module 316 using another connection, such as the switched cool signal (which may be a switched 24 volt line) provided to the compressor monitor module 316, another control line, a dedicated communications line, etc.


In various implementations, power to some components of the air handler monitor module 322 may be provided by 24 volt power from the thermostat 364. For example only, the cool request from the thermostat 364 may provide power to the compressor interrupt module 508. This may be possible when the compressor interrupt module 508 does not need to operate (and therefore does not need to be powered) unless the cool request is present, thereby powering the compressor interrupt module 508.


Data frames from the compressor monitor module 316 are provided to the switching module 524, which forwards those frames to the wireless transceiver 512 for transmission to the gateway 346. In various implementations, data frames from the compressor monitor module 316 are not processed by the air handler monitor module 322 other than to forward the frames to the gateway 346. In other implementations, the air handler monitor module 322 may combine data gathered by the air handler monitor module 322 with data gathered by the compressor monitor module 316 and transmit combined data frames.


In addition, the air handler monitor module 322 may perform data gathering or remedial operations based on the information from the compressor monitor module 316. For example only, the compressor monitor module 316 may transmit a data frame to the air handler monitor module 322 indicating that the air handler monitor module 322 should monitor various inputs. For example only, the compressor monitor module 316 may signal that the compressor is about to start running or has started running. The air handler monitor module 322 may then monitor related information.


Therefore, the formatting module 520 may provide such a monitoring indication from the compressor monitor module 316 to a trigger module 536. The trigger module 536 determines when to capture data, or if data is being continuously captured, which data to store, process, and/or forward data. The trigger module 536 may also receive a signal from an error module 540. The error module 540 may monitor an incoming current and generate an error signal when the current is at too high of a level for too long of a time.


The compressor monitor module 316 may be configured similarly to the air handler monitor module 322. In the compressor monitor module 316, a corresponding error module may determine that a high current level indicates a locked rotor condition of the compressor. For example only, a baseline run current may be stored, and a current threshold calculated by multiplying the baseline run current by a predetermined factor. The locked rotor condition may then be determined when a measurement of current exceeds the current threshold. This processing may occur locally because a quick response time to a locked rotor is beneficial.


The error module 540 may instruct the trigger module 536 to capture information to help diagnose this error and/or may send a signal to the compressor interrupt module 508 to disable the compressor. The disable signal received by the compressor interrupt module 508 may cause disabling of the compressor interrupt module 508 when either the error module 540 or the formatting module 520 indicates that the interruption is required. This logical operation is illustrated with an OR gate 542.


The formatting module 520 may disable the compressor based on an instruction from the monitoring system 330 and/or the compressor monitor module 316. For example, the monitoring system 330 may instruct the formatting module 520 to disable the compressor based on a request by a utility company. For example, during peak load times, the utility company may request air conditioning to be turned off in return for a discount on electricity prices. This shut off can be implemented via the monitoring system 330.


A water monitoring module 544 may monitor the conduction sensor 384, the float switch 376, and the condensate sensor 380. For example, when a resistivity of the conduction sensor 384 decreases below a certain value, which would happen in the presence of water, the water monitoring module 544 may signal to the error module 540 that water is present.


The water monitoring module 544 may also detect when the float switch 376 detects excessive water, which may be indicated by a closing or an opening of the float switch 376. The water monitoring module 544 may also detect when resistivity of the condensate sensor 380 changes. In various implementations, detection of the condensate sensor 380 may not be armed until a baseline current reading is made, such as at the time when the air handler monitor module 322 is powered on. Once the condensate sensor 380 is armed, a change in current may be interpreted as an indication that a blockage has occurred. Based on any of these water signals, the water monitoring module 544 may signal to the error module 540 that the compressor should be disabled.


A temperature tracking module 548 tracks temperatures of one or more HVAC components. For example, the temperature tracking module 548 may monitor the temperature of supply air and of return air. The temperature tracking module 548 may provide average values of temperature to the formatting module 520. For example only, the averages may be running averages. The filter coefficients of the running averages may be predetermined and may be modified by the monitoring system 330.


The temperature tracking module 548 may monitor one or more temperatures related to the air conditioning system. For example, a liquid line provides refrigerant to an expansion valve of the air handler unit 304 from a condenser of the compressor/condenser unit 308. A temperature may be measured along the refrigerant line before and/or after the expansion valve. The expansion valve may include, for example, a thermostatic expansion valve, a capillary tube, or an automatic expansion valve.


The temperature tracking module 548 may additionally or alternatively monitor one or more temperatures of an evaporator coil of the air handler unit 304. The temperatures may be measured along the refrigerant line at or near the beginning of the evaporator coil, at or near an end of the evaporator coil, or at one or more midpoints. In various implementations, the placement of the temperature sensor may be dictated by physical accessibility of the evaporator coil. The temperature tracking module 548 may be informed of the location of the temperature sensor. Alternatively, data about temperature location may be stored as part of installation data, which may be available to the formatting module 520 and/or to the monitoring system, which can use this information to accurately interpret the received temperature data.


A power calculation module 552 monitors voltage and current. In one implementation, these are the aggregate power supply voltage and the aggregate power supply current, which represents the total current consumed by all of the components of the air handler unit 304. The power calculation module 552 may perform a point-by-point power calculation by multiplying the voltage and current. Point-by-point power values and/or an average value of the point-by-point power is provided to the formatting module 520.


A current recording module 556 records values of the aggregate current over a period of time. The aggregate current may be sensed by a current sensor that is installed within the air handler unit 304 or along the electrical cable providing power to the air handler unit 304 (see current sensor 324 In FIG. 2). For example only, the current sensor may be located at a master switch that selectively supplies the incoming power to the air handler unit 304. Alternatively, the current sensor may be located closer to, or inside of, an electrical distribution panel. The current sensor may be installed in line with one or more of the electrical wires feeding current from the electrical distribution panel to the air handler unit 304.


The aggregate current includes current drawn by all energy consuming components of the air handler unit 304. For example only, the energy consuming components can include a gas valve solenoid, an igniter, a circulator blower motor, an inducer blower motor, a secondary heat source, an expansion valve controller, a furnace control panel, a condensate pump, and a transformer, which may provide power to a thermostat. The energy consuming components may also include the air handler monitor module 322 itself and the compressor monitor module 316.


It may be difficult to isolate the current drawn by any individual energy consuming component. Further, it may be difficult to quantify or remove distortion in the aggregate current, such as may be caused by fluctuations of the voltage level of incoming AC power. As a result, processing is applied to the current, which includes, for example only, filtering, statistical processing, and frequency domain processing.


In the implementation of FIG. 4A, the time domain series of currents from the current recording module 556 is provided to a fast Fourier transform (FFT) module 560, which generates a frequency spectrum from the time domain current values. The length of time and the frequency bins used by the FFT module 560 may be configurable by the monitoring system 330. The FFT module 560 may include, or be implemented by, a digital signal processor (DSP). In various implementations, the FFT module 560 may perform a discrete Fourier transform (DFT). The current recording module 556 may also provide raw current values, an average current value (such as an average of absolute values of the current), or an RMS current value to the formatting module 520.


A clock 564 allows the formatting module 520 to apply a time stamp to each data frame that is generated. In addition, the clock 564 may allow the trigger module 536 to periodically generate a trigger signal. The trigger signal may initiate collection and/or storage and processing of received data. Periodic generation of the trigger signal may allow the monitoring system 330 to receive data from the air handler monitor module 322 frequently enough to recognize that the air handler monitor module 322 is still functioning.


A voltage tracking module 568 measures the AC line voltage, and may provide raw voltage values or an average voltage value (such as an average of absolute values of the voltage) to the formatting module 520. Instead of average values, other statistical parameters may be calculated, such as RMS (root mean squared) or mean squared.


Based on the trigger signal, a series of frames may be generated and sent. For example only, the frames may be generated contiguously for 105 seconds and then intermittently for every 15 seconds until 15 minutes has elapsed. Each frame may include a time stamp, RMS voltage, RMS current, real power, average temperature, conditions of status signals, status of liquid sensors, FFT current data, and a flag indicating the source of the trigger signal. Each of these values may correspond to a predetermined window of time, or, frame length.


The voltage and current signals may be sampled by an analog-to-digital converter at a certain rate, such as 1920 samples per second. The frame length may be measured in terms of samples. When a frame is 256 samples long, at a sample rate of 1920 samples per second, there are 7.5 frames every second (or, 0.1333 seconds per frame). Generation of the trigger signal is described in more detail below in FIG. 7. The sampling rate of 1920 Hz has a Nyquist frequency of 960 Hz and therefore allows an FFT bandwidth of up to approximately 960 Hz. An FFT limited to the time span of a single frame may be calculated by the FFT module 560 for each of the frames.


The formatting module 520 may receive a request for a single frame from the monitoring system 330. The formatting module 520 therefore provides a single frame in response to the request. For example only, the monitoring system 330 may request a frame every 30 seconds or some other periodic interval, and the corresponding data may be provided to a contractor monitoring the HVAC system in real time.


Referring now to FIG. 4B, an example implementation of the compressor monitor module 316 is shown. Components of the compressor monitor module 316 may be similar to components of the air handler monitor module 322 of FIG. 4A. For example only, the compressor monitor module 316 may include the same hardware components as the air handler monitor module 322, where unused components, such as the wireless transceiver 512, are simply disabled or deactivated. In various other implementations, a circuit board layout may be shared between the air handler monitor module 322 and the compressor monitor module 316, with various locations on the printed circuit board being depopulated (corresponding to components present in the air handler monitor module 322 but not implemented in the compressor monitor module 316).


The current recording module 556 of FIG. 4B receives an aggregate current value (such as from current sensor 320 of FIG. 2) that represents the current to multiple energy consuming components of the compressor/condenser unit 308. The energy consuming components may include start windings, run windings, capacitors, and contactors/relays for a condenser fan motor and a compressor motor. The energy consuming components may also include a reversing valve solenoid, a control board, and in some implementations the compressor monitor module 316 itself.


In the compressor monitoring module 316, the temperature tracking module 548 may track an ambient temperature. When the compressor monitor module 316 is located outdoors, the ambient temperature represents an outside temperature. As discussed above, the temperature sensor supplying the ambient temperature may be located outside of an enclosure housing a compressor or condenser. Alternatively, the temperature sensor may be located within the enclosure, but exposed to circulating air. In various implementations the temperature sensor may be shielded from direct sunlight and may be exposed to an air cavity that is not directly heated by sunlight.


The temperature tracking module 548 may monitor temperatures of the refrigerant line at various points, such as before the compressor (referred to as a suction line temperature), after the compressor (referred to as a compressor discharge temperature), after the condenser (referred to as a liquid line out temperature), and/or at one or more points along the condenser coil. The location of temperature sensors may be dictated by a physical arrangement of the condenser coils. During installation, the location of the temperature sensors may be recorded.


Additionally or alternatively, a database may be available that specifies where temperature sensors are placed. This database may be referenced by installers and may allow for accurate cloud processing of the temperature data. The database may be used for both air handler sensors and compressor/condenser sensors. The database may be prepopulated by the monitoring company or may be developed by trusted installers, and then shared with other installation contractors. The temperature tracking module 548 and/or a cloud processing function may determine an approach temperature, which is a measurement of how close the condenser has been able to make the liquid line out temperature to the ambient air temperature.


Referring now to FIGS. 5A-5I, block diagrams of example implementations of the air handler monitor module 322 are shown. Although the functions depicted in FIG. 4A may be performed by various circuitry blocks of FIGS. 5A-5I, there may not be a one-to-one correspondence between the functional blocks of FIG. 4A and the circuitry blocks of any of FIGS. 5A-5I.


Referring now to FIG. 5A, temperatures are received by signal scaling blocks 572-1, 572-2, and 572-3 (collectively, signal scaling blocks 572). For example only, the signal scaling blocks 572 may include resistive dividers and/or amplifiers to scale the input signals appropriately and provide the scaled signals to analog-to-digital (A/D) converters 574-1, 574-2, and 574-3, respectively (collectively, A/D converters 574). A microprocessor 576 may include the A/D converters 574. The microprocessor executes code from memory 578. Signal scaling blocks 572-4 and 572-5 scale voltage and current, respectively.


A power supply 580 provides power to components of the air handler monitor module 322. A communications module 582 includes a communications controller 584, a radio 586 for wireless communication, and a power line communications module 588 for power line communications. A power monitor chip 590 may monitor the scaled voltage and current and provide current and voltage information, as well as power information and phase information, to the microprocessor 576.


Referring now to FIG. 5B, signal scaling blocks 572-6 and 572-7 receive the voltage and current, respectively, and provide those values to a microprocessor 592. For example only, the microprocessor 592 may include comparators to determine zero-crossing events of the voltage and/or current in response to the analog signals from the signal scaling blocks 572-6 and 572-7. A/D converters 574-4 and 574-5 convert scaled voltage and current signals, respectively, into digital values that are provided to a microprocessor 592. In the implementation shown in FIG. 5B, the A/D converters 574-1, 574-2, and 574-3 are not integrated with microprocessor 592 and are instead stand-alone.


Although 10-bit and 12-bit A/D converters are shown, A/D converters having more or less resolution may be chosen. In various implementations, such as shown in FIG. 5B, higher-resolution A/D converters may be used for values, such as current and voltage, where higher precision is desired and where the source analog signals themselves are of higher precision.


Referring now to FIG. 5C, an implementation similar to that of FIG. 5B is shown. In FIG. 5C, the A/D converters 574-1, 574-2, and 574-3 are integrated in a microprocessor 594.


Referring now to FIG. 5D, programmable gain modules 596-1 and 596-2 allow programmable gains to be applied to the voltage and current. This may allow for features such as automatic gain control. A microprocessor 596 controls the programmable gain module 596-1 and 596-2 using a common value or using individual values. In FIG. 5D, the A/D converters 574-4 and 5745 are integrated in a microprocessor 596. In various implementations, the microprocessor 596 may offer only a certain resolution of A/D converters, such as 10-bit, in which case the A/D converters 574-4 and 574-5 may have 10-bit resolution instead of 12-bit resolution.


Referring now to FIG. 5E, a microprocessor 598 integrates the communications controller 584.


Referring now to FIG. 5F, a microprocessor 600 further integrates the A/D converters 574-4 and 574-5, and in this case, maintains the 12-bit resolution.


Referring now to FIG. 5G, a microprocessor 602 integrates the memory 578 on chip. Additional memory (not shown) may be provided off chip.


Referring now to FIG. 5H, a custom integrated circuit 604 may integrate many of the functions described above, including the power supply 580, the power line communications module 588, the radio 586, and the memory 578. The custom integrated circuit 604 includes a multiplexer 608, which provides sensed data to a microprocessor 606 over a multiplexed bus. The microprocessor 606 may also implement the communications controller 584. To provide voltage compatible with the custom integrated circuit 604, a voltage divider 616 is located prior to the voltage signal entering the custom integrated circuit 604.


Referring now to FIG. 5I, a custom integrated circuit 630 may implement the modules of the custom integrated circuit 604 of FIG. 5H as well as integrating the microprocessor 606 by using a microprocessor core 640.


Referring now to FIG. 5J, a data flow diagram is shown for a monitoring module, such as the air handler monitor module 322. A power line 650 supplies power to a power supply 652. The voltage of the power line 650 is conditioned by a signal conditioning block 654 and then provided to a voltage log 656 and a power calculator 658. Zero crossings of the voltage are monitored by a zero cross block 660 and transmitted to a phase calculation module 662. The phase calculation module 662 determines phase difference between voltage and current based on zero crossing information from the zero cross block 660 and a current zero cross block 664.


The current zero cross block 664 receives current from a current sensor 666, which also provides current values to a signal conditioning block 668, which conditions the current values, such as by applying filters, and provides them to a current monitor 670 and a power calculation block 658. The power calculation block determines power based on the current and voltage and supplies the result to a power log 674.


The current log 672, the power log 674, a phase log 676, and the voltage log 656 provide information to an information packaging block 678. The information packaging block 678 packages information for transmission by a transmit block 680. The information packaging block 678 may provide identifying information such as a module ID number 682. A temperature log 684 receives one or more temperature signals 686, while a pressure log 688 receives one or more pressures 690.


A key recognition block 692 monitors inputs from a variety of sources, which may include the power calculation block 658, the phase calculation block 662, the voltage log 656, the temperature log 684, the pressure log 688, and state inputs 694, such as call for heat and call for cool control lines. The key recognition block 692 may identify which portions of each of the logs is transmitted by the transmit block 680.


The key recognition block 692 identifies occurrence of certain events, such as the beginning of a call for heat or call for cool. In addition, the key recognition block 692 may recognize when anomalous situations have occurred, such as over-voltage, over-current, or temperatures or pressures out of bounds. In response to identification of events by the key recognition block 692, a log control block 694 may control the information packaging block 678 to discard or only locally store low priority information, to delay transmitting medium priority information, and to transmit higher priority information more quickly or even immediately.


Referring now to FIG. 6, a brief overview of an example monitoring system installation, such as in a retrofit application, is presented. Although FIGS. 6 and 7 are drawn with arrows indicating a specific order of operation, the present disclosure is not limited to this specific order. At 704, mains power to the air handler is disconnected. If there is no outside disconnect for the mains power to the compressor/condenser unit, mains power to the compressor/condenser unit should also be disconnected at this point. At 708, the cool line is disconnected from the HVAC control module and connected to the air handler monitor module. At 712, the switched cool line from the air handler monitor module is connected to the HVAC control module where the cool line was previously connected.


At 716, fan, heat, and common lines from the air handler monitor module are connected to terminals on the HVAC control module. In various implementations, the fan, heat, and common lines originally going to the HVAC control module may be disconnected and connected to the air handler monitor module. This may be done for HVAC control modules where additional lines cannot be connected in parallel with the original fan, heat, and common lines.


At 720, a current sensor such as a snap-around current transformer, is connected to mains power to the HVAC system. At 724, power and common leads are connected to the HVAC transformer, which may provide 24 volt power to the air handler monitor module. In various implementations, the common lead may be omitted, relying on the common lead discussed at 716. Continuing at 728, a temperature sensor is placed in the supply air duct work and connected to the air handler monitor module. At 732, a temperature sensor is placed in the return air duct work and connected to the air handler monitor module. At 734, a temperature sensor is placed in a predetermined location, such as a middle loop, of the evaporator coil. At 736, water sensors are installed and connected to the air handler monitor module.


At 740, mains power to the compressor/condenser unit is disconnected. At 744, the power supply of the compressor monitor module is connected to the compressor/condenser unit's input power. For example, the compressor monitor module may include a transformer that steps down the line voltage into a voltage usable by the compressor monitor module. At 748, a current sensor is attached around the compressor/condenser unit's power input. At 752, a voltage sensor is connected to the compressor/condenser unit's power input.


At 756, a temperature sensor is installed on the liquid line, such as at the input or the output to the condenser. The temperature sensor may be wrapped with insulation to thermally couple the temperature sensor to the liquid in the liquid line and thermally isolate the temperature sensor from the environment. At 760, the temperature sensor is placed in a predetermined location of the condenser coil and insulated. At 764, the temperature sensor is placed to measure ambient air. The temperature sensor may be located outside of the outdoor enclosure 312 or in a space of the outdoor enclosure 312 in which outside air circulates. At 768, mains power to the air handler and the compressor/condenser unit is restored.


Referring now to FIG. 7, a flowchart depicts example operation in capturing frames of data. Control begins upon startup of the air handler monitor module at 800, where an alive timer is reset. The alive timer ensures that a signal is periodically sent to the monitoring system so that the monitoring system knows that the air handler monitor module is still alive and functioning. In the absence of this signal, the monitoring system 330 will infer that the air handler monitor module is malfunctioning or that there is connectivity issue between the air handler monitor module and the monitoring system.


Control continues at 804, where control determines whether a request for a frame has been received from the monitoring system. If such a request has been received, control transfers to 808; otherwise, control transfers to 812. At 808, a frame is logged, which includes measuring voltage, current, temperatures, control lines, and water sensor signals. Calculations are performed, including averages, powers, RMS, and FFT. Then a frame is transmitted to the monitoring system. In various implementations, monitoring of one or more control signals may be continuous. Therefore, when a remote frame request is received, the most recent data is used for the purpose of calculation.


Control then returns to 800. Referring now to 812, control determines whether one of the control lines has turned on. If so, control transfers to 816; otherwise, control transfers to 820. Although 812 refers to the control line being turned on, in various other implementations, control may transfer to 816 when a state of a control line changes—i.e., when the control line either turns on or turns off. This change in status may be accompanied by signals of interest to the monitoring system. Control may also transfer to 816 in response to an aggregate current of either the air handler unit or the compressor/condenser unit.


At 820, control determines whether a remote window request has been received. If so, control transfers to 816; otherwise, control transfers to 824. The window request is for a series of frames, such as is described below. At 824, control determines whether current is above a threshold, and if so, control transfers to 816; otherwise, control transfers to 828. At 828, control determines whether the alive timer is above a threshold such as 60 minutes. If so, control transfers to 808; otherwise, control returns to 804.


At 816, a window timer is reset. A window of frames is a series of frames, as described in more detail here. At 832, control begins logging frames continuously. At 836, control determines whether the window timer has exceeded a first threshold, such as 105 seconds. If so, control continues at 840; otherwise, control remains at 836, logging frames continuously. At 840, control switches to logging frames periodically, such as every 15 seconds.


Control continues at 844, where control determines whether the HVAC system is still on. If so, control continues at 848; otherwise, control transfers to 852. Control may determine that the HVAC system is on when an aggregate current of the air handler unit and/or of the compressor unit exceeds a predetermined threshold. Alternatively, control may monitor control lines of the air handler unit and/or the compressor unit to determine when calls for heat or cool have ended. At 848, control determines whether the window timer now exceeds a second threshold, such as 15 minutes. If so, control transfers to 852; otherwise, control returns to 844 while control continues logging frames periodically.


At 852, control stops logging frames periodically and performs calculations such as power, average, RMS, and FFT. Control continues at 856 where the frames are transmitted. Control then returns to 800. Although shown at the end of frame capture, 852 and 856 may be performed at various times throughout logging of the frames instead of at the end. For example only, the frames logged continuously up until the first threshold may be sent as soon as the first threshold is reached. The remaining frames up until the second threshold is reached may each be sent out as it is captured.


In various implementations, the second threshold may be set to a high value, such as an out of range high, which effectively means that the second threshold will never be reached. In such implementations, the frames are logged periodically for as long as the HVAC system remains on.


A server of the monitoring system includes a processor and memory, where the memory stores application code that processes data received from the air handler monitor and compressor monitor modules and determines existing and/or impending failures, as described in more detail below. The processor executes this application code and stores received data either in the memory or in other forms of storage, including magnetic storage, optical storage, flash memory storage, etc. While the term server is used in this application, the application is not limited to a single server.


A collection of servers, which may together operate to receive and process data from the air handler monitor and compressor monitor modules of multiple residences. A load balancing algorithm may be used between the servers to distribute processing and storage. The present application is not limited to servers that are owned, maintained, and housed by a monitoring company. Although the present disclosure describes diagnostics and processing and alerting occurring in the monitoring system 330, some or all of these functions may be performed locally using installed equipment and/or homeowner resources, such as a homeowner computer.


The servers may store baselines of frequency data for the HVAC system of a residence. The baselines can be used to detect changes indicating impending or existing failures. For example only, frequency signatures of failures of various components may be pre-programmed, and may be updated based on observed evidence from contractors. For example, once a malfunctioning HVAC system has been diagnosed, the monitoring system may note the frequency data leading up to the malfunction and correlate that frequency signature with the diagnosed cause of the malfunction. For example only, a computer learning system, such as a neural network or a genetic algorithm, may be used to refine frequency signatures. The frequency signatures may be unique to different types of HVAC systems and/or may share common characteristics. These common characteristics may be adapted based on the specific type of HVAC system being monitored.


The monitoring system may also receive current data in each frame. For example, when 7.5 frames per seconds are received, current data having a 7.5 Hz resolution is available. The current and/or the derivative of this current may be analyzed to detect impending or existing failures. In addition, the current and/or the derivative may be used to determine when to monitor certain data, or points at which to analyze obtained data. For example, frequency data obtained at a predetermined window around a certain current event may be found to correspond to a particular HVAC system component, such as activation of a hot surface igniter.


Components of the present disclosure may be connected to metering systems, such as utility (including gas and electric) metering systems. Data may be uploaded to the monitoring system 330 using any suitable method, including communications over a telephone line. These communications may take the form of digital subscriber line (DSL) or may use a modem operating at least partially within vocal frequencies. Uploading to the monitoring system 330 may be confined to certain times of day, such as at night time or at times specified by the contractor or homeowner. Further, uploads may be batched so that connections can be opened and closed less frequently. Further, in various implementations, uploads may occur only when a fault or other anomaly has been detected.


Methods of notification are not restricted to those disclosed above. For example, notification of HVAC problems may take the form of push or pull updates to an application, which may be executed on a smart phone or other mobile device or on a standard computer. Notifications may also be viewed using web applications or on local displays, such as the thermostat 364 or other displays located throughout the residence or on the air handler monitor module 322 or the compressor monitor module 316.


Referring now to FIG. 8, a functional schematic of example HVAC components is shown. An air conditioning unit controller 902 receives power from a first power line 904, a second power line 906, and a neutral line 908 (also called a center tap CT). Current sensors 910 measure current arriving on the first power line 904 and the second power line 906. A condenser fan 912 is controlled by a switch 914. A current sensor 916 that monitors current to the condenser fan may be eliminated according to the principles of the present disclosure.


A compressor motor 918 includes a start winding 920 and a run winding 922 and is controlled by a switch 924. A run capacitor 926 may be connected across terminals of the compressor motor 918. Current sensors 928, 930, and 931, which measure currents supplied to the compressor motor 918, may be eliminated in accordance with the principles of the present disclosure. A mid-capacity solenoid 932 may be actuated by a switch 934. The mid-capacity solenoid 932 may alter the capacity of the compressor motor 918, for example from a high capacity to a medium capacity.


A reversing valve 936 may be controlled by a switch 938 and/or by a switch 940. A processor 942 controls switches 914, 924, 934, 938, and 940. The processor 942 may provide visual indicators of operation, such as on a screen or via a blinking multicolor light-emitting diode 944. The processor 942 may communicate with a furnace control processor 946 via a network port 948 over networking lines 950. The processor 942 may operate in response to a high side refrigerant processor 952 and a low side refrigerant processor 954. The processor 942 may also operate in response to an outside ambient temperature sensor 956 and a condenser coil temperature sensor 958.


A blower motor controller 960 communicates over the network using the networking lines 950. The blower motor controller 960 may include a blower control processor 962 and a inverter driver 964. The inverter driver 964 drives a circulator blower motor 966. A circulator blower controller 968 controls the blower motor controller 960 over the network using the networking lines 950. The circulator blower controller includes a relay 970 and a circulator control processor 972.


A furnace controller 974 includes the furnace control processor 946 and switches 976, 978, and 980. The furnace controller 974 receives power from one of the lines 904 or 906 and the neutral line 908. The furnace control processor 946 receives control signals from a thermostat 982 and actuates the switches 976, 978, and 980 in response. The switch 976 may be a relay and controls a gas valve 984, which regulates combustion fuel to the furnace. The switch 978 controls an inducer motor 986, which exhausts combustion gases. The switch 980 controls an igniter 988, which ignites the fuel. The furnace controller 974 and the thermostat 982 are powered by a transformer 990.


Referring now to FIG. 9, an aggregate current level begins at a non-zero current 1004 indicating that at least one energy consuming component is consuming energy. A spike in current 1008 may indicate that another component is turning on. Elevated current 1012 may correspond to operation of the inducer blower. This is followed by a spike 1016, which may indicate the beginning of operation of a hot surface igniter. After opening of a solenoid-operated gas valve, the hot surface igniter may turn off, which returns current to a level corresponding to the inducer blower at 1018. The current may remain approximately flat 1020 until a current ramp 1024 begins, indicating the beginning of circulator blower operation. A spike 1028 may indicate transition from starting to running of the circulator blower.


Referring now to FIG. 10A, another example current trace begins at 1050. A spike at 1054 indicates operation of a component, such as a hot surface igniter. Transitions at 1058 and 1062 may indicate operation of other energy consuming components or operating changes of the hot surface igniter. A spike 1066 may indicate the beginning of operation of another energy consuming component, such as a circulator blower.


Referring now to FIG. 10B, the transitions shown in FIG. 10A may be isolated to allow the data at these transitions to be carefully inspected, as the data at these times may have greater diagnostic value. In order to identify transitions, such as 1054, 1058, 1062, and 1066, mathematical algorithms, which may include averages and derivatives, are applied to the current trace of FIG. 10A to produce corresponding spikes 1080, 1084, 1088, and 1092.


Referring now to FIG. 10C, another example current trace is shown. While the current trace of FIG. 10C is visually different from that of FIG. 10A, it may be difficult to quantify this difference. It may be especially difficult to develop a universal pattern for distinguishing the current trace of FIG. 10C from the current trace of FIG. 10A. The current trace of FIG. 10C may represent a change in operation, such as degradation of the hot surface igniter. In order to more clearly distinguish FIG. 10C from FIG. 10A, frequency domain analysis may be used.


Referring now to FIG. 11A, a bar chart 1100 depicts relative frequency content in each of 33 frequency bins, which is obtained by a frequency domain analysis of FIG. 10A. For example only, an FFT was performed over a specified period of the time domain trace of FIG. 10A. For example only, the specified time may be keyed to one of the transitions identified in FIG. 10B.


Referring now to FIG. 11B, the bar chart 1104 depicts frequency content corresponding to the time domain trace of FIG. 10C. Referring now to FIG. 11C, a comparison between the frequency domain data of FIGS. 11A and 11B is shown. In various implementations, this difference may be calculated simply by subtracting, bin by bin, the value of FIG. 11B from the value of FIG. 11A. The resulting frequency domain data 1108 may be indicative of a failing igniter. For example only, when certain frequency bins in the difference spectrum 1108 exceed a certain threshold, the monitoring system may determine that the igniter has failed or is failing.


Referring now to FIG. 12A, an example current trace has an approximately constant level 1140 until a spike 1144 indicates operation of a hot surface igniter. A second spike 1148 indicates actuation of a solenoid-operated gas valve. Referring now to FIG. 12B, another example current trace shows operation of the hot surface igniter that appears to be missing operation of the solenoid-operated gas valve. Referring now to FIG. 12C, a frequency domain analysis is performed on both FIG. 12A and FIG. 12B, and a difference spectrum between the two frequency domain spectra is shown in FIG. 12C. This frequency domain difference may indicate to the monitoring system that the solenoid-operated gas valve has failed to function.


Referring now to FIG. 13A, voltage and current for a normally operated motor are shown, where the voltage trace appears sinusoidal and the current trace is more jagged. In FIG. 13B, voltage and current traces for a compressor motor with a faulty run capacitor are shown. Visually, it is difficult to determine any difference between the time domain representations in FIGS. 13A and 13B. FIG. 13C shows a time domain subtraction of the current traces of FIGS. 13A and 13B. The difference simply appears to be noise and in the time domain, it may be impossible to distinguish a normally operating motor from one having a faulty run capacitor.


Referring now to FIG. 14A, frequency domain content of the current of the normally operating motor of FIG. 13A is shown. Frequency bins are shown along one axis, while relative size of the frequency bin is shown on the vertical axis. Each slice 1180 may correspond to a different time window. In other words, FIG. 14A displays a series of FFTs performed over a number of time windows, which may be consecutive time windows. Meanwhile, FIG. 14B displays frequency domain content 1184 corresponding to the current of the faulty motor of FIG. 13B. In FIG. 14C, a difference 1188 between the frequency domain data of FIGS. 14A and 14B is shown. When a difference at a certain frequency exceeds a threshold, faulty operation of the motor can be diagnosed. Based on which frequency bins exhibit the greatest difference, the source of the problem may be suggested. For example only, the difference spectrum 1188 may indicate a faulty run capacitor.


Referring now FIG. 15A, a data flow diagram represents the air handler monitor module and compressor monitor module as being a triggered data logger 1200, which supplies logged data to a cloud processor 1204. Although referred to as a cloud processor in this application, one or more of the processes described as being performed by the cloud processor 1204 may instead be performed locally by the triggered data logger 1200. For example, this processing may be performed by the triggered data logger 1200 to reduce the amount of data that needs to be uploaded to cloud processor 1204.


The cloud processor 1204 receives the logged data and identifies key points in the data 1208, such as transitions between operating modes. These transitions may be identified by current spikes, such as are depicted in FIG. 10B. Device identification 1212 specifies characteristics of the HVAC system being monitored, which can be used to interpret the received data. Logger pattern forms 1216 may establish equipment specific operating characteristics from which an operation pattern 1220 is selected.


A base case pattern log 1224 may learn normal operation of the device in question and thereby establish a baseline. Pattern comparison 1228 receives data corresponding to key points and compares that data with base cases and selected operation patterns. Deviations by more than a predetermined amount may result in fault notification 1232. Further, anomalies that may be not be sufficient to trigger a fault may impact performance 1236. Performance 1236 may monitor even properly running equipment to determine if performance has degraded through normal wear and tear or through issues with the home itself, such as low insulation value. An information channel 1240 provides information about identified faults and performance, such as alerts of decreased performance, to a contractor or homeowner, represented at 1244.


Referring now to FIG. 15B, an FFT 1260 is used to analyze HVAC operation in the frequency domain. This may allow for identification of problems that are difficult or impossible to reliably identify in the time domain.


Referring now to FIG. 15C, a global knowledge base 1280 may be populated by the monitoring company and/or installation contractors to identify proper operation of installed systems. The global knowledge base 1280 may also be updated with base cases determined by ongoing monitoring. The global knowledge base 1280 may therefore be informed by all of the monitored installation systems of a given HVAC system configuration.


Referring now to FIG. 15D, FFT processing 1300 is shown being performed locally at the triggered data logger. The FFT 1300 may be performed locally to reduce the amount of data uploaded to the cloud processor 1204. For example only, granular time domain current data over a time window may be converted to frequency domain data by the FFT 1300. The triggered data logger 1200 may then upload only an average value of the current over that time window to the cloud processor 1204, not all of the granular current domain data. In addition, performing the FFT 1300 locally may allow for some local detection and diagnosis of faults. This may allow the triggered data logger 1200 to better prioritize uploaded data, such as by immediately uploading data that appears to be related to an impending or present failure.


Referring now to FIG. 15E, FFT interpretation 1320 is performed in the cloud processor 1204 before being operated on by key point identification 1208.


Referring now to FIG. 15F, the global knowledge base 1280 of FIG. 15C is combined with the FFT interpretation 1320 of FIG. 15E in the cloud processor 1204.


Referring now to FIG. 15G, another example representation of cloud processing is shown, where a processing module 1400 receives event data in the form of frames. The processing module 1400 uses various input data for detection and prediction of faults. Identified faults are passed to an error communication system 1404. The event data 1402 may be stored upon receipt from the air handler monitor module and the compressor monitor module.


The processing module 1400 may then perform each prediction or detection task with relevant data from the event data 1402. In various implementations, certain processing operations are common to more than one detection or prediction operation. This data may therefore be cached and reused. The processing module 1400 receives information about equipment configuration 1410, such as control signal mapping.


Rules and limits 1414 determine whether sensor values are out of bounds, which may indicate sensor failures. In addition, the rules and limits 1414 may indicate that sensor values cannot be trusted when parameters such as current and voltage are outside of predetermined limits. For example only, if the AC voltage sags, such as during a brownout, data taken during that time may be discarded as unreliable.


De-bouncing and counter holds 1418 may store counts of anomaly detection. For example only, detection of a single solenoid-operated gas valve malfunction may increment a counter, but not trigger a fault. Only if multiple solenoid-operated gas valve failures are detected is an error signaled. This can eliminate false positives. For example only, a single failure of energy consuming component may cause a corresponding counter to be incremented by one, while detection of proper operation may lead to the corresponding counter being decremented by one. In this way, if faulty operation is prevalent, the counter will eventually increase to a point where an error is signaled. Records and reference files 1422 may store frequency and time domain data establishing baselines for detection and prediction.


A basic failure-to-function fault may be determined by comparing control line state against operational state based on current and/or power. Basic function may be verified by temperature, and improper operation may contribute to a counter being incremented. This analysis may rely on return air temperature, supply air temperature, liquid line in temperature, voltage, current, real power, control line status, compressor discharge temperature, liquid line out temperature, and ambient temperature.


Sensor error faults may be detected by checking sensor values for anomalous operation, such as may occur for open-circuit or short-circuit faults. The values for those determinations may be found in the rules and limits 1414. This analysis may rely on return air temperature, supply air temperature, liquid line in temperature (which may correspond to a temperature of the refrigerant line in the air handler, before or after the expansion valve), control line status, compressor discharge temperature, liquid line out temperature, and ambient temperature.


When the HVAC system is off, sensor error faults may also be diagnosed. For example, based on control lines indicating that the HVAC system has been off for an hour, processing module 1400 may check whether the compressor discharge temperature, liquid line out temperature, and ambient temperature are approximately equal. In addition, the processing module 1400 may also check that the return air temperature, the supply air temperature, and the liquid line in temperature are approximately equal.


The processing module 1400 may compare temperature readings and voltages against predetermined limits to determine voltage faults and temperature faults. These faults may cause the processing module 1400 to ignore various faults that could appear present when voltages or temperatures are outside of the predetermined limits.


The processing module 1400 may check the status of discrete sensors to determine whether specifically-detected fault conditions are present. For example only, the status of condensate, float switch, and floor sensor water sensors are checked. The water sensors may be cross-checked against operating states of the HVAC system. For example only, if the air conditioning system is not running, it would not be expected that the condensate tray would be filling with water. This may instead indicate that one of the water sensors is malfunctioning. Such a determination could initiate a service call to fix the sensor so that it can properly identify when an actual water problem is present.


The processing module 1400 may determine whether the proper sequence of furnace initiation is occurring. This may rely on event and daily accumulation files 1426. The processing module 1400 may perform state sequence decoding, such as by looking at transitions as shown in FIG. 10B and expected times during which those transitions are expected. Detected furnace sequences are compared against a reference case and errors are generated based on exceptions. The furnace sequence may be verified with temperature readings, such as observing whether, while the burner is on, the supply air temperature is increasing with respect to the return air temperature. The processing module 1400 may also use FFT processing to determine that the sparker or igniter operation and solenoid-operated gas valve operation are adequate.


The processing module 1400 may determine whether a flame probe or flame sensor is accurately detecting flame. State sequence decoding may be followed by determining whether a series of furnace initiations are performed. If so, this may indicate that the flame probe is not detecting flame and the burner is therefore being shut off. The frequency of retries may increase over time when the flame probe is not operating correctly.


The processing module 1400 may evaluate heat pump performance by comparing thermal performance against power consumption and unit history. This may rely on equipment configuration data 1410, including compressor maps when available.


The processing module 1400 may determine refrigerant level of the air conditioning system. For example, the processing module 1400 may analyze the frequency content of the compressor current and extract frequencies at the third, fifth, and seventh harmonics of the power line frequencies. This data may be compared, based on ambient temperature, to historical data from when the air conditioning system was known to be fully charged. Generally, as charge is lost, the surge frequency may decrease. Additional data may be used for reinforcement of a low refrigerant level determination, such as supply air temperature, return air temperature, liquid line in temperature, voltage, real power, control line status, compressor discharge temperature, and liquid line out temperature.


The processing module 1400 may alternatively determine a low refrigerant charge by monitoring deactivation of the compressor motor by a protector switch, may indicate a low refrigerant charge condition. To prevent false positives, the processing module 1400 may ignore compressor motor deactivation that happens sooner than a predetermined delay after the compressor motor is started, as this may instead indicate another problem, such as a stuck rotor.


The processing module 1400 may determine the performance of a capacitor in the air handler unit, such as a run capacitor for the circulator blower. Based on return air temperature, supply air temperature, voltage, current, real power, control line status, and FFT data, the processing module 1400 determines the time and magnitude of the start current and checks the start current curve against a reference. In addition, steady state current may be compared over time to see whether an increase results in a corresponding increase in the difference between the return air temperature and the supply air temperature.


Similarly, the processing module 1400 determines whether the capacitor in the compressor/condenser unit is functioning properly. Based on compressor discharge temperature, liquid line out temperature, ambient temperature, voltage, current, real power, control line status, and FFT current data, control determines a time and magnitude of start current. This start current is checked against a reference in the time and/or frequency domains. The processing module 1400 may compensate for changes in ambient temperature and in liquid line in temperature. The processing module 1400 may also verify that increases in steady state current result in a corresponding increase in the difference between the compressor discharge temperature and the liquid line in temperature.


The processing module may calculate and accumulate energy consumption data over time. The processing module may also store temperatures on a periodic basis and at the end of heat and cool cycles. In addition, the processing module 1400 may record lengths of run times. An accumulation of run times may be used in determining the age of wear items, which may benefit from servicing, such as oiling, or preemptive replacing.


The processing module 1400 may also grade the homeowner's equipment. The processing module 1400 compares heat flux generated by the HVAC equipment against energy consumption. The heat flux may be indicated by return air temperature and/or indoor temperature, such as from a thermostat. The processing module 1400 may calculate the envelope of the residence to determine the net flux. The processing module 1400 may compare the equipment's performance, when adjusted for residence envelope, against other similar systems. Significant deviations may cause an error to be indicated.


The processing module 1400 uses a change in current or power and the type of circulator blower motor to determine the change in load. This change in load can be used to determine whether the filter is dirty. The processing module 1400 may also use power factor, which may be calculated based on the difference in phase between voltage and current. Temperatures may be used to verify reduced flow and eliminate other potential reasons for observed current or power changes in the circulator blower motor. The processing module 1400 may also determine when an evaporator coil is closed. The processing module 1400 uses a combination of loading and thermal data to identify the signature of a coil that is freezing or frozen. This can be performed even when there is no direct temperature measurement of the coil itself.


FFT analysis may show altered compressor load from high liquid fraction. Often, a frozen coil is caused by a fan failure, but the fan failure itself may be detected separately. The processing module 1400 may use return air temperature, supply air temperature, liquid line in temperature, voltage, current, real power, and FFT data from both the air handler unit and the compressor condenser unit. In addition, the processing module 1400 may monitor control line status, switch statuses, compressor discharge temperature, liquid line out temperature, and ambient temperature. When a change in loading occurs that might be indicative of a clogged filter, but the change happened suddenly, a different cause may be to blame.


The processing module 1400 identifies a condenser blockage by examining the approach temperature, which is the difference between the liquid line out temperature and the ambient temperature. When the refrigerant has not been sufficiently cooled from the condenser discharge temperature (the input to the condenser) to the liquid line out temperature (output of the condenser), adjusted based on ambient temperature, the condenser may be blocked. Other data can be used to exclude other possible causes of this problem. The other data may include supply air temperature, return air temperature, voltage, current, real power, FFT data, and control line status both of the air handler unit and the compressor condenser unit.


The processing module 1400 determines whether the installed equipment is oversized for the residence. Based on event and daily accumulation files, the processing module evaluates temperature slopes at the end of the heating and/or cooling run. Using run time, duty cycle, temperature slopes, ambient temperature, and equipment heat flux versus home flux, appropriateness of equipment sizing can be determined. When equipment is oversized, there are comfort implications. For example, in air conditioning, short runs do not circulate air sufficiently, so moisture is not pulled out of the air. Further, the air conditioning system may never reach peak operating efficiency during a short cycle.


The processing module 1400 evaluates igniter positive temperature coefficient based on voltage, current, real power, control line status, and FFT data from the air handler unit. The processing module compares current level and slope during warm-up to look for increased resistance. Additionally, the processing module may use FFT data on warm-up to detect changes in the curve shape and internal arcing.


The processing module also evaluates igniter negative temperature coefficient based on voltage, current, real power, control line status, and FFT data from the air handler unit. The processing module 1400 compares current level and slope during warm-up to look for increased resistance. The processing module 1400 checks initial warm-up and trough currents. In addition, the processing module 1400 may use FFT data corresponding to warm-up to detect changes in the curve shape and internal arcing.


The processing module 1400 can also evaluate the positive temperature coefficient of a nitride igniter based on voltage, current, real power, control line status, and FFT data from the air handler unit. The processing module 1400 compares voltage level and current slope during warm-up to look for increased resistance. In addition, the processing module 1400 uses FFT data corresponding to warm-up to detect changes in the curve shape, drive voltage pattern, and internal arcing. Changes in drive voltage may indicate igniter aging, so those adjustments should be distinguished from changes to compensate for gas content and other furnace components.


Referring now to FIG. 16A, a table depicts example faults and features, with respect to the air handler unit, that can be detected and/or predicted. Each row corresponds to a fault or feature that may be detected or predicted, and an asterisk is located in each column used to make the detection or prediction. For both detection and prediction, some data may be used as the primary data for making the determination, while other data is used for compensation. Temperatures and voltages are used to perform compensation for those rows having an asterisk in the corresponding column.


The primary columns include timing of when events are detected, time domain current information, temperatures (including residence temperature as measured by the thermostat), pressures (such as refrigerant system pressures and/or air pressures), FFT data, and direct detection. Direct detection may occur when a status or control line directly indicates the fault or feature, such as when a water sensor indicates an overfull condensate tray.


Referring now to FIG. 16B, a table depicts example faults and features, with respect to the compressor/condenser unit, that can be detected and/or predicted. In FIG. 16B, outside ambient temperature and voltages may be used to compensate primary data.


The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A or B or C), using a non-exclusive logical OR. It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the present disclosure.


As used herein, the term module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC); an electronic circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor (shared, dedicated, or group) that executes code; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip. The term module may include memory (shared, dedicated, or group) that stores code executed by the processor. For example only, the processor may be a 16-bit PIC24 MCU microprocessor manufactured by Microchip Technology Inc.


The term code, as used above, may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, and/or objects. The term shared, as used above, means that some or all code from multiple modules may be executed using a single (shared) processor. In addition, some or all code from multiple modules may be stored by a single (shared) memory. The term group, as used above, means that some or all code from a single module may be executed using a group of processors. In addition, some or all code from a single module may be stored using a group of memories.


The apparatuses and methods described herein may be implemented by one or more computer programs executed by one or more processors. The computer programs include processor-executable instructions that are stored on a non-transitory tangible computer readable medium. The computer programs may also include stored data. Non-limiting examples of the non-transitory tangible computer readable medium are nonvolatile memory, magnetic storage, and optical storage.

Claims
  • 1. A monitoring system for a heating, ventilation, and air conditioning (HVAC) system of a building, the monitoring system comprising: at least one processor; anda memory coupled to the at least one processor,wherein the memory stores instructions that, upon execution, cause the at least one processor to: receive a frequency domain representation and a time domain current value transmitted from a monitoring device located at the building, wherein the received frequency domain representation and the received time domain current value are based on an aggregate current supplied to a plurality of components of an indoor air handler of the HVAC system,determine, based on the received frequency domain representation and the received time domain current value, whether a first fault has occurred in a first component of the plurality of components of the indoor air handler,determine, based on the received frequency domain representation and the received time domain current value, whether a second fault has occurred in a second component of the plurality of components of the indoor air handler, andin response to determining the occurrence of at least one of the first fault of the first component and the second fault of the second component: determine a part number associated with at least one of the first component and the second component andgenerate and transmit an alert identifying the part number to a computing device remote from the monitoring system, andwherein the monitoring system is located remotely from the building.
  • 2. The monitoring system of claim 1 wherein the aggregate current is exclusive of a current supplied to a compressor of the HVAC system.
  • 3. The monitoring system of claim 1 wherein transmitting the alert includes transmitting the alert to at least one of (i) an owner of the building and (ii) an HVAC contractor.
  • 4. The monitoring system of claim 1 wherein the received frequency domain representation is based on a frequency domain analysis of a plurality of samples of the aggregate current over a period of time.
  • 5. The monitoring system of claim 1 wherein the instructions, upon execution, cause the at least one processor to: identify times corresponding to transitions in an operational sequence of the HVAC system based on the received frequency domain representation;determine a startup sequence of the HVAC system based on the identified times; andidentify at least one of the first fault and the second fault based on the determined startup sequence.
  • 6. The monitoring system of claim 1 wherein: determining whether the first fault has occurred in the first component includes comparing the received frequency domain representation to baseline data; andthe instructions, upon execution, cause the at least one processor to adapt the baseline data based on normal operation of the HVAC system.
  • 7. The monitoring system of claim 1 wherein: the instructions, upon execution, cause the at least one processor to receive a plurality of frames of information;each frame of the plurality of frames of information is associated with the aggregate current measured over a period of time; anda first frame of the plurality of frames of information includes (i) the received frequency domain representation and (ii) the received time domain current value and excludes individual samples of the aggregate current.
  • 8. The monitoring system of claim 1 wherein: the instructions, upon execution, cause the at least one processor to receive current data from a second monitoring device located at the building; andthe current data is based on a second aggregate current supplied to an enclosure of the HVAC system that includes at least one of a compressor and a heat pump heat exchanger.
  • 9. The monitoring system of claim 1 wherein the instructions, upon execution, cause the at least one processor to: selectively predict an impending failure of the first component based on the received frequency domain representation; andgenerate an alert in response to predicting the impending failure.
  • 10. A method of monitoring a heating, ventilation, and air conditioning (HVAC) system of a building, the method comprising: receiving, by a processor located remotely from the building, a frequency domain representation and a time domain current value transmitted from a monitoring device located at the building, wherein the frequency domain representation and the time domain current value are based on an aggregate current supplied to a plurality of components of an indoor air handler and measured by the monitoring device;determining, by the processor, based on the frequency domain representation and the time domain current value, whether a first fault has occurred in a first component of the plurality of components of the indoor air handler;determining, by the processor, based on the frequency domain representation and the time domain current value, whether a second fault has occurred in a second component of the plurality of components of the indoor air handler; andgenerating and transmitting, by the processor, an alert in response to determining the occurrence of at least one of the first fault of the first component and the second fault of the second component, wherein the alert is transmitted to a computing device remote from the processor and associated with at least one of (a) an owner of the building and (b) an HVAC contractor.
  • 11. The method of claim 10 further comprising: in response to determining the occurrence of the first fault of the first component, determining a part number associated with the first component,wherein transmitting the alert includes transmitting the part number.
  • 12. The method of claim 10 wherein the aggregate current is exclusive of a current supplied to a compressor of the HVAC system.
  • 13. The method of claim 10 wherein the frequency domain representation is based on a frequency domain analysis of a plurality of samples of the aggregate current over a period of time.
  • 14. The method of claim 10 further comprising receiving a plurality of frames of information, wherein: each frame of the plurality of frames of information is associated with the aggregate current measured over a period of time, anda first frame of the plurality of frames of information includes (i) the frequency domain representation and (ii) the time domain current value and does not include individual samples of the aggregate current.
  • 15. The method of claim 10 wherein: determining whether the first fault has occurred in the first component includes comparing the frequency domain representation to baseline data; andthe method further comprises adapting the baseline data based on normal operation of the HVAC system.
  • 16. The method of claim 10 further comprising: identifying times corresponding to transitions in an operational sequence of the HVAC system based on the frequency domain representation; andanalyzing the frequency domain representation around the identified times.
  • 17. The method of claim 10 further comprising: receiving current data from a second monitoring device located at the building,wherein the current data is based on a second aggregate current supplied to an enclosure of the HVAC system that includes at least one of a compressor and a heat pump heat exchanger.
  • 18. The method of claim 10 further comprising: selectively predicting an impending failure of the first component based on the received frequency domain representation; andgenerating an alert in response to prediction of impending failure.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/645,970, filed on Jul. 10, 2017 (now U.S. Pat. No. 10,234,854), which is a continuation of U.S. patent application Ser. No. 14/300,782, filed on Jun. 10, 2014 (now U.S. Pat. No. 9,703,287), which is a continuation of U.S. patent application Ser. No. 13/407,180, filed on Feb. 28, 2012 (now U.S. Pat. No. 9,285,802), which claims the benefit of U.S. Provisional Application No. 61/548,009 filed on Oct. 17, 2011 and U.S. Provisional Application No. 61/447,681 filed on Feb. 28, 2011. The entire disclosures of the above applications are incorporated herein by reference.

US Referenced Citations (1649)
Number Name Date Kind
2054542 Hoelle Sep 1936 A
2296822 Wolfert Sep 1942 A
2631050 Haeberlein Mar 1953 A
2804839 Hallinan Sep 1957 A
2961606 Mead Nov 1960 A
2962702 Derr et al. Nov 1960 A
2978879 Heidorn Apr 1961 A
3027865 Kautz et al. Apr 1962 A
3047696 Heidorn Jul 1962 A
3082951 Kayan Mar 1963 A
3107843 Finn Oct 1963 A
3170304 Hale Feb 1965 A
3232519 Long Feb 1966 A
3278111 Parker Oct 1966 A
3327197 Marquis Jun 1967 A
3339164 Landis et al. Aug 1967 A
3400374 Schumann Sep 1968 A
3513662 Golber May 1970 A
3581281 Martin et al. May 1971 A
3585451 Day, III Jun 1971 A
3653783 Sauder Apr 1972 A
3660718 Pinckaers May 1972 A
3665339 Liu May 1972 A
3665399 Zehr et al. May 1972 A
3680324 Garland Aug 1972 A
3697953 Schoenwitz Oct 1972 A
3707851 McAshan, Jr. Jan 1973 A
3729949 Talbot May 1973 A
3735377 Kaufman May 1973 A
3742302 Neill Jun 1973 A
3742303 Dageford Jun 1973 A
3767328 Ladusaw Oct 1973 A
3777240 Neill Dec 1973 A
3783681 Hirt et al. Jan 1974 A
3820074 Toman Jun 1974 A
3882305 Johnstone May 1975 A
3924972 Szymaszek Dec 1975 A
3927712 Nakayama Dec 1975 A
3935519 Pfarrer et al. Jan 1976 A
3950962 Odashima Apr 1976 A
3960011 Renz et al. Jun 1976 A
3978382 Pfarrer et al. Aug 1976 A
3998068 Chirnside Dec 1976 A
4006460 Hewitt et al. Feb 1977 A
4014182 Granryd Mar 1977 A
4018584 Mullen Apr 1977 A
4019172 Srodes Apr 1977 A
4024725 Uchida et al. May 1977 A
4027289 Toman May 1977 A
4034570 Anderson et al. Jul 1977 A
4038061 Anderson et al. Jul 1977 A
4045973 Anderson et al. Sep 1977 A
4046532 Nelson Sep 1977 A
RE29450 Goldsby et al. Oct 1977 E
4060716 Pekrul et al. Nov 1977 A
4066869 Apaloo et al. Jan 1978 A
4090248 Swanson et al. May 1978 A
4102150 Kountz Jul 1978 A
4102394 Botts Jul 1978 A
4104888 Reedy et al. Aug 1978 A
4105063 Bergt Aug 1978 A
4112703 Kountz Sep 1978 A
4132086 Kountz Jan 1979 A
4136730 Kinsey Jan 1979 A
4137057 Piet et al. Jan 1979 A
4137725 Martin Feb 1979 A
4142375 Abe et al. Mar 1979 A
4143707 Lewis et al. Mar 1979 A
4146085 Wills Mar 1979 A
RE29966 Nussbaum Apr 1979 E
4151725 Kountz et al. May 1979 A
4153003 Willis May 1979 A
4156350 Elliott et al. May 1979 A
4161106 Savage et al. Jul 1979 A
4165619 Girard Aug 1979 A
4171622 Yamaguchi et al. Oct 1979 A
4173871 Brooks Nov 1979 A
4178988 Cann et al. Dec 1979 A
RE30242 del Toro et al. Apr 1980 E
4197717 Schumacher Apr 1980 A
4205381 Games et al. May 1980 A
4209994 Mueller et al. Jul 1980 A
4211089 Mueller et al. Jul 1980 A
4217761 Cornaire et al. Aug 1980 A
4220010 Mueller et al. Sep 1980 A
4227862 Andrew et al. Oct 1980 A
4232530 Mueller Nov 1980 A
4233818 Lastinger Nov 1980 A
4236379 Mueller Dec 1980 A
4244182 Behr Jan 1981 A
4246763 Mueller et al. Jan 1981 A
4248051 Darcy et al. Feb 1981 A
4251988 Allard et al. Feb 1981 A
4257795 Shaw Mar 1981 A
4259847 Pearse, Jr. Apr 1981 A
4267702 Houk May 1981 A
4270174 Karlin et al. May 1981 A
4271898 Freeman Jun 1981 A
4281358 Plouffe et al. Jul 1981 A
4284849 Anderson et al. Aug 1981 A
4286438 Clarke Sep 1981 A
4290480 Sulkowski Sep 1981 A
4296727 Bryan Oct 1981 A
4301660 Mueller et al. Nov 1981 A
4306293 Marathe Dec 1981 A
4307775 Saunders et al. Dec 1981 A
4308725 Chiyoda Jan 1982 A
4311188 Kojima et al. Jan 1982 A
4319461 Shaw Mar 1982 A
4321529 Simmonds et al. Mar 1982 A
4325223 Cantley Apr 1982 A
4328678 Kono et al. May 1982 A
4328680 Stamp, Jr. et al. May 1982 A
4333316 Stamp, Jr. et al. Jun 1982 A
4333317 Sawyer Jun 1982 A
4336001 Andrew et al. Jun 1982 A
4338790 Saunders et al. Jul 1982 A
4338791 Stamp, Jr. et al. Jul 1982 A
4345162 Hammer et al. Aug 1982 A
4346755 Alley et al. Aug 1982 A
4350021 Lundstrom Sep 1982 A
4350023 Kuwabara et al. Sep 1982 A
4351163 Johannsen Sep 1982 A
4356703 Vogel Nov 1982 A
4361273 Levine et al. Nov 1982 A
4365983 Abraham et al. Dec 1982 A
4370098 McClain et al. Jan 1983 A
4372119 Gillbrand et al. Feb 1983 A
4376926 Senor Mar 1983 A
4381549 Stamp, Jr. et al. Apr 1983 A
4382367 Roberts May 1983 A
4384462 Overman et al. May 1983 A
4387368 Day, III et al. Jun 1983 A
4387578 Paddock Jun 1983 A
4390058 Otake et al. Jun 1983 A
4390321 Langlois et al. Jun 1983 A
4390922 Pelliccia Jun 1983 A
4395886 Mayer Aug 1983 A
4395887 Sweetman Aug 1983 A
4399548 Castleberry Aug 1983 A
4402054 Osborne et al. Aug 1983 A
4406133 Saunders et al. Sep 1983 A
4407138 Mueller Oct 1983 A
4408660 Sutoh et al. Oct 1983 A
4412788 Shaw et al. Nov 1983 A
4415896 Allgood Nov 1983 A
4418388 Allgor et al. Nov 1983 A
4420947 Yoshino Dec 1983 A
4425010 Bryant et al. Jan 1984 A
4429578 Darrel et al. Feb 1984 A
4432232 Brantley et al. Feb 1984 A
4434390 Elms Feb 1984 A
4441329 Dawley Apr 1984 A
4448038 Barbier May 1984 A
4449375 Briccetti May 1984 A
4451929 Yoshida May 1984 A
4460123 Beverly Jul 1984 A
4463571 Wiggs Aug 1984 A
4463574 Spethmann et al. Aug 1984 A
4463576 Burnett et al. Aug 1984 A
4465229 Kompelien Aug 1984 A
4467230 Rovinsky Aug 1984 A
4467385 Bandoli et al. Aug 1984 A
4467613 Behr et al. Aug 1984 A
4470092 Lombardi Sep 1984 A
4470266 Briccetti et al. Sep 1984 A
4474024 Eplett et al. Oct 1984 A
4474542 Kato et al. Oct 1984 A
4479389 Anderson, III et al. Oct 1984 A
4484452 Houser, Jr. Nov 1984 A
4489551 Watanabe et al. Dec 1984 A
4490986 Paddock Jan 1985 A
4494383 Nagatomo et al. Jan 1985 A
4495779 Tanaka et al. Jan 1985 A
4496296 Arai et al. Jan 1985 A
4497031 Froehling et al. Jan 1985 A
4498310 Imanishi et al. Feb 1985 A
4499739 Matsuoka et al. Feb 1985 A
4502084 Hannett Feb 1985 A
4502833 Hibino et al. Mar 1985 A
4502842 Currier et al. Mar 1985 A
4502843 Martin Mar 1985 A
4505125 Baglione Mar 1985 A
4506518 Yoshikawa et al. Mar 1985 A
4507934 Tanaka et al. Apr 1985 A
4510547 Rudich, Jr. Apr 1985 A
4510576 MacArthur et al. Apr 1985 A
4512161 Logan et al. Apr 1985 A
4516407 Watabe May 1985 A
4517468 Kemper et al. May 1985 A
4520674 Canada et al. Jun 1985 A
4523435 Lord Jun 1985 A
4523436 Schedel et al. Jun 1985 A
4527247 Kaiser et al. Jul 1985 A
4527399 Lord Jul 1985 A
4535607 Mount Aug 1985 A
4538420 Nelson Sep 1985 A
4538422 Mount et al. Sep 1985 A
4539820 Zinsmeyer Sep 1985 A
4540040 Fukumoto et al. Sep 1985 A
4545210 Lord Oct 1985 A
4545214 Kinoshita Oct 1985 A
4548549 Murphy et al. Oct 1985 A
4549403 Lord et al. Oct 1985 A
4549404 Lord Oct 1985 A
4550770 Nussdorfer et al. Nov 1985 A
4553400 Branz Nov 1985 A
4555057 Foster Nov 1985 A
4555910 Sturges Dec 1985 A
4557317 Harmon, Jr. Dec 1985 A
4558181 Blanchard et al. Dec 1985 A
4561260 Nishi et al. Dec 1985 A
4563624 Yu Jan 1986 A
4563877 Harnish Jan 1986 A
4563878 Baglione Jan 1986 A
4567733 Mecozzi Feb 1986 A
4568909 Whynacht Feb 1986 A
4574871 Parkinson et al. Mar 1986 A
4575318 Blain Mar 1986 A
4577977 Pejsa Mar 1986 A
4580947 Shibata et al. Apr 1986 A
4583373 Shaw Apr 1986 A
4589060 Zinsmeyer May 1986 A
4593367 Slack et al. Jun 1986 A
4598764 Beckey Jul 1986 A
4602484 Bendikson Jul 1986 A
4603556 Suefuji et al. Aug 1986 A
4604036 Sutou et al. Aug 1986 A
4611470 Enstrom Sep 1986 A
4612775 Branz et al. Sep 1986 A
4614089 Dorsey Sep 1986 A
4617804 Fukushima et al. Oct 1986 A
4620286 Smith et al. Oct 1986 A
4620424 Tanaka et al. Nov 1986 A
4621502 Ibrahim et al. Nov 1986 A
4626753 Letterman Dec 1986 A
4627245 Levine Dec 1986 A
4627483 Harshbarger, III et al. Dec 1986 A
4627484 Harshbarger, Jr. et al. Dec 1986 A
4630572 Evans Dec 1986 A
4630670 Wellman et al. Dec 1986 A
4642034 Terauchi Feb 1987 A
4642782 Kemper et al. Feb 1987 A
4644479 Kemper et al. Feb 1987 A
4646532 Nose Mar 1987 A
4648044 Hardy et al. Mar 1987 A
4649515 Thompson et al. Mar 1987 A
4649710 Inoue et al. Mar 1987 A
4653280 Hansen et al. Mar 1987 A
4653285 Pohl Mar 1987 A
4655688 Bohn et al. Apr 1987 A
4660386 Hansen et al. Apr 1987 A
4662184 Pohl et al. May 1987 A
4674292 Ohya et al. Jun 1987 A
4677830 Sumikawa et al. Jul 1987 A
4680940 Vaughn Jul 1987 A
4682473 Rogers, III Jul 1987 A
4684060 Adams et al. Aug 1987 A
4685615 Hart Aug 1987 A
4686835 Alsenz Aug 1987 A
4689967 Han et al. Sep 1987 A
4697431 Alsenz Oct 1987 A
4698978 Jones Oct 1987 A
4698981 Kaneko et al. Oct 1987 A
4701824 Beggs et al. Oct 1987 A
4703325 Chamberlin et al. Oct 1987 A
4706152 DeFilippis et al. Nov 1987 A
4706469 Oguni et al. Nov 1987 A
4712648 Mattes et al. Dec 1987 A
4713717 Pejouhy et al. Dec 1987 A
4715190 Han et al. Dec 1987 A
4715792 Nishizawa et al. Dec 1987 A
4716582 Blanchard et al. Dec 1987 A
4716957 Thompson et al. Jan 1988 A
4720980 Howland Jan 1988 A
4722018 Pohl Jan 1988 A
4722019 Pohl Jan 1988 A
4724678 Pohl Feb 1988 A
4735054 Beckey Apr 1988 A
4735060 Alsenz Apr 1988 A
4744223 Umezu May 1988 A
4745765 Pettitt May 1988 A
4745766 Bahr May 1988 A
4745767 Ohya et al. May 1988 A
4750332 Jenski et al. Jun 1988 A
4750672 Beckey et al. Jun 1988 A
4751501 Gut Jun 1988 A
4751825 Voorhis et al. Jun 1988 A
4754410 Leech et al. Jun 1988 A
4755957 White et al. Jul 1988 A
4765150 Persem Aug 1988 A
4768346 Mathur Sep 1988 A
4768348 Noguchi Sep 1988 A
4783752 Kaplan et al. Nov 1988 A
4787213 Gras et al. Nov 1988 A
4790142 Beckey Dec 1988 A
4796142 Libert Jan 1989 A
4796466 Farmer Jan 1989 A
4798055 Murray et al. Jan 1989 A
4805118 Rishel Feb 1989 A
4807445 Matsuoka et al. Feb 1989 A
4820130 Eber et al. Apr 1989 A
4829779 Munson et al. May 1989 A
4831560 Zaleski May 1989 A
4831832 Alsenz May 1989 A
4831833 Duenes et al. May 1989 A
4835706 Asahi May 1989 A
4835980 Oyanagi et al. Jun 1989 A
4838037 Wood Jun 1989 A
4841734 Torrence Jun 1989 A
4843575 Crane Jun 1989 A
4845956 Berntsen et al. Jul 1989 A
4848099 Beckey et al. Jul 1989 A
4848100 Barthel et al. Jul 1989 A
4850198 Helt et al. Jul 1989 A
4850204 Bos et al. Jul 1989 A
4852363 Kampf et al. Aug 1989 A
4853693 Eaton-Williams Aug 1989 A
4856286 Sulfstede et al. Aug 1989 A
4858676 Bolfik et al. Aug 1989 A
4866635 Kahn et al. Sep 1989 A
4866944 Yamazaki Sep 1989 A
4869073 Kawai et al. Sep 1989 A
4873836 Thompson Oct 1989 A
4875589 Lacey et al. Oct 1989 A
4877382 Caillat et al. Oct 1989 A
4878355 Beckey et al. Nov 1989 A
4881184 Abegg, III et al. Nov 1989 A
4882747 Williams Nov 1989 A
4882908 White Nov 1989 A
4884412 Sellers et al. Dec 1989 A
4885707 Nichol et al. Dec 1989 A
4885914 Pearman Dec 1989 A
4887436 Enomoto et al. Dec 1989 A
4887857 VanOmmeren Dec 1989 A
4889280 Grald et al. Dec 1989 A
4893480 Matsui et al. Jan 1990 A
4899551 Weintraub Feb 1990 A
4903500 Hanson Feb 1990 A
4903759 Lapeyrouse Feb 1990 A
4904993 Sato Feb 1990 A
4909041 Jones Mar 1990 A
4909076 Busch et al. Mar 1990 A
4910966 Levine et al. Mar 1990 A
4913625 Gerlowski Apr 1990 A
4916633 Tychonievich et al. Apr 1990 A
4916909 Mathur et al. Apr 1990 A
4916912 Levine et al. Apr 1990 A
4918690 Markkula, Jr. et al. Apr 1990 A
4918932 Gustafson et al. Apr 1990 A
4924404 Reinke, Jr. May 1990 A
4924418 Bachman et al. May 1990 A
4928750 Nurczyk May 1990 A
4932588 Fedter et al. Jun 1990 A
4939909 Tsuchiyama et al. Jul 1990 A
4943003 Shimizu et al. Jul 1990 A
4944160 Malone et al. Jul 1990 A
4945491 Rishel Jul 1990 A
4948040 Kobayashi et al. Aug 1990 A
4949550 Hanson Aug 1990 A
4953784 Yasufuku et al. Sep 1990 A
4959970 Meckler Oct 1990 A
4964060 Hartsog Oct 1990 A
4964125 Kim Oct 1990 A
4966006 Thuesen et al. Oct 1990 A
4967567 Proctor et al. Nov 1990 A
4970496 Kirkpatrick Nov 1990 A
4974427 Diab Dec 1990 A
4974665 Zillner, Jr. Dec 1990 A
4975024 Heckel Dec 1990 A
4977751 Hanson Dec 1990 A
4985857 Bajpai et al. Jan 1991 A
4987748 Meckler Jan 1991 A
4990057 Rollins Feb 1991 A
4990893 Kiluk Feb 1991 A
4991770 Bird et al. Feb 1991 A
5000009 Clanin Mar 1991 A
5005365 Lynch Apr 1991 A
5009074 Goubeaux et al. Apr 1991 A
5009075 Okoren Apr 1991 A
5009076 Winslow Apr 1991 A
5012629 Rehman et al. May 1991 A
5018357 Livingstone et al. May 1991 A
5018665 Sulmone May 1991 A
RE33620 Persem Jun 1991 E
5022234 Goubeaux et al. Jun 1991 A
5039009 Baldwin et al. Aug 1991 A
5042264 Dudley Aug 1991 A
5051720 Kittirutsunetorn Sep 1991 A
5054294 Dudley Oct 1991 A
5056036 Van Bork Oct 1991 A
5056329 Wilkinson Oct 1991 A
5058388 Shaw et al. Oct 1991 A
5062278 Sugiyama Nov 1991 A
5065593 Dudley et al. Nov 1991 A
5067099 McCown et al. Nov 1991 A
RE33775 Behr et al. Dec 1991 E
5070468 Niinomi et al. Dec 1991 A
5071065 Aalto et al. Dec 1991 A
5073091 Burgess et al. Dec 1991 A
5073862 Carlson Dec 1991 A
5076067 Prenger et al. Dec 1991 A
5076494 Ripka Dec 1991 A
5077983 Dudley Jan 1992 A
5083438 McMullin Jan 1992 A
5086385 Launey et al. Feb 1992 A
5088297 Maruyama et al. Feb 1992 A
5094086 Shyu Mar 1992 A
5095712 Narreau Mar 1992 A
5095715 Dudley Mar 1992 A
5099654 Baruschke et al. Mar 1992 A
5102316 Caillat et al. Apr 1992 A
5103391 Barrett Apr 1992 A
5107500 Wakamoto et al. Apr 1992 A
5109222 Welty Apr 1992 A
5109676 Waters et al. May 1992 A
5109700 Hicho May 1992 A
5109916 Thompson May 1992 A
5115406 Zatezalo et al. May 1992 A
5115643 Hayata et al. May 1992 A
5115644 Alsenz May 1992 A
5115967 Wedekind May 1992 A
5118260 Fraser, Jr. Jun 1992 A
5119466 Suzuki Jun 1992 A
5119637 Bard et al. Jun 1992 A
5121610 Atkinson et al. Jun 1992 A
5123017 Simpkins et al. Jun 1992 A
5123252 Hanson Jun 1992 A
5123253 Hanson et al. Jun 1992 A
5123255 Ohizumi Jun 1992 A
5125067 Erdman Jun 1992 A
RE34001 Wrobel Jul 1992 E
5127232 Paige et al. Jul 1992 A
5131237 Valbjorn Jul 1992 A
5136855 Lenarduzzi Aug 1992 A
5140394 Cobb, III et al. Aug 1992 A
5141407 Ramsey et al. Aug 1992 A
5142877 Shimizu Sep 1992 A
5150584 Tomasov et al. Sep 1992 A
5156539 Anderson et al. Oct 1992 A
5167494 Inagaki et al. Dec 1992 A
5170935 Federspiel et al. Dec 1992 A
5170936 Kubo et al. Dec 1992 A
5181389 Hanson et al. Jan 1993 A
5186014 Runk Feb 1993 A
5197666 Wedekind Mar 1993 A
5199855 Nakajima et al. Apr 1993 A
5200872 D'Entremont et al. Apr 1993 A
5200987 Gray Apr 1993 A
5201862 Pettitt Apr 1993 A
5203178 Shyu Apr 1993 A
5203179 Powell Apr 1993 A
5209076 Kauffman et al. May 1993 A
5209400 Winslow et al. May 1993 A
5219041 Greve Jun 1993 A
5224354 Ito et al. Jul 1993 A
5224835 Oltman Jul 1993 A
5226472 Benevelli et al. Jul 1993 A
5228300 Shim Jul 1993 A
5228304 Ryan Jul 1993 A
5228307 Koce Jul 1993 A
5230223 Hullar et al. Jul 1993 A
5231844 Park Aug 1993 A
5233841 Jyrek Aug 1993 A
5235526 Saffell Aug 1993 A
5237830 Grant Aug 1993 A
5241664 Ohba et al. Aug 1993 A
5241833 Ohkoshi Sep 1993 A
5243827 Hagita et al. Sep 1993 A
5243829 Bessler Sep 1993 A
5245833 Mei et al. Sep 1993 A
5248244 Ho et al. Sep 1993 A
5251453 Stanke et al. Oct 1993 A
5251454 Yoon Oct 1993 A
5255977 Eimer et al. Oct 1993 A
5257506 DeWolf et al. Nov 1993 A
5262704 Farr Nov 1993 A
5265434 Alsenz Nov 1993 A
5269458 Sol Dec 1993 A
5271556 Helt et al. Dec 1993 A
5274571 Hesse et al. Dec 1993 A
5276630 Baldwin et al. Jan 1994 A
5279458 DeWolf et al. Jan 1994 A
5282728 Swain Feb 1994 A
5284026 Powell Feb 1994 A
5285646 TaeDuk Feb 1994 A
5289362 Liebl et al. Feb 1994 A
5290154 Kotlarek et al. Mar 1994 A
5291752 Alvarez et al. Mar 1994 A
5299504 Abele Apr 1994 A
5303112 Zulaski et al. Apr 1994 A
5303560 Hanson et al. Apr 1994 A
5311451 Barrett May 1994 A
5311562 Palusamy et al. May 1994 A
5316448 Ziegler et al. May 1994 A
5320506 Fogt Jun 1994 A
5333460 Lewis et al. Aug 1994 A
5335507 Powell Aug 1994 A
5336058 Yokoyama Aug 1994 A
5337576 Dorfman et al. Aug 1994 A
5347476 McBean, Sr. Sep 1994 A
5351037 Martell et al. Sep 1994 A
5362206 Westerman et al. Nov 1994 A
5362211 Iizuka et al. Nov 1994 A
5368446 Rode Nov 1994 A
5369958 Kasai et al. Dec 1994 A
5381669 Bahel et al. Jan 1995 A
5381692 Winslow et al. Jan 1995 A
5388176 Dykstra et al. Feb 1995 A
5395042 Riley et al. Mar 1995 A
5410230 Bessler et al. Apr 1995 A
5414792 Shorey May 1995 A
5415008 Bessler May 1995 A
5416781 Ruiz May 1995 A
5423190 Friedland Jun 1995 A
5423192 Young et al. Jun 1995 A
5426952 Bessler Jun 1995 A
5431026 Jaster Jul 1995 A
5432500 Scripps Jul 1995 A
5435145 Jaster Jul 1995 A
5435148 Sandofsky et al. Jul 1995 A
5440890 Bahel et al. Aug 1995 A
5440891 Hindmon, Jr. et al. Aug 1995 A
5440895 Bahel et al. Aug 1995 A
5446677 Jensen et al. Aug 1995 A
5450359 Sharma et al. Sep 1995 A
5452291 Eisenhandler et al. Sep 1995 A
5454229 Hanson et al. Oct 1995 A
5457965 Blair et al. Oct 1995 A
5460006 Torimitsu Oct 1995 A
5467011 Hunt Nov 1995 A
5467264 Rauch et al. Nov 1995 A
5469045 Dove et al. Nov 1995 A
5475986 Bahel et al. Dec 1995 A
5478212 Sakai et al. Dec 1995 A
5481481 Frey et al. Jan 1996 A
5481884 Scoccia Jan 1996 A
5483141 Uesugi Jan 1996 A
5491978 Young et al. Feb 1996 A
5495722 Manson et al. Mar 1996 A
5499512 Jurewicz et al. Mar 1996 A
5509786 Mizutani et al. Apr 1996 A
5511387 Tinsler Apr 1996 A
5512883 Lane, Jr. Apr 1996 A
5515267 Alsenz May 1996 A
5515692 Sterber et al. May 1996 A
5519301 Yoshida et al. May 1996 A
5519337 Casada May 1996 A
5528908 Bahel et al. Jun 1996 A
5532534 Baker et al. Jul 1996 A
5533347 Ott et al. Jul 1996 A
5535136 Standifer Jul 1996 A
5535597 An Jul 1996 A
5546015 Okabe Aug 1996 A
5546073 Duff et al. Aug 1996 A
5546756 Ali Aug 1996 A
5546757 Whipple, III Aug 1996 A
5548966 Tinsler Aug 1996 A
5555195 Jensen et al. Sep 1996 A
5562426 Watanabe et al. Oct 1996 A
5563490 Kawaguchi et al. Oct 1996 A
5564280 Schilling et al. Oct 1996 A
5566084 Cmar Oct 1996 A
5570085 Bertsch Oct 1996 A
5570258 Manning Oct 1996 A
5572643 Judson Nov 1996 A
5577905 Momber et al. Nov 1996 A
5579648 Hanson et al. Dec 1996 A
5581229 Hunt Dec 1996 A
5586445 Bessler Dec 1996 A
5586446 Torimitsu Dec 1996 A
5590830 Kettler et al. Jan 1997 A
5592058 Archer et al. Jan 1997 A
5592824 Sogabe et al. Jan 1997 A
5596507 Jones et al. Jan 1997 A
5600960 Schwedler et al. Feb 1997 A
5602749 Vosburgh Feb 1997 A
5602757 Haseley et al. Feb 1997 A
5602761 Spoerre et al. Feb 1997 A
5610339 Haseley et al. Mar 1997 A
5611674 Bass et al. Mar 1997 A
5613841 Bass et al. Mar 1997 A
5615071 Higashikata et al. Mar 1997 A
5616829 Balaschak et al. Apr 1997 A
5623834 Bahel et al. Apr 1997 A
5628201 Bahel et al. May 1997 A
5630325 Bahel et al. May 1997 A
5635896 Tinsley et al. Jun 1997 A
5641270 Sgourakes et al. Jun 1997 A
5643482 Sandelman et al. Jul 1997 A
5650936 Loucks et al. Jul 1997 A
5651263 Nonaka et al. Jul 1997 A
5655379 Jaster et al. Aug 1997 A
5655380 Calton Aug 1997 A
5656765 Gray Aug 1997 A
5656767 Garvey, III et al. Aug 1997 A
5666815 Aloise Sep 1997 A
5682949 Ratcliffe et al. Nov 1997 A
5684463 Diercks et al. Nov 1997 A
5689963 Bahel et al. Nov 1997 A
5691692 Herbstritt Nov 1997 A
5694010 Oomura et al. Dec 1997 A
5696501 Ouellette et al. Dec 1997 A
5699670 Jurewicz et al. Dec 1997 A
5706007 Fragnito et al. Jan 1998 A
5707210 Ramsey et al. Jan 1998 A
5711785 Maxwell Jan 1998 A
5713724 Centers et al. Feb 1998 A
5714931 Petite et al. Feb 1998 A
5715704 Cholkeri et al. Feb 1998 A
5718822 Richter Feb 1998 A
5724571 Woods Mar 1998 A
5729474 Hildebrand et al. Mar 1998 A
5737931 Ueno et al. Apr 1998 A
5741120 Bass et al. Apr 1998 A
5743109 Schulak Apr 1998 A
5745114 King et al. Apr 1998 A
5749238 Schmidt May 1998 A
5751916 Kon et al. May 1998 A
5752385 Nelson May 1998 A
5754450 Solomon et al. May 1998 A
5754732 Vlahu May 1998 A
5757664 Rogers et al. May 1998 A
5757892 Blanchard et al. May 1998 A
5761083 Brown, Jr. et al. Jun 1998 A
5764509 Gross et al. Jun 1998 A
5772214 Stark Jun 1998 A
5772403 Allison et al. Jun 1998 A
5782101 Dennis Jul 1998 A
5784232 Farr Jul 1998 A
5790898 Kishima et al. Aug 1998 A
5795381 Holder Aug 1998 A
5798941 McLeister Aug 1998 A
5802860 Barrows Sep 1998 A
5805856 Hanson Sep 1998 A
5807336 Russo et al. Sep 1998 A
5808441 Nehring Sep 1998 A
5810908 Gray et al. Sep 1998 A
5812061 Simons Sep 1998 A
5825597 Young Oct 1998 A
5827963 Selegatto et al. Oct 1998 A
5839094 French Nov 1998 A
5839291 Chang et al. Nov 1998 A
5841654 Verissimo et al. Nov 1998 A
5857348 Conry Jan 1999 A
5860286 Tulpule Jan 1999 A
5861807 Leyden et al. Jan 1999 A
5867998 Guertin Feb 1999 A
5869960 Brand Feb 1999 A
5873257 Peterson Feb 1999 A
5875430 Koether Feb 1999 A
5875638 Tinsler Mar 1999 A
5884494 Okoren et al. Mar 1999 A
5887786 Sandelman Mar 1999 A
5900801 Heagle et al. May 1999 A
5904049 Jaster et al. May 1999 A
5918200 Tsutsui et al. Jun 1999 A
5924295 Park Jul 1999 A
5924486 Ehlers et al. Jul 1999 A
5926103 Petite Jul 1999 A
5926531 Petite Jul 1999 A
5930773 Crooks et al. Jul 1999 A
5934087 Watanabe et al. Aug 1999 A
5939974 Heagle et al. Aug 1999 A
5946922 Viard et al. Sep 1999 A
5947693 Yang Sep 1999 A
5947701 Hugenroth Sep 1999 A
5949677 Ho Sep 1999 A
5950443 Meyer et al. Sep 1999 A
5953490 Wiklund et al. Sep 1999 A
5956658 McMahon Sep 1999 A
5971712 Kann Oct 1999 A
5975854 Culp, III et al. Nov 1999 A
5984645 Cummings Nov 1999 A
5986571 Flick Nov 1999 A
5987903 Bathla Nov 1999 A
5988986 Brinken et al. Nov 1999 A
5995347 Rudd et al. Nov 1999 A
5995351 Katsumata et al. Nov 1999 A
6006142 Seem et al. Dec 1999 A
6006171 Vines et al. Dec 1999 A
6011368 Kalpathi et al. Jan 2000 A
6013108 Karolys et al. Jan 2000 A
6017192 Clack et al. Jan 2000 A
6020702 Farr Feb 2000 A
6023420 McCormick et al. Feb 2000 A
6026651 Sandelman Feb 2000 A
6028522 Petite Feb 2000 A
6035653 Itoh et al. Mar 2000 A
6035661 Sunaga et al. Mar 2000 A
6038871 Gutierrez et al. Mar 2000 A
6041605 Heinrichs Mar 2000 A
6041609 Hornsleth et al. Mar 2000 A
6041856 Thrasher et al. Mar 2000 A
6042344 Lifson Mar 2000 A
6044062 Brownrigg et al. Mar 2000 A
6047557 Pham et al. Apr 2000 A
6050098 Meyer et al. Apr 2000 A
6050780 Hasegawa et al. Apr 2000 A
6052731 Holdsworth et al. Apr 2000 A
6057771 Lakra May 2000 A
6065946 Lathrop May 2000 A
6068447 Foege May 2000 A
6070110 Shah et al. May 2000 A
6075530 Lucas et al. Jun 2000 A
6077051 Centers et al. Jun 2000 A
6081750 Hoffberg et al. Jun 2000 A
6082495 Steinbarger et al. Jul 2000 A
6082971 Gunn et al. Jul 2000 A
6085530 Barito Jul 2000 A
6088659 Kelley et al. Jul 2000 A
6088688 Crooks et al. Jul 2000 A
6092370 Tremoulet, Jr. et al. Jul 2000 A
6092378 Das et al. Jul 2000 A
6092992 Imblum et al. Jul 2000 A
6095674 Verissimo et al. Aug 2000 A
6098893 Berglund et al. Aug 2000 A
6102665 Centers et al. Aug 2000 A
6110260 Kubokawa Aug 2000 A
6119949 Lindstrom Sep 2000 A
6122603 Budike, Jr. Sep 2000 A
6125642 Seener et al. Oct 2000 A
6128583 Dowling Oct 2000 A
6128953 Mizukoshi Oct 2000 A
6129527 Donahoe et al. Oct 2000 A
6138461 Park et al. Oct 2000 A
6142741 Nishihata et al. Nov 2000 A
6144888 Lucas et al. Nov 2000 A
6145328 Choi Nov 2000 A
6147601 Sandelman et al. Nov 2000 A
6152375 Robison Nov 2000 A
6152376 Sandelman et al. Nov 2000 A
6153942 Roseman et al. Nov 2000 A
6153993 Oomura et al. Nov 2000 A
6154488 Hunt Nov 2000 A
6157310 Milne et al. Dec 2000 A
6158230 Katsuki Dec 2000 A
6160477 Sandelman et al. Dec 2000 A
6169979 Johnson Jan 2001 B1
6172476 Tolbert, Jr. et al. Jan 2001 B1
6174136 Kilayko et al. Jan 2001 B1
6176683 Yang Jan 2001 B1
6176686 Wallis et al. Jan 2001 B1
6177884 Hunt et al. Jan 2001 B1
6178362 Woolard et al. Jan 2001 B1
6179214 Key et al. Jan 2001 B1
6181033 Wright Jan 2001 B1
6190442 Redner Feb 2001 B1
6191545 Kawabata et al. Feb 2001 B1
6192282 Smith et al. Feb 2001 B1
6199018 Quist et al. Mar 2001 B1
6211782 Sandelman et al. Apr 2001 B1
6213731 Doepker et al. Apr 2001 B1
6215405 Handley et al. Apr 2001 B1
6216956 Ehlers et al. Apr 2001 B1
6218953 Petite Apr 2001 B1
6223543 Sandelman May 2001 B1
6223544 Seem May 2001 B1
6228155 Tai May 2001 B1
6230501 Bailey, Sr. et al. May 2001 B1
6233327 Petite May 2001 B1
6234019 Caldeira May 2001 B1
6240733 Brandon et al. Jun 2001 B1
6240736 Fujita et al. Jun 2001 B1
6244061 Takagi et al. Jun 2001 B1
6249516 Brownrigg et al. Jun 2001 B1
6260004 Hays et al. Jul 2001 B1
6266968 Redlich Jul 2001 B1
6268664 Rolls et al. Jul 2001 B1
6272868 Grabon et al. Aug 2001 B1
6276901 Farr et al. Aug 2001 B1
6279332 Yeo et al. Aug 2001 B1
6290043 Ginder et al. Sep 2001 B1
6293114 Kamemoto Sep 2001 B1
6293767 Bass Sep 2001 B1
6302654 Millet et al. Oct 2001 B1
6304934 Pimenta et al. Oct 2001 B1
6320275 Okamoto et al. Nov 2001 B1
6324854 Jayanth Dec 2001 B1
6327541 Pitchford et al. Dec 2001 B1
6332327 Street et al. Dec 2001 B1
6334093 More Dec 2001 B1
6349883 Simmons et al. Feb 2002 B1
6350111 Perevozchikov et al. Feb 2002 B1
6359410 Randolph Mar 2002 B1
6360551 Renders Mar 2002 B1
6366889 Zaloom Apr 2002 B1
6368065 Hugenroth et al. Apr 2002 B1
6375439 Missio Apr 2002 B1
6378315 Gelber et al. Apr 2002 B1
6381971 Honda May 2002 B2
6385510 Hoog et al. May 2002 B1
6389823 Loprete et al. May 2002 B1
6390779 Cunkelman May 2002 B1
6391102 Bodden et al. May 2002 B1
6393848 Roh et al. May 2002 B2
6397606 Roh et al. Jun 2002 B1
6397612 Kernkamp et al. Jun 2002 B1
6406265 Hahn et al. Jun 2002 B1
6406266 Hugenroth et al. Jun 2002 B1
6408228 Seem et al. Jun 2002 B1
6408258 Richer Jun 2002 B1
6412293 Pham et al. Jul 2002 B1
6414594 Guerlain Jul 2002 B1
6430268 Petite Aug 2002 B1
6433791 Selli et al. Aug 2002 B2
6437691 Sandelman et al. Aug 2002 B1
6437692 Petite et al. Aug 2002 B1
6438981 Whiteside Aug 2002 B1
6442953 Trigiani et al. Sep 2002 B1
6449972 Pham et al. Sep 2002 B2
6450771 Centers et al. Sep 2002 B1
6451210 Sivavec et al. Sep 2002 B1
6453687 Sharood et al. Sep 2002 B2
6454177 Sasao et al. Sep 2002 B1
6454538 Witham et al. Sep 2002 B1
6456928 Johnson Sep 2002 B1
6457319 Ota et al. Oct 2002 B1
6457948 Pham Oct 2002 B1
6460731 Estelle et al. Oct 2002 B2
6462654 Sandelman et al. Oct 2002 B1
6463747 Temple Oct 2002 B1
6466971 Humpleman et al. Oct 2002 B1
6467280 Pham et al. Oct 2002 B2
6471486 Centers et al. Oct 2002 B1
6474084 Gauthier et al. Nov 2002 B2
6484520 Kawaguchi et al. Nov 2002 B2
6487457 Hull et al. Nov 2002 B1
6490506 March Dec 2002 B1
6492923 Inoue et al. Dec 2002 B1
6497554 Yang et al. Dec 2002 B2
6501240 Ueda et al. Dec 2002 B2
6501629 Marriott Dec 2002 B1
6502409 Gatling et al. Jan 2003 B1
6505087 Lucas et al. Jan 2003 B1
6505475 Zugibe et al. Jan 2003 B1
6510350 Steen, III et al. Jan 2003 B1
6522974 Sitton Feb 2003 B2
6523130 Hickman et al. Feb 2003 B1
6526766 Hiraoka et al. Mar 2003 B1
6529590 Centers Mar 2003 B1
6529839 Uggerud et al. Mar 2003 B1
6533552 Centers et al. Mar 2003 B2
6535123 Sandelman et al. Mar 2003 B2
6535270 Murayama Mar 2003 B1
6535859 Yablonowski et al. Mar 2003 B1
6537034 Park et al. Mar 2003 B2
6542062 Herrick Apr 2003 B1
6549135 Singh et al. Apr 2003 B2
6551069 Narney, II et al. Apr 2003 B2
6553774 Ishio et al. Apr 2003 B1
6558126 Hahn et al. May 2003 B1
6560976 Jayanth May 2003 B2
6571280 Hubacher May 2003 B1
6571566 Temple et al. Jun 2003 B1
6571586 Ritson et al. Jun 2003 B1
6574561 Alexander et al. Jun 2003 B2
6577959 Chajec et al. Jun 2003 B1
6577962 Afshari Jun 2003 B1
6578373 Barbier Jun 2003 B1
6583720 Quigley Jun 2003 B1
6589029 Heller Jul 2003 B1
6591620 Kikuchi et al. Jul 2003 B2
6595475 Svabek et al. Jul 2003 B2
6595757 Shen Jul 2003 B2
6598056 Hull et al. Jul 2003 B1
6601397 Pham et al. Aug 2003 B2
6604093 Etzion et al. Aug 2003 B1
6609070 Lueck Aug 2003 B1
6609078 Starling et al. Aug 2003 B2
6615594 Jayanth et al. Sep 2003 B2
6616415 Renken et al. Sep 2003 B1
6618578 Petite Sep 2003 B1
6618709 Sneeringer Sep 2003 B1
6621443 Selli et al. Sep 2003 B1
6622925 Carner et al. Sep 2003 B2
6622926 Sartain et al. Sep 2003 B1
6628764 Petite Sep 2003 B1
6629420 Renders Oct 2003 B2
6630749 Takagi et al. Oct 2003 B1
6631298 Pagnano et al. Oct 2003 B1
6636893 Fong Oct 2003 B1
6643567 Kolk et al. Nov 2003 B2
6644848 Clayton et al. Nov 2003 B1
6647735 Street et al. Nov 2003 B2
6658345 Miller Dec 2003 B2
6658373 Rossi et al. Dec 2003 B2
6662584 Whiteside Dec 2003 B1
6662653 Scaliante et al. Dec 2003 B1
6671586 Davis et al. Dec 2003 B2
6672846 Rajendran et al. Jan 2004 B2
6675591 Singh et al. Jan 2004 B2
6679072 Pham et al. Jan 2004 B2
6681582 Suzuki et al. Jan 2004 B2
6684349 Gullo et al. Jan 2004 B2
6685438 Yoo et al. Feb 2004 B2
6698218 Goth et al. Mar 2004 B2
6701725 Rossi et al. Mar 2004 B2
6708083 Orthlieb et al. Mar 2004 B2
6708508 Demuth et al. Mar 2004 B2
6709244 Pham Mar 2004 B2
6711470 Hartenstein et al. Mar 2004 B1
6711911 Grabon et al. Mar 2004 B1
6717513 Sandelman et al. Apr 2004 B1
6721770 Morton et al. Apr 2004 B1
6725182 Pagnano et al. Apr 2004 B2
6732538 Trigiani et al. May 2004 B2
6745107 Miller Jun 2004 B1
6747557 Petite et al. Jun 2004 B1
6757665 Unsworth Jun 2004 B1
6758050 Jayanth et al. Jul 2004 B2
6758051 Jayanth et al. Jul 2004 B2
6760207 Wyatt et al. Jul 2004 B2
6772096 Murakami et al. Aug 2004 B2
6772598 Rinehart Aug 2004 B1
6775995 Bahel et al. Aug 2004 B1
6784807 Petite et al. Aug 2004 B2
6785592 Smith et al. Aug 2004 B1
6786473 Alles Sep 2004 B1
6799951 Lifson et al. Oct 2004 B2
6804993 Selli Oct 2004 B2
6811380 Kim Nov 2004 B2
6813897 Bash et al. Nov 2004 B1
6816811 Seem Nov 2004 B2
6823680 Jayanth Nov 2004 B2
6829542 Reynolds et al. Dec 2004 B1
6832120 Frank et al. Dec 2004 B1
6832898 Yoshida et al. Dec 2004 B2
6836737 Petite et al. Dec 2004 B2
6837922 Gorin Jan 2005 B2
6839790 Barros De Almeida et al. Jan 2005 B2
6854345 Alves et al. Feb 2005 B2
6862498 Davis et al. Mar 2005 B2
6868678 Mei et al. Mar 2005 B2
6868686 Ueda et al. Mar 2005 B2
6869272 Odachi et al. Mar 2005 B2
6870486 Souza et al. Mar 2005 B2
6885949 Selli Apr 2005 B2
6889173 Singh May 2005 B2
6891838 Petite et al. May 2005 B1
6892546 Singh et al. May 2005 B2
6897772 Scheffler et al. May 2005 B1
6900738 Crichlow May 2005 B2
6901066 Helgeson May 2005 B1
6904385 Budike, Jr. Jun 2005 B1
6914533 Petite Jul 2005 B2
6914893 Petite Jul 2005 B2
6922155 Evans et al. Jul 2005 B1
6931445 Davis Aug 2005 B2
6934862 Sharood et al. Aug 2005 B2
6952658 Greulich et al. Oct 2005 B2
6953630 Wells Oct 2005 B2
6956344 Robertson et al. Oct 2005 B2
6964558 Hahn et al. Nov 2005 B2
6966759 Hahn et al. Nov 2005 B2
6968295 Carr Nov 2005 B1
6973410 Seigel Dec 2005 B2
6973793 Douglas et al. Dec 2005 B2
6973794 Street et al. Dec 2005 B2
6976366 Starling et al. Dec 2005 B2
6978225 Retlich et al. Dec 2005 B2
6981384 Dobmeier et al. Jan 2006 B2
6983321 Trinon et al. Jan 2006 B2
6983889 Alles Jan 2006 B2
6986469 Gauthier et al. Jan 2006 B2
6987450 Marino et al. Jan 2006 B2
6990821 Singh et al. Jan 2006 B2
6992452 Sachs et al. Jan 2006 B1
6996441 Tobias Feb 2006 B1
6997390 Alles Feb 2006 B2
6998807 Phillips et al. Feb 2006 B2
6998963 Flen et al. Feb 2006 B2
6999996 Sunderland Feb 2006 B2
7000422 Street et al. Feb 2006 B2
7003378 Poth Feb 2006 B2
7009510 Douglass et al. Mar 2006 B1
7010925 Sienel et al. Mar 2006 B2
7019667 Petite et al. Mar 2006 B2
7024665 Ferraz et al. Apr 2006 B2
7024870 Singh et al. Apr 2006 B2
7030752 Tyroler Apr 2006 B2
7031880 Seem et al. Apr 2006 B1
7035693 Cassiolato et al. Apr 2006 B2
7039532 Hunter May 2006 B2
7042180 Terry et al. May 2006 B2
7042350 Patrick et al. May 2006 B2
7043339 Maeda et al. May 2006 B2
7043459 Peevey May 2006 B2
7047753 Street et al. May 2006 B2
7053766 Fisler et al. May 2006 B2
7053767 Petite et al. May 2006 B2
7054271 Brownrigg et al. May 2006 B2
7062580 Donaires Jun 2006 B2
7062830 Alles Jun 2006 B2
7063537 Selli et al. Jun 2006 B2
7072797 Gorinevsky Jul 2006 B2
7075327 Dimino et al. Jul 2006 B2
7079810 Petite et al. Jul 2006 B2
7079967 Rossi et al. Jul 2006 B2
7082380 Wiebe et al. Jul 2006 B2
7089125 Sonderegger Aug 2006 B2
7091847 Capowski et al. Aug 2006 B2
7092767 Pagnano et al. Aug 2006 B2
7092794 Hill et al. Aug 2006 B1
7096153 Guralnik et al. Aug 2006 B2
7102490 Flen et al. Sep 2006 B2
7103511 Petite Sep 2006 B2
7110843 Pagnano et al. Sep 2006 B2
7110898 Montijo et al. Sep 2006 B2
7113376 Nomura et al. Sep 2006 B2
7114343 Kates Oct 2006 B2
7123020 Hill et al. Oct 2006 B2
7123458 Mohr et al. Oct 2006 B2
7124728 Carey et al. Oct 2006 B2
7126465 Faltesek Oct 2006 B2
7130170 Wakefield et al. Oct 2006 B2
7130832 Bannai et al. Oct 2006 B2
7134295 Maekawa Nov 2006 B2
7137550 Petite Nov 2006 B1
7142125 Larson et al. Nov 2006 B2
7145438 Flen et al. Dec 2006 B2
7145462 Dewing et al. Dec 2006 B2
7159408 Sadegh et al. Jan 2007 B2
7162884 Alles Jan 2007 B2
7163158 Rossi et al. Jan 2007 B2
7171372 Daniel et al. Jan 2007 B2
7174728 Jayanth Feb 2007 B2
7180412 Bonicatto et al. Feb 2007 B2
7184861 Petite Feb 2007 B2
7188482 Sadegh et al. Mar 2007 B2
7188779 Alles Mar 2007 B2
7201006 Kates Apr 2007 B2
7207496 Alles Apr 2007 B2
7209840 Petite et al. Apr 2007 B2
7212887 Shah et al. May 2007 B2
7222493 Jayanth et al. May 2007 B2
7224740 Hunt May 2007 B2
7225193 Mets et al. May 2007 B2
7227450 Garvy et al. Jun 2007 B2
7228691 Street et al. Jun 2007 B2
7230528 Kates Jun 2007 B2
7234313 Bell et al. Jun 2007 B2
7236765 Bonicatto et al. Jun 2007 B2
7244294 Kates Jul 2007 B2
7246014 Forth et al. Jul 2007 B2
7255285 Troost et al. Aug 2007 B2
7257501 Zhan et al. Aug 2007 B2
7260505 Felke et al. Aug 2007 B2
7261762 Kang et al. Aug 2007 B2
7263073 Petite et al. Aug 2007 B2
7263446 Morin et al. Aug 2007 B2
7266812 Pagnano Sep 2007 B2
7270278 Street et al. Sep 2007 B2
7274995 Zhan et al. Sep 2007 B2
7275377 Kates Oct 2007 B2
7286945 Zhan et al. Oct 2007 B2
7290398 Wallace et al. Nov 2007 B2
7290989 Jayanth Nov 2007 B2
7295128 Petite Nov 2007 B2
7295896 Norbeck Nov 2007 B2
7317952 Bhandiwad et al. Jan 2008 B2
7328192 Stengard et al. Feb 2008 B1
7330886 Childers et al. Feb 2008 B2
7331187 Kates Feb 2008 B2
7336168 Kates Feb 2008 B2
7337191 Haeberle et al. Feb 2008 B2
7343750 Lifson et al. Mar 2008 B2
7343751 Kates Mar 2008 B2
7346463 Petite et al. Mar 2008 B2
7346472 Moskowitz et al. Mar 2008 B1
7349824 Seigel Mar 2008 B2
7350112 Fox et al. Mar 2008 B2
7351274 Helt et al. Apr 2008 B2
7352545 Wyatt et al. Apr 2008 B2
7363200 Lu Apr 2008 B2
7376712 Granatelli et al. May 2008 B1
7377118 Esslinger May 2008 B2
7383030 Brown et al. Jun 2008 B2
7383158 Krocker et al. Jun 2008 B2
7392661 Alles Jul 2008 B2
7397907 Petite Jul 2008 B2
7400240 Shrode et al. Jul 2008 B2
7412842 Pham Aug 2008 B2
7414525 Costea et al. Aug 2008 B2
7421351 Navratil Sep 2008 B2
7421374 Zhan et al. Sep 2008 B2
7421850 Street et al. Sep 2008 B2
7424343 Kates Sep 2008 B2
7424345 Norbeck Sep 2008 B2
7424527 Petite Sep 2008 B2
7432824 Flen et al. Oct 2008 B2
7433854 Joseph et al. Oct 2008 B2
7434742 Mueller et al. Oct 2008 B2
7437150 Morelli et al. Oct 2008 B1
7440560 Barry Oct 2008 B1
7440767 Ballay et al. Oct 2008 B2
7443313 Davis et al. Oct 2008 B2
7444251 Nikovski et al. Oct 2008 B2
7445665 Hsieh et al. Nov 2008 B2
7447603 Bruno Nov 2008 B2
7447609 Guralnik et al. Nov 2008 B2
7451606 Harrod Nov 2008 B2
7454439 Gansner et al. Nov 2008 B1
7458223 Pham Dec 2008 B2
7468661 Petite et al. Dec 2008 B2
7469546 Kates Dec 2008 B2
7474992 Ariyur Jan 2009 B2
7480501 Petite Jan 2009 B2
7483810 Jackson et al. Jan 2009 B2
7484376 Pham Feb 2009 B2
7490477 Singh et al. Feb 2009 B2
7491034 Jayanth Feb 2009 B2
7503182 Bahel et al. Mar 2009 B2
7510126 Rossi et al. Mar 2009 B2
7523619 Kojima et al. Apr 2009 B2
7528711 Kates May 2009 B2
7533070 Guralnik et al. May 2009 B2
7537172 Rossi et al. May 2009 B2
7552030 Guralnik et al. Jun 2009 B2
7552596 Galante et al. Jun 2009 B2
7555364 Poth et al. Jun 2009 B2
7574333 Lu Aug 2009 B2
7580812 Ariyur et al. Aug 2009 B2
7594407 Singh et al. Sep 2009 B2
7596959 Singh et al. Oct 2009 B2
7606683 Bahel et al. Oct 2009 B2
7631508 Braun et al. Dec 2009 B2
7636901 Munson et al. Dec 2009 B2
7644591 Singh et al. Jan 2010 B2
7648077 Rossi et al. Jan 2010 B2
7648342 Jayanth Jan 2010 B2
7650425 Davis et al. Jan 2010 B2
7660700 Moskowitz et al. Feb 2010 B2
7660774 Mukherjee et al. Feb 2010 B2
7664613 Hansen Feb 2010 B2
7665315 Singh et al. Feb 2010 B2
7686872 Kang Mar 2010 B2
7693809 Gray Apr 2010 B2
7697492 Petite Apr 2010 B2
7703694 Mueller et al. Apr 2010 B2
7704052 Iimura et al. Apr 2010 B2
7706320 Davis et al. Apr 2010 B2
7724131 Chen May 2010 B2
7726583 Maekawa Jun 2010 B2
7734451 MacArthur et al. Jun 2010 B2
7738999 Petite Jun 2010 B2
7739378 Petite Jun 2010 B2
7742393 Bonicatto et al. Jun 2010 B2
7752853 Singh et al. Jul 2010 B2
7752854 Singh et al. Jul 2010 B2
7756086 Petite et al. Jul 2010 B2
7791468 Bonicatto et al. Sep 2010 B2
7844366 Singh Nov 2010 B2
7845179 Singh et al. Dec 2010 B2
7848827 Chen Dec 2010 B2
7848900 Steinberg et al. Dec 2010 B2
7877218 Bonicatto et al. Jan 2011 B2
7878006 Pham Feb 2011 B2
7885959 Horowitz et al. Feb 2011 B2
7885961 Horowitz et al. Feb 2011 B2
7905098 Pham Mar 2011 B2
7908116 Steinberg et al. Mar 2011 B2
7908117 Steinberg et al. Mar 2011 B2
7922914 Verdegan et al. Apr 2011 B1
7937623 Ramacher et al. May 2011 B2
7941294 Shahi et al. May 2011 B2
7949494 Moskowitz et al. May 2011 B2
7949615 Ehlers et al. May 2011 B2
7963454 Sullivan et al. Jun 2011 B2
7966152 Stluka et al. Jun 2011 B2
7967218 Alles Jun 2011 B2
7978059 Petite et al. Jul 2011 B2
7987679 Tanaka et al. Aug 2011 B2
7996045 Bauer et al. Aug 2011 B1
7999668 Cawthorne et al. Aug 2011 B2
8000314 Brownrigg et al. Aug 2011 B2
8002199 Habegger Aug 2011 B2
8005640 Chiefetz et al. Aug 2011 B2
8010237 Cheung et al. Aug 2011 B2
8013732 Petite et al. Sep 2011 B2
8018182 Roehm et al. Sep 2011 B2
8019567 Steinberg et al. Sep 2011 B2
8029608 Breslin Oct 2011 B1
8031455 Paik et al. Oct 2011 B2
8031650 Petite et al. Oct 2011 B2
8034170 Kates Oct 2011 B2
8036844 Ling et al. Oct 2011 B2
8040231 Kuruvila et al. Oct 2011 B2
8041539 Guralnik et al. Oct 2011 B2
8046107 Zugibe et al. Oct 2011 B2
8061417 Gray Nov 2011 B2
8064412 Petite Nov 2011 B2
8065886 Singh et al. Nov 2011 B2
8068997 Ling et al. Nov 2011 B2
8090477 Steinberg Jan 2012 B1
8090559 Parthasarathy et al. Jan 2012 B2
8090824 Tran et al. Jan 2012 B2
8095337 Kolbet et al. Jan 2012 B2
8108200 Anne et al. Jan 2012 B2
8125230 Bharadwaj et al. Feb 2012 B2
8131497 Steinberg et al. Mar 2012 B2
8131506 Steinberg et al. Mar 2012 B2
8134330 Alles Mar 2012 B2
8150720 Singh et al. Apr 2012 B2
8156208 Bornhoevd et al. Apr 2012 B2
8160827 Jayanth et al. Apr 2012 B2
8170968 Colclough et al. May 2012 B2
8171136 Petite May 2012 B2
8175846 Khalak et al. May 2012 B2
8180492 Steinberg May 2012 B2
8182579 Woo et al. May 2012 B2
8214175 Moskowitz et al. Jul 2012 B2
8228648 Jayanth et al. Jul 2012 B2
8239922 Sullivan et al. Aug 2012 B2
8258763 Nakamura et al. Sep 2012 B2
8279565 Hall et al. Oct 2012 B2
8280536 Fadell et al. Oct 2012 B1
8328524 Iimura et al. Dec 2012 B2
8335657 Jayanth et al. Dec 2012 B2
8380556 Singh et al. Feb 2013 B2
8393169 Pham Mar 2013 B2
8625244 Paik et al. Jan 2014 B2
9046900 Kates Jun 2015 B2
9168315 Scaringe et al. Oct 2015 B1
9304521 Kates Apr 2016 B2
9310094 Kates Apr 2016 B2
9310439 Pham et al. Apr 2016 B2
9690307 Kates Jun 2017 B2
9765979 Alsaleem et al. Sep 2017 B2
20010005320 Ueda et al. Jun 2001 A1
20010023596 Fujita et al. Sep 2001 A1
20010025349 Sharood et al. Sep 2001 A1
20010054291 Roh et al. Dec 2001 A1
20010054293 Gustafson et al. Dec 2001 A1
20010054294 Tsuboi Dec 2001 A1
20020000092 Sharood et al. Jan 2002 A1
20020013679 Petite Jan 2002 A1
20020016639 Smith et al. Feb 2002 A1
20020017057 Weder Feb 2002 A1
20020018724 Millet et al. Feb 2002 A1
20020020175 Street et al. Feb 2002 A1
20020029575 Okamoto Mar 2002 A1
20020031101 Petite et al. Mar 2002 A1
20020035495 Spira et al. Mar 2002 A1
20020040280 Morgan Apr 2002 A1
20020059803 Jayanth May 2002 A1
20020064463 Park et al. May 2002 A1
20020067999 Suitou et al. Jun 2002 A1
20020082747 Kramer Jun 2002 A1
20020082924 Koether Jun 2002 A1
20020093259 Sunaga et al. Jul 2002 A1
20020095269 Natalini et al. Jul 2002 A1
20020103655 Boies et al. Aug 2002 A1
20020108384 Higashiyama Aug 2002 A1
20020113877 Welch Aug 2002 A1
20020117992 Hirono et al. Aug 2002 A1
20020118106 Brenn Aug 2002 A1
20020127120 Hahn et al. Sep 2002 A1
20020138217 Shen et al. Sep 2002 A1
20020139128 Suzuki et al. Oct 2002 A1
20020143482 Karanam et al. Oct 2002 A1
20020152298 Kikta et al. Oct 2002 A1
20020157408 Egawa et al. Oct 2002 A1
20020157409 Pham et al. Oct 2002 A1
20020159890 Kajiwara et al. Oct 2002 A1
20020161545 Starling et al. Oct 2002 A1
20020163436 Singh et al. Nov 2002 A1
20020170299 Jayanth et al. Nov 2002 A1
20020173929 Seigel Nov 2002 A1
20020187057 Loprete et al. Dec 2002 A1
20020189267 Singh et al. Dec 2002 A1
20020193890 Pouchak Dec 2002 A1
20020198629 Ellis Dec 2002 A1
20030004660 Hunter Jan 2003 A1
20030004765 Wiegand Jan 2003 A1
20030005710 Singh et al. Jan 2003 A1
20030006884 Hunt Jan 2003 A1
20030014218 Trigiani et al. Jan 2003 A1
20030019221 Rossi et al. Jan 2003 A1
20030036810 Petite Feb 2003 A1
20030037555 Street et al. Feb 2003 A1
20030050737 Osann Mar 2003 A1
20030050824 Suermondt et al. Mar 2003 A1
20030051490 Jayanth Mar 2003 A1
20030055603 Rossi et al. Mar 2003 A1
20030055663 Struble Mar 2003 A1
20030061825 Sullivan Apr 2003 A1
20030063983 Ancel et al. Apr 2003 A1
20030070438 Kikuchi et al. Apr 2003 A1
20030070544 Mulvaney et al. Apr 2003 A1
20030074285 Hoffman et al. Apr 2003 A1
20030077179 Collins et al. Apr 2003 A1
20030078677 Hull et al. Apr 2003 A1
20030078742 VanderZee et al. Apr 2003 A1
20030089493 Takano et al. May 2003 A1
20030094004 Pham et al. May 2003 A1
20030108430 Yoshida et al. Jun 2003 A1
20030115890 Jayanth et al. Jun 2003 A1
20030135786 Vollmar et al. Jul 2003 A1
20030137396 Durej et al. Jul 2003 A1
20030150924 Peter Aug 2003 A1
20030150926 Rosen Aug 2003 A1
20030150927 Rosen Aug 2003 A1
20030171851 Brickfield et al. Sep 2003 A1
20030183085 Alexander Oct 2003 A1
20030191606 Fujiyama et al. Oct 2003 A1
20030199247 Striemer Oct 2003 A1
20030205143 Cheng Nov 2003 A1
20030213256 Ueda et al. Nov 2003 A1
20030213851 Burd et al. Nov 2003 A1
20030216837 Reich et al. Nov 2003 A1
20030216888 Ridolfo Nov 2003 A1
20030233172 Granqvist et al. Dec 2003 A1
20040016241 Street et al. Jan 2004 A1
20040016244 Street et al. Jan 2004 A1
20040016251 Street et al. Jan 2004 A1
20040016253 Street et al. Jan 2004 A1
20040019584 Greening et al. Jan 2004 A1
20040024495 Sunderland Feb 2004 A1
20040026522 Keen et al. Feb 2004 A1
20040037706 Hahn et al. Feb 2004 A1
20040042904 Kim Mar 2004 A1
20040047406 Hunt Mar 2004 A1
20040049715 Jaw Mar 2004 A1
20040059691 Higgins Mar 2004 A1
20040068390 Saunders Apr 2004 A1
20040078695 Bowers et al. Apr 2004 A1
20040079093 Gauthier et al. Apr 2004 A1
20040093879 Street et al. May 2004 A1
20040095237 Chen et al. May 2004 A1
20040111186 Rossi et al. Jun 2004 A1
20040117166 Cassiolato Jun 2004 A1
20040133314 Ehlers et al. Jul 2004 A1
20040133367 Hart Jul 2004 A1
20040140772 Gullo et al. Jul 2004 A1
20040140812 Scallante et al. Jul 2004 A1
20040144106 Douglas et al. Jul 2004 A1
20040153437 Buchan Aug 2004 A1
20040159113 Singh et al. Aug 2004 A1
20040159114 Demuth et al. Aug 2004 A1
20040183687 Petite et al. Sep 2004 A1
20040184627 Kost et al. Sep 2004 A1
20040184928 Millet et al. Sep 2004 A1
20040184929 Millet et al. Sep 2004 A1
20040184930 Millet et al. Sep 2004 A1
20040184931 Millet et al. Sep 2004 A1
20040187502 Jayanth et al. Sep 2004 A1
20040191073 Iimura et al. Sep 2004 A1
20040199480 Unsworth et al. Oct 2004 A1
20040210419 Wiebe et al. Oct 2004 A1
20040213384 Alles et al. Oct 2004 A1
20040230582 Pagnano et al. Nov 2004 A1
20040230899 Pagnano et al. Nov 2004 A1
20040239266 Lee et al. Dec 2004 A1
20040258542 Wiertz et al. Dec 2004 A1
20040261431 Singh et al. Dec 2004 A1
20050040249 Wacker et al. Feb 2005 A1
20050043923 Forster et al. Feb 2005 A1
20050053471 Hong et al. Mar 2005 A1
20050056031 Jeong Mar 2005 A1
20050066675 Manole et al. Mar 2005 A1
20050073532 Scott et al. Apr 2005 A1
20050086341 Enga et al. Apr 2005 A1
20050100449 Hahn et al. May 2005 A1
20050103036 Maekawa May 2005 A1
20050125439 Nourbakhsh et al. Jun 2005 A1
20050126190 Lifson et al. Jun 2005 A1
20050131624 Gaessler et al. Jun 2005 A1
20050149570 Sasaki et al. Jul 2005 A1
20050154495 Shah Jul 2005 A1
20050159924 Shah et al. Jul 2005 A1
20050166610 Jayanth Aug 2005 A1
20050169636 Aronson et al. Aug 2005 A1
20050172647 Thybo et al. Aug 2005 A1
20050188842 Hsieh et al. Sep 2005 A1
20050195775 Petite et al. Sep 2005 A1
20050196285 Jayanth Sep 2005 A1
20050198063 Thomas et al. Sep 2005 A1
20050201397 Petite Sep 2005 A1
20050204756 Dobmeier et al. Sep 2005 A1
20050207741 Shah et al. Sep 2005 A1
20050214148 Ogawa et al. Sep 2005 A1
20050222715 Ruhnke et al. Oct 2005 A1
20050228607 Simons Oct 2005 A1
20050229612 Hrejsa et al. Oct 2005 A1
20050229777 Brown et al. Oct 2005 A1
20050232781 Herbert et al. Oct 2005 A1
20050235660 Pham Oct 2005 A1
20050235661 Pham Oct 2005 A1
20050235662 Pham Oct 2005 A1
20050235663 Pham Oct 2005 A1
20050235664 Pham Oct 2005 A1
20050247194 Kang et al. Nov 2005 A1
20050251293 Seigel Nov 2005 A1
20050252220 Street et al. Nov 2005 A1
20050262856 Street et al. Dec 2005 A1
20050262923 Kates Dec 2005 A1
20050279110 Zeng et al. Dec 2005 A1
20060010898 Suharno et al. Jan 2006 A1
20060015777 Loda Jan 2006 A1
20060020426 Singh Jan 2006 A1
20060021362 Sadegh et al. Feb 2006 A1
20060032245 Kates Feb 2006 A1
20060032246 Kates Feb 2006 A1
20060032247 Kates Feb 2006 A1
20060032248 Kates Feb 2006 A1
20060032379 Kates Feb 2006 A1
20060036349 Kates Feb 2006 A1
20060041335 Rossi et al. Feb 2006 A9
20060042276 Doll et al. Mar 2006 A1
20060071089 Kates Apr 2006 A1
20060071666 Unsworth et al. Apr 2006 A1
20060074917 Chand et al. Apr 2006 A1
20060097063 Zeevi May 2006 A1
20060098576 Brownrigg et al. May 2006 A1
20060117767 Mowris Jun 2006 A1
20060117773 Street et al. Jun 2006 A1
20060123807 Sullivan et al. Jun 2006 A1
20060129339 Bruno Jun 2006 A1
20060130500 Gauthier et al. Jun 2006 A1
20060137364 Braun et al. Jun 2006 A1
20060137368 Kang et al. Jun 2006 A1
20060138866 Bergmann et al. Jun 2006 A1
20060140209 Cassiolato et al. Jun 2006 A1
20060151037 Lepola et al. Jul 2006 A1
20060179854 Esslinger Aug 2006 A1
20060182635 Jayanth Aug 2006 A1
20060185373 Butler et al. Aug 2006 A1
20060196196 Kates Sep 2006 A1
20060196197 Kates Sep 2006 A1
20060201168 Kates Sep 2006 A1
20060222507 Jayanth Oct 2006 A1
20060229739 Morikawa Oct 2006 A1
20060235650 Vinberg et al. Oct 2006 A1
20060238388 Jayanth Oct 2006 A1
20060242200 Horowitz et al. Oct 2006 A1
20060244641 Jayanth et al. Nov 2006 A1
20060256488 Benzing et al. Nov 2006 A1
20060259276 Rossi et al. Nov 2006 A1
20060271589 Horowitz et al. Nov 2006 A1
20060271623 Horowitz et al. Nov 2006 A1
20060280627 Jayanth Dec 2006 A1
20070002505 Watanabe et al. Jan 2007 A1
20070006124 Ahmed et al. Jan 2007 A1
20070027735 Rokos Feb 2007 A1
20070067512 Donaires et al. Mar 2007 A1
20070089434 Singh et al. Apr 2007 A1
20070089435 Singh et al. Apr 2007 A1
20070089438 Singh et al. Apr 2007 A1
20070089439 Singh et al. Apr 2007 A1
20070089440 Singh et al. Apr 2007 A1
20070101750 Pham et al. May 2007 A1
20070159978 Anglin et al. Jul 2007 A1
20070186569 Street et al. Aug 2007 A1
20070204635 Tanaka et al. Sep 2007 A1
20070204921 Alles Sep 2007 A1
20070205296 Bell et al. Sep 2007 A1
20070229305 Bonicatto et al. Oct 2007 A1
20070239894 Thind et al. Oct 2007 A1
20080000241 Larsen et al. Jan 2008 A1
20080015797 Kates Jan 2008 A1
20080016888 Kates Jan 2008 A1
20080033674 Nikovski et al. Feb 2008 A1
20080051945 Kates Feb 2008 A1
20080058970 Perumalsamy et al. Mar 2008 A1
20080078289 Sergi et al. Apr 2008 A1
20080109185 Cheung et al. May 2008 A1
20080110189 Alston et al. May 2008 A1
20080114569 Seigel May 2008 A1
20080121729 Gray May 2008 A1
20080183424 Seem Jul 2008 A1
20080186898 Petite Aug 2008 A1
20080209925 Pham Sep 2008 A1
20080216494 Pham et al. Sep 2008 A1
20080216495 Kates Sep 2008 A1
20080223051 Kates Sep 2008 A1
20080234869 Yonezawa et al. Sep 2008 A1
20080315000 Gorthala et al. Dec 2008 A1
20080319688 Kim Dec 2008 A1
20090007777 Cohen et al. Jan 2009 A1
20090030555 Gray Jan 2009 A1
20090037142 Kates Feb 2009 A1
20090038010 Ma et al. Feb 2009 A1
20090055465 DePue et al. Feb 2009 A1
20090057424 Sullivan et al. Mar 2009 A1
20090057428 Geadelmann et al. Mar 2009 A1
20090068947 Petite Mar 2009 A1
20090071175 Pham Mar 2009 A1
20090072985 Patel Mar 2009 A1
20090093916 Parsonnet et al. Apr 2009 A1
20090094998 McSweeney et al. Apr 2009 A1
20090096605 Petite et al. Apr 2009 A1
20090099699 Steinberg et al. Apr 2009 A1
20090106601 Ngai et al. Apr 2009 A1
20090112672 Flamig et al. Apr 2009 A1
20090114309 Sakai et al. May 2009 A1
20090119036 Jayanth et al. May 2009 A1
20090125151 Steinberg et al. May 2009 A1
20090125257 Jayanth et al. May 2009 A1
20090140880 Flen et al. Jun 2009 A1
20090151374 Kasahara Jun 2009 A1
20090187281 Kates Jul 2009 A1
20090215424 Petite Aug 2009 A1
20090229469 Campbell et al. Sep 2009 A1
20090241570 Kuribayashi et al. Oct 2009 A1
20090296832 Hunt Dec 2009 A1
20090324428 Tolbert, Jr. et al. Dec 2009 A1
20100006042 Pitonyak et al. Jan 2010 A1
20100011962 Totsugi Jan 2010 A1
20100017465 Brownrigg et al. Jan 2010 A1
20100039984 Brownrigg Feb 2010 A1
20100044449 Tessier Feb 2010 A1
20100070084 Steinberg et al. Mar 2010 A1
20100070234 Steinberg et al. Mar 2010 A1
20100070666 Brindle Mar 2010 A1
20100078493 Alles Apr 2010 A1
20100081357 Alles Apr 2010 A1
20100081372 Alles Apr 2010 A1
20100089076 Schuster et al. Apr 2010 A1
20100102136 Hadzidedic et al. Apr 2010 A1
20100111709 Jayanth May 2010 A1
20100168924 Tessier et al. Jul 2010 A1
20100169030 Parlos Jul 2010 A1
20100179703 Singh et al. Jul 2010 A1
20100191487 Rada et al. Jul 2010 A1
20100194582 Petite Aug 2010 A1
20100214709 Hall et al. Aug 2010 A1
20100217550 Crabtree et al. Aug 2010 A1
20100250054 Petite Sep 2010 A1
20100257410 Cottrell et al. Oct 2010 A1
20100262299 Cheung et al. Oct 2010 A1
20100265909 Petite et al. Oct 2010 A1
20100280667 Steinberg Nov 2010 A1
20100282857 Steinberg Nov 2010 A1
20100287489 Alles Nov 2010 A1
20100293397 Pham et al. Nov 2010 A1
20100305718 Clark et al. Dec 2010 A1
20100308119 Steinberg et al. Dec 2010 A1
20100312881 Davis et al. Dec 2010 A1
20100318227 Steinberg et al. Dec 2010 A1
20100330985 Addy Dec 2010 A1
20110004350 Cheifetz et al. Jan 2011 A1
20110022429 Yates et al. Jan 2011 A1
20110023045 Yates et al. Jan 2011 A1
20110023945 Hayashi et al. Feb 2011 A1
20110040785 Steenberg et al. Feb 2011 A1
20110042541 Spencer et al. Feb 2011 A1
20110045454 McManus et al. Feb 2011 A1
20110054842 Kates Mar 2011 A1
20110071960 Singh Mar 2011 A1
20110077896 Steinberg et al. Mar 2011 A1
20110083450 Turner et al. Apr 2011 A1
20110102159 Olson et al. May 2011 A1
20110103460 Bonicatto May 2011 A1
20110106471 Curtis et al. May 2011 A1
20110112814 Clark May 2011 A1
20110118905 Mylaraswamy et al. May 2011 A1
20110121952 Bonicatto et al. May 2011 A1
20110144932 Alles Jun 2011 A1
20110144944 Pham Jun 2011 A1
20110166828 Steinberg et al. Jul 2011 A1
20110181438 Millstein et al. Jul 2011 A1
20110184563 Foslien et al. Jul 2011 A1
20110185895 Freen Aug 2011 A1
20110190910 Lombard et al. Aug 2011 A1
20110212700 Petite Sep 2011 A1
20110218957 Coon et al. Sep 2011 A1
20110264324 Petite et al. Oct 2011 A1
20110264409 Jayanth et al. Oct 2011 A1
20110290893 Steinberg Dec 2011 A1
20110307103 Cheung et al. Dec 2011 A1
20110309953 Petite et al. Dec 2011 A1
20110310929 Petite et al. Dec 2011 A1
20110315019 Lyon et al. Dec 2011 A1
20110320050 Petite et al. Dec 2011 A1
20120005590 Lombard et al. Jan 2012 A1
20120047940 Junge et al. Mar 2012 A1
20120054242 Ferrara et al. Mar 2012 A1
20120065783 Fadell et al. Mar 2012 A1
20120065935 Steinberg et al. Mar 2012 A1
20120066168 Fadell et al. Mar 2012 A1
20120075092 Petite et al. Mar 2012 A1
20120092154 Petite Apr 2012 A1
20120125559 Fadell et al. May 2012 A1
20120125592 Fadell et al. May 2012 A1
20120126019 Warren et al. May 2012 A1
20120126020 Filson et al. May 2012 A1
20120126021 Warren et al. May 2012 A1
20120128025 Huppi et al. May 2012 A1
20120130546 Matas et al. May 2012 A1
20120130547 Fadell et al. May 2012 A1
20120130548 Fadell et al. May 2012 A1
20120130679 Fadell et al. May 2012 A1
20120131504 Fadell et al. May 2012 A1
20120143528 Kates Jun 2012 A1
20120179300 Warren et al. Jul 2012 A1
20120186774 Matsuoka et al. Jul 2012 A1
20120191257 Corcoran et al. Jul 2012 A1
20120199660 Warren et al. Aug 2012 A1
20120203379 Sloo et al. Aug 2012 A1
20120221150 Arensmeier Aug 2012 A1
20120229521 Hales, IV et al. Sep 2012 A1
20120232969 Fadell et al. Sep 2012 A1
20120233478 Mucignat et al. Sep 2012 A1
20120239207 Fadell et al. Sep 2012 A1
20120239221 Mighdoll et al. Sep 2012 A1
20120245968 Beaulieu et al. Sep 2012 A1
20120248210 Warren et al. Oct 2012 A1
20120248211 Warren et al. Oct 2012 A1
20120260804 Kates Oct 2012 A1
20120265491 Drummy Oct 2012 A1
20120265586 Mammone Oct 2012 A1
20120271673 Riley Oct 2012 A1
20120291629 Tylutki et al. Nov 2012 A1
20120318135 Hoglund et al. Dec 2012 A1
20120318137 Ragland et al. Dec 2012 A1
20130066479 Shetty et al. Mar 2013 A1
20130156607 Jayanth Jun 2013 A1
20130166231 Jayanth et al. Jun 2013 A1
20130174588 Pham Jul 2013 A1
20130176649 Wallis et al. Jul 2013 A1
20130182285 Matsuhara et al. Jul 2013 A1
20130287063 Kates Oct 2013 A1
20130294933 Pham Nov 2013 A1
20140000290 Kates Jan 2014 A1
20140000291 Kates Jan 2014 A1
20140000292 Kates Jan 2014 A1
20140000293 Kates Jan 2014 A1
20140000294 Kates Jan 2014 A1
20140012422 Kates Jan 2014 A1
20140069121 Pham Mar 2014 A1
20140074730 Arensmeier et al. Mar 2014 A1
20140084836 Pham et al. Mar 2014 A1
20140229014 Pham et al. Aug 2014 A1
20140260342 Pham Sep 2014 A1
20140260390 Pham Sep 2014 A1
20140262134 Arensmeier et al. Sep 2014 A1
20140266755 Arensmeier et al. Sep 2014 A1
20140297208 Arensmeier Oct 2014 A1
20140299289 Alsaleem et al. Oct 2014 A1
20150135748 Alsaleem et al. May 2015 A1
20150155701 Wallis et al. Jun 2015 A1
20150261230 Kates Sep 2015 A1
20150367463 Pham Dec 2015 A1
20160076536 Jayanth et al. Mar 2016 A1
20160223238 Kates Aug 2016 A1
20160226416 Pham et al. Aug 2016 A1
20170179709 Wallis et al. Jun 2017 A1
20170308072 Arensmeier Oct 2017 A1
Foreign Referenced Citations (158)
Number Date Country
1147440 May 1983 CA
1151265 Aug 1983 CA
2528778 Dec 2004 CA
2567264 Jul 2007 CA
173493 Nov 1934 CH
1133425 Oct 1996 CN
1169619 Jan 1998 CN
1297522 May 2001 CN
1354347 Jun 2002 CN
1356472 Jul 2002 CN
1654893 Aug 2005 CN
1742427 Mar 2006 CN
1906453 Jan 2007 CN
1922445 Feb 2007 CN
101048713 Oct 2007 CN
101124436 Feb 2008 CN
101156033 Apr 2008 CN
101270908 Sep 2008 CN
101361244 Feb 2009 CN
101466193 Jun 2009 CN
101506600 Aug 2009 CN
101802521 Aug 2010 CN
101821693 Sep 2010 CN
102354206 Feb 2012 CN
842351 Jun 1952 DE
764179 Apr 1953 DE
1144461 Feb 1963 DE
1403516 Oct 1968 DE
1403467 Oct 1969 DE
3118638 May 1982 DE
3133502 Jun 1982 DE
3508353 Sep 1985 DE
3422398 Dec 1985 DE
29723145 Apr 1998 DE
0008524 Mar 1980 EP
0060172 Sep 1982 EP
0085246 Aug 1983 EP
0124603 Nov 1984 EP
0254253 Jan 1988 EP
0346152 Dec 1989 EP
0351272 Jan 1990 EP
0351833 Jan 1990 EP
0355255 Feb 1990 EP
0361394 Apr 1990 EP
0398436 Nov 1990 EP
0410330 Jan 1991 EP
0419857 Apr 1991 EP
0432085 Jun 1991 EP
0453302 Oct 1991 EP
0479421 Apr 1992 EP
0557023 Aug 1993 EP
0579374 Jan 1994 EP
0660213 Jun 1995 EP
0747598 Dec 1996 EP
0877462 Nov 1998 EP
0982497 Mar 2000 EP
1008816 Jun 2000 EP
1087142 Mar 2001 EP
1087184 Mar 2001 EP
1138949 Oct 2001 EP
1139037 Oct 2001 EP
1187021 Mar 2002 EP
1209427 May 2002 EP
1241417 Sep 2002 EP
1245912 Oct 2002 EP
1245913 Oct 2002 EP
1393034 Mar 2004 EP
1435002 Jul 2004 EP
1487077 Dec 2004 EP
1541869 Jun 2005 EP
2180270 Apr 2010 EP
2472862 Jul 1981 FR
2582430 Nov 1986 FR
2589561 May 1987 FR
2628558 Sep 1989 FR
2660739 Oct 1991 FR
2062919 May 1981 GB
2064818 Jun 1981 GB
2075774 Nov 1981 GB
2116635 Sep 1983 GB
2229295 Sep 1990 GB
2347217 Aug 2000 GB
56010639 Feb 1981 JP
59145392 Aug 1984 JP
61046485 Mar 1986 JP
62116844 May 1987 JP
63061783 Mar 1988 JP
63302238 Dec 1988 JP
01014554 Jan 1989 JP
02110242 Apr 1990 JP
02294580 Dec 1990 JP
04080578 Mar 1992 JP
06058273 Mar 1994 JP
08021675 Jan 1996 JP
08087229 Apr 1996 JP
08284842 Oct 1996 JP
H08261541 Oct 1996 JP
2000350490 Dec 2000 JP
2002155868 May 2002 JP
2003018883 Jan 2003 JP
2003176788 Jun 2003 JP
2004316504 Nov 2004 JP
2005188790 Jul 2005 JP
2005241089 Sep 2005 JP
2005345096 Dec 2005 JP
2006046219 Feb 2006 JP
2006046519 Feb 2006 JP
2006274807 Oct 2006 JP
2009002651 Jan 2009 JP
2009229184 Oct 2009 JP
2010048433 Mar 2010 JP
1019980036844 Aug 1998 KR
1020000000261 Jan 2000 KR
102000002526 May 2000 KR
1020020041977 Jun 2002 KR
20030042857 Jun 2003 KR
1020040021281 Mar 2004 KR
1020060020353 Mar 2006 KR
30009 Jun 2003 RU
55218 Jul 2006 RU
WO-8601262 Feb 1986 WO
WO-8703988 Jul 1987 WO
WO-8705097 Aug 1987 WO
WO-8802527 Apr 1988 WO
WO-8806703 Sep 1988 WO
WO-9718636 May 1997 WO
WO-9748161 Dec 1997 WO
WO-9917066 Apr 1999 WO
WO-9961847 Dec 1999 WO
WO-9965681 Dec 1999 WO
WO-0021047 Apr 2000 WO
WO-0051223 Aug 2000 WO
WO-0169147 Sep 2001 WO
WO-0214968 Feb 2002 WO
WO-0249178 Jun 2002 WO
WO-0275227 Sep 2002 WO
WO-02090840 Nov 2002 WO
WO-02090913 Nov 2002 WO
WO-02090914 Nov 2002 WO
WO-03031996 Apr 2003 WO
WO-03090000 Oct 2003 WO
WO-04049088 Jun 2004 WO
WO-2005022049 Mar 2005 WO
WO-2005065355 Jul 2005 WO
WO-05073686 Aug 2005 WO
WO-2005108882 Nov 2005 WO
WO-06023075 Mar 2006 WO
WO-2006025880 Mar 2006 WO
WO-2006091521 Aug 2006 WO
WO-2008010988 Jan 2008 WO
WO-2008079108 Jul 2008 WO
WO-08144864 Dec 2008 WO
WO-2009058356 May 2009 WO
WO-2009061370 May 2009 WO
WO-10138831 Dec 2010 WO
WO-11069170 Jun 2011 WO
WO-12092625 Jul 2012 WO
WO-2012118550 Sep 2012 WO
Non-Patent Literature Citations (538)
Entry
Written Opinion of the International Searching Authority regarding Application No. PCT/US2012/026973, dated Sep. 3, 2012.
“Manual for Freezing and Air Conditioning Technology,” Fan Jili, Liaoning Science and Technology Press, Sep. 1995 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009).
“Small-type Freezing and Air Conditioning Operation,” Chinese State Economy and Trading Committee, China Meteorological Press, Mar. 2003 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009).
Home Comfort Zones, Save Energy with MyTemp™ Zone Control, Dec. 2009.
Home Comfort Zones, MyTemp Room-by-Room Zone Control, Nov. 2009.
Li et al., “Development, Evaluation, and Demonstration of a Virtual Refrigerant Charge Sensor,” Jan. 2009, HVAC&R Research, Oct. 27, 2008, 21 pages.
Home Comfort Zones, MyTemp User Manual v4.3, May 2008.
Home Comfort Zones, Smart Controller™ MyTemp™ Room by Room Temperature Control and Energy Management, User Manual, Aug. 2007.
“A Practical Example of a Building's Automatic Control,” cited in First Office Action from the Patent Office of the People's Republic of China dated Jun. 29, 2007, regarding Application No. 200510005907.8, including translation by CCPIT Patent and Trademark Law Office.
“Product Performance Introduction of York Company,” cited in First Office Action from the Patent Office of the People's Republic of China dated Jun. 29, 2007 regarding Application No. 200510005907.8, including translation by CCPIT Patent and Trademark Law Office.
Torcellini, P., et al., “Evaluation of the Energy Performance and Design Process of the Thermal Test Facility at the National Renewable Energy Laboratory”, dated Feb. 2005.
Cost Cutting Techniques Used by the Unscrupulous, http://www.kellyshvac.com/howto.html, Oct. 7, 2004, 3 pages.
About CABA: CABA eBulletin, http://www.caba.org/aboutus/ebulletin/issue17/domosys.html, 2 pages, dated Sep. 22, 2004.
The L52000 Energy Management System, User Guide, http://www.surfnetworks.com/htmlmanuals/IonWorksEnergyManagement-L52000-Load-Shed -System-by-Surf-Networks,Inc.html, Sep. 2004, 20 pages.
Case Studies: Automated Meter Reading and Load Shed System, http://groupalpha.corn/CaseStudies2.html, Aug. 23, 2004, 1 page.
Nickles, Donald, “Broadband Communications Over Power Transmission Lines,” A Guest Lecture From the Dr. Shreekanth Mandaynam Engineering Frontiers Lecture Series, May 5, 2004, 21 pages.
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Appendix C, pp. 1060-1063, Copyright 2004.
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 4, pp. 176-201, Copyright 2004.
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 5, pp. 239-245, Copyright 2004.
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section IV, Chapter 9, pp. 494-504, Copyright 2004.
HVAC Service Assistant, ACRx Efficiency and Capacity Estimating Technology, Field Diagnostics, 2004.
Udelhoven, Darrell, “Air Conditioning System Sizing for Optimal Efficiency,” http://www.udarrell.com/ airconditioning-sizing.html, Oct. 6, 2003, 7 pages.
Texas Instruments, Inc., Product catalog for “TRF690 1 Single-Chip RF Transceiver,” Copyright 2001-2003, Revised Oct. 2003, 27 pages.
Advanced Utility Metering: Period of Performance, Subcontractor Report, National Renewable Energy Laboratory, Sep. 2003, 59 pages.
Honeywell, Advanced Portable A/C Diagnostics, The HVAC Service Assistant, 2003.
Vandenbrink et al.,“Design of a Refrigeration Cycle Evaporator Unit,” Apr. 18, 2003.
Udelhoven, Darrell, “Air Conditioner EER, SEER Ratings, BTUH Capacity Ratings, & Evaporator Heat Load,” http://www.udarrell.com/air-conditioner-capacity-seer.html, Apr. 3, 2003, 15 pages.
The Honeywell HVAC Service Assistant, A Tool for Reducing Electrical Power Demand and Energy Consumption, Field Diagnostics, 2003.
Trane EarthWise™ CenTra Vac™ Water-Cooled Liquid Chillers 165-3950 Tons 50 and 60 Hz; CTV PRC007-EN; Oct. 2002; 56 pages.
Honeywell, HVAC Service Assistant, TRGpro PalmTM OS Interface and HVAC Service Assistant A7075A1000, 2002.
Honeywell, A7075A1000 HVAC Service Assistant, 2001.
LIPA Launches Free, First-in-Nation Internet-Based Air Conditioner Control Program to Help LIPA and Its Customers Conserve Electricity & Save Money, Apr. 19, 2001, http://www.lipower.org/newscmter/pr/2001/aprill9_01.html, 3 pages.
K. A. Manske et al.; Evaporative Condenser Control in Industrial Refrigeration Systems; University of Wisconsin—Madison, Mechanical Engineering Department; International Journal of Refrigeration, vol. 24, No. 7; pp. 676-691; 2001, 21 pages.
Frequently Asked Questions, http://www.lipaedge.com/faq.asp, Copyright © 2001, 5 pages.
Translation of claims and Abstract of KR Patent Laying-Open No. 2000-0000261.
BChydro, “Power Factor” Guides to Energy Management: The GEM Series, Oct. 1999.
Ultrasite 32 User's Guide, Computer Process Controls, Sep. 28, 1999.
Liao et al., A Correlation of Optimal Heat Rejection Pressures in Transcritical Carbon Dioxide Cycles, Applied Thermal Engineering 20 (2000), Jul. 25, 1999, 831-841.
Einstein RX-300 Refrigeration Controller Installation and Operation Manual, Computer Process Controls, Apr. 1, 1998, 329 pages.
Building Control Unit (BCU) Installation and Operation Manual, Computer Process Controls, Jan. 28, 1998, 141 pages.
Low-Cost Multi-Service Home Gateway Creates New Business Opportunities, Coactive Networks, Copyright 1998-1999, 7 pages.
Pin, C. et al., “Predictive Models as Means to Quantify the Interactions of Spoilage Organisms,” International Journal of Food Microbiology, vol. 41, No. 1, 1998, pp. 59-72, XP-002285119.
Watt, James; Development of Empirical Temperature and Humidity-Based Degraded-Condition Indicators for Low-Tonnage Air Conditioners; ESL-TH-97/12-03; Dec. 1997.
Ultrasite User's Guide BEC Supplement, Computer Process Controls, Oct. 6, 1997.
Ultrasite User's Guide BCU Supplement, Computer Process Controls, Sep. 4, 1997.
Ultrasite User's Guide RMCC Supplement, Computer Process Controls, Jun. 9, 1997.
Texas Instruments, Inc. Mechanical Data for “PT (S-PQFP-G48) Plastic Quad Flatpack,” Revised Dec. 1996, 2 pages.
Honeywell, Excel 5000® System, Excel Building Supervisor, 74-2033-1, Copyright © 1996, Rev. 6-96, 12 pages.
UltraSite User's Guide, Computer Process Controls, Apr. 1, 1996
Honeywell, Excel 5000® System, Excel Building Supervisor—Integrated, 74-2034, Copyright © 1994, Rev. 11-94, 12 pages.
Tamarkin, Tom D., “Automatic Meter Reading,” Public Power magazine, vol. 50, No. 5, Sep.-Oct. 1992, http://www.energycite.com/news/amr.html, 6 pages.
Palani, M. et al, Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench, ESL-TR-92/05-05, May 1992.
European Search Report for EP 82306809.3; dated Apr. 28, 1983; 1 Page.
European Search Report for EP 91 30 3518; dated Jul. 22, 1991; 1 Page.
European Search Report for EP 93 30 4470; dated Oct. 26, 1993; 1 Page.
European Search Report for EP 96 30 4219; dated Dec. 1, 1998; 2 Pages.
International Search Report; International Application No. PCT/US98/18710; dated Jan. 26, 1999; 1 Page.
European Search Report for EP 94 30 3484; dated Apr. 3, 1997; 1 Page.
European Search Report for EP 98 30 3525; dated May 28, 1999; 2 Pages.
European Search Report for EP 99 30 6052; dated Dec. 28, 1999; 3 Pages.
European Search Report for EP 01 30 7547; dated Feb. 20, 2002; 1 Page.
European Search Report for Application No. EP 01 30 1752, dated Mar. 26, 2002.
International Search Report, International Application No. PCT/US02/13456, dated Aug. 22, 2002, 2 Pages.
International Search Report for PCT/US02/13459; ISA/US; dated Sep. 19, 2002.
European Search Report for Application No. EP 02 25 1531, dated Sep. 30, 2002.
Office Action regarding U.S. Appl. No. 09/977,552, dated Jan. 14, 2003.
Written Opinion regarding PCT/US02/13459, dated Apr. 23, 2003.
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Jun. 18, 2003.
International Preliminary Examination Report regarding PCT/US02/13456, dated Sep. 15, 2003.
Office Action regarding U.S. Appl. No. 10/061,964, dated Oct. 3, 2003.
Response to Rule 312 Communication regarding U.S. Appl. No. 09/977,552, dated Oct. 31, 2003.
Office Action regarding U.S. Appl. No. 09/977,552, dated Dec. 3, 2003.
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Apr. 26, 2004.
Office Action regarding U.S. Appl. No. 10/286,419, dated Jun. 10, 2004.
European Search Report for EP 02 72 9050, dated Jun. 17, 2004, 2 pages.
Supplementary European Search Report for EP 02 73 1544, dated Jun. 18, 2004, 2 Pages.
Notice of Allowance regarding U.S. Appl. No. 10/061,964, dated Jul. 19, 2004.
International Search Report, International Application No. PCT/US04/13384; dated Aug. 1, 2004; 1 Page.
International Search Report, International Application No. PCT/US2004/027654, dated Aug. 25, 2004, 4 Pages.
Office Action regarding U.S. Appl. No. 10/675,137, dated Sep. 7, 2004.
Office Action regarding U.S. Appl. No. 09/977,552, dated Oct. 18, 2004.
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/286,419, dated Dec. 2, 2004.
European Search Report regarding Application No. EP02729051, dated Feb. 17, 2005.
Restriction Requirement regarding U.S. Appl. No. 10/940,877, dated Jul. 25, 2005.
Office Action dated Oct. 27, 2005 from Related U.S. Appl. No. 10/916,223.
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,562.
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,601.
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 09/977,552, dated Nov. 10, 2005.
Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 14, 2005.
First Examination Communication regarding European Application No. EP02729051.9, dated Dec. 23, 2005.
Office Action dated Jan. 6, 2006 from U.S. Appl. No. 11/130,562.
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 10/916,222.
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,601.
Examiner's First Report on Australian Patent Application No. 2002259066, dated Mar. 1, 2006.
International Search Report for International Application No. PCT/US04/43859, dated Mar. 2, 2006.
Office Action dated Mar. 30, 2006 from Related U.S. Appl. No. 11/130,569.
Office Action dated Apr. 19, 2006 from Related U.S. Appl. No. 10/916,223.
Final Office Action regarding U.S. Appl. No. 10/940,877, dated May 2, 2006.
Office Action dated Jun. 22, 2009 from Related U.S. Appl. No. 12/050,821.
Second Examination Communication regarding European Application No. EP02729051.9, dated Jul. 3, 2006.
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 11/130,562.
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 10/916,222.
Office Action regarding U.S. Appl. No. 09/977,552, dated Jul. 12, 2006.
Notice of Allowance dated Jul. 13, 2006 from U.S. Appl. No. 11/130,601.
Office Action dated Jul. 27, 2006 from Related U.S. Appl. No. 11/130,871.
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2006.
Office Action regarding U.S. Appl. No. 10/940,877, dated Oct. 27, 2006.
Office Action dated Nov. 14, 2006 from Related U.S. Appl. No. 11/130,569.
Office Action dated Nov. 16, 2006 from Related U.S. Appl. No. 10/916,223.
Office Action dated Jan. 23, 2007 from Related U.S. Appl. No. 10/916,222.
Election/Restriction Requirement regarding U.S. Appl. No. 09/977,552, dated Jan. 25, 2007.
Office Action dated Feb. 1, 2007 from Related U.S. Appl. No. 11/130,562.
First Office Action received from the Chinese Patent Office dated Feb. 2, 2007 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office.
Notice of Allowance dated Feb. 12, 2007 from Related U.S. Appl. No. 11/130,871.
International Search Report, International Application No. PCT/US2006/040964, dated Feb. 15, 2007, 2 Pages.
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 2, 2007.
Office Action regarding U.S. Appl. No. 11/120,166, dated Apr. 12, 2007.
Office Action Communication regarding U.S. Appl. No. 09/977,552, dated Apr. 18, 2007.
Office Action regarding U.S. Appl. No. 10/940,877, dated May 21, 2007.
First Office Action from the Patent Office of the People's Republic of China dated Jun. 8, 2007, Application No. 200480027753.6 and Translation provided by CCPIT.
Notice of Allowance dated Jun. 11, 2007 from Related U.S. Appl. No. 10/916,222.
Office Action dated Jun. 27, 2007 from Related U.S. Appl. No. 11/417,557.
First Office Action from the Patent Office of the People's Republic of China regarding Application No. 200510005907.8, dated Jun. 29, 2007.
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,609.
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,701.
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Jul. 23, 2007.
Notice of Allowance dated Jul. 25, 2007 from Related U.S. Appl. No. 10/916,223.
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,609.
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,701.
Office Action dated Sep. 18, 2007 from Related U.S. Appl. No. 11/130,562.
Office Action regarding U.S. Appl. No. 11/098,582, dated Sep. 21, 2007.
International Search Report and Written Opinion of the International Searching Authority regarding International Application No. PCT/US06/33702, dated Sep. 26, 2007.
International Search Report, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007.
Written Opinion of the International Searching Authority, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007.
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2007.
International Search Report for International Application No. PCT/US2007/016135 dated Oct. 22, 2007.
Notice of Allowance dated Oct. 26, 2007 from Related U.S. Appl. No. 10/916,223.
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 13, 2007.
Notice of Allowance dated Dec. 3, 2007 from Related U.S. Appl. No. 11/130,562.
Notice of Allowance dated Dec. 21, 2007 from Related U.S. Appl. No. 11/417,609.
International Search Report for International Application No. PCT/US07/019563, dated Jan. 15, 2008, 3 Pages.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2007/019563, dated Jan. 15, 2008.
Office Action dated Feb. 15, 2008 from Related U.S. Appl. No. 11/417,557.
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 25, 2008.
Office Action regarding U.S. Appl. No. 11/337,918, dated Mar. 25, 2008.
Office Action regarding U.S. Appl. No. 11/098,575, dated Mar. 26, 2008.
Office Action regarding U.S. Appl. No. 11/120,166, dated Jun. 5, 2008.
Office Action regarding U.S. Appl. No. 10/940,877, dated Jun. 5, 2008.
Office Action dated Jul. 1, 2008 from Related U.S. Appl. No. 11/927,425.
Office Action regarding U.S. Appl. No. 11/098,582, dated Jul. 7, 2008.
Office Action dated Jul. 24, 2008 from Related U.S. Appl. No. 11/417,557.
International Search Report from PCT /US2008/060900, dated Aug. 4, 2008, 6 pages.
First Office Action issued by the Chinese Patent Office for Application No. 200480015875.3, dated Sep. 5, 2008.
Office Action regarding U.S. Appl. No. 11/098,575, dated Sep. 9, 2008.
Examiner Interview regarding U.S. Appl. No. 11/256,641, dated Sep. 16, 2008.
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Oct. 22, 2008.
Office Action regarding U.S. Appl. No. 11/337/918, dated Oct. 28, 2008.
Notice of Allowance dated Nov. 3, 2008 from Related U.S. Appl. No. 11/417,701.
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Nov. 5, 2008.
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008.
International Search Report for International Application No. PCT/US2008/009618, dated Dec. 8, 2008.
Office Action regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008.
First Official Report regarding Australian Patent Application No. 2007214381, dated Dec. 12, 2008.
Office Action regarding U.S. Appl. No. 11/120,166, dated Dec. 15, 2008.
Office Action for U.S. Appl. No. 11/497,644, dated Dec. 19, 2008.
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,871.
Office Action regarding U.S. Appl. No. 11/098,575, dated Jan. 29, 2009.
Final Office Action regarding U.S. Appl. No. 11/256,641, dated Feb. 2, 2009.
Office Action dated Feb. 3, 2009 from Related U.S. Appl. No. 11/866,295.
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/033,765.
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/050,821.
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/098,582, dated Feb. 24, 2009.
Second Office Action issued by the Chinese Patent Office for Application No. 200480015875.3, dated Feb. 27, 2009.
International Preliminary Report on Patentability regarding International Application No. PCT/US2007/019563 dated Mar. 10, 2009.
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/012364 dated Mar. 12, 2009.
International Search Report for International Application No. PCT/US2008/012364 dated Mar. 13, 2009.
Office Action dated May 6, 2009 from Related U.S. Appl. No. 11/830,729.
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/256,641, dated May 19, 2009.
Final Office Action regarding U.S. Appl. No. 11/214,179, dated May 29, 2009.
Office Action dated Jun. 17, 2009 from Related U.S. Appl. No. 12/033,765.
Office Action dated Jun. 19, 2009 from Related U.S. Appl. No. 11/866,295.
Office Action for U.S. Appl. No. 11/497,644, dated Jul. 10, 2009.
Office Action regarding U.S. Appl. No. 11/098,575, dated Jul. 13, 2009.
Office Action regarding U.S. Appl. No. 11/120,166, dated Jul. 20, 2009.
Notice of Panel Decision from Pre-Appeal Brief Review regarding U.S. Appl. No. 09/977,552, dated Aug. 4, 2009.
Office Action regarding U.S. Appl. No. 11/337,918, dated Aug. 17, 2009.
Advisory Action regarding U.S. Appl. No. 11/214,179, dated Aug. 28, 2009.
Notice of Allowance regarding U.S. Appl. No. 10/940,877, dated Sep. 4, 2009.
Office Action regarding U.S. Appl. No. 11/394,380, dated Sep. 25, 2009.
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/098,575, dated Sep. 28, 2009.
Office Action for U.S. Appl. No. 11/497,579, dated Oct. 27, 2009.
Examination Report received from Australian Government IP Australia dated Oct. 29, 2009 regarding patent application No. 2008202088.
Second Official Report regarding Australian Patent Application No. 2007214381, dated Oct. 30, 2009.
Supplementary European Search Report regarding Application No. PCT/US2006/005917, dated Nov. 23, 2009.
Examiner-Initiated Interview Summary regarding U.S. Appl. No. 11/214,179, dated Dec. 11, 2009.
Examiner's Answer regarding U.S. Appl. No. 09/977,552, dated Dec. 17, 2009.
First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009.
Non-Final Office Action for U.S. Appl. No. 11/098,575 dated Jan. 27, 2010.
Office Action regarding U.S. Appl. No. 11/497,644, dated Jan. 29, 2010.
Restriction Requirement regarding U.S. Appl. No. 11/214,179, dated Feb. 2, 2010.
Final Office action regarding U.S. Appl. No. 11/337,918, dated Feb. 4, 2010.
Office Action regarding U.S. Appl. No. 11/120,166, dated Feb. 17, 2010.
Interview Summary regarding U.S. Appl. No. 11/098,582, dated Apr. 27, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/012362, dated May 4, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/012364, dated May 4, 2010.
Interview Summary regarding U.S. Appl. No. 11/497,644, dated May 4, 2010.
Final Office Action regarding U.S. Appl. No. 11/497,579, dated May 14, 2010.
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jun. 8, 2010.
Office Action regarding U.S. Appl. No. 11/497,644, dated Jun. 14, 2010.
Supplementary European Search Report regarding European Application No. EP06790063, dated Jun. 15, 2010.
Final Office Action regarding U.S. Appl. No. 11/098,575, dated Jun. 17, 2010.
First Office Action from The State Intellectual Property Office of the People's Republic of China regarding Chinese Patent Application No. 200890100287.3, dated Oct. 25, 2010. Translation provided by Unitalen Attorneys at Law.
Interview Summary regarding U.S. Appl. No. 11/497,579, dated Jul. 15, 2010.
Second Office Action regarding Chinese Patent Application No. 200780030810X, dated Aug. 4, 2010. English translation provided by Unitalen Attorneys at Law.
Non-Final Office Action dated Aug. 13, 2010 for U.S. Appl. No. 12/054,011.
Office Action regarding U.S. Appl. No. 11/850,846, dated Aug. 13, 2010.
Office Action regarding U.S. Appl. No. 11/776,879, dated Sep. 17, 2010.
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/098,582, dated Sep. 24, 2010.
First Office Action regarding Chinese Patent Application No. 200780032977.X, dated Sep. 27, 2010. English translation provided by Unitalen Attorneys at Law.
Final Office Action dated Dec. 7, 2010 for U.S. Appl. No. 12/054,011.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/036601, dated Dec. 29, 2010.
Official Action regarding Australian Patent Application No. 2008325240, dated Jan. 19, 2011.
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jan. 24, 2011.
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jan. 27, 2011.
Second Office Action regarding Chinese Patent Application No. 200890100287.3, dated Jan. 27, 2011. English translation provided by Unitalen Attorneys at Law.
Final Office Action regarding U.S. Appl. No. 11/337,918, dated Feb. 17, 2011.
Non-Final Office Action dated Mar. 3, 2011 for U.S. Appl. No. 12/054,011.
First Office Action regarding Chinese Application No. 200880106319.5, dated May 25, 2011. English translation provided by Unitalen Attorneys at Law.
Communication from European Patent Office concerning Substantive Examination regarding European Patent Application No. 06790063.9, dated Jun. 6, 2011.
International Search Report regarding Application No. PCT/US2010/056315, dated Jun. 28, 2011.
Final Office Action for U.S. Appl. No. 12/054,011, dated Jun. 30, 2011.
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jul. 7, 2011.
Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jul. 21, 2011.
Office Action regarding U.S. Appl. No. 12/261,677, dated Aug. 4, 2011.
Third Office Action regarding Chinese Application No. 2005100059078 from the State Intellectual Property Office of People's Republic of China, dated Aug. 24, 2011. Translation provided by Unitalen Attorneys at Law.
Non-Final Office Action for U.S. Appl. No. 12/054,011, dated Oct. 20, 2011.
Office Action regarding U.S. Appl. No. 12/261,643, dated Nov. 2, 2011.
Notice of Allowance and Fees Due, Interview Summary and Notice of Allowability regarding U.S. Appl. No. 11/214,179, dated Nov. 23, 2011.
Notice of Allowance regarding U.S. Appl. No. 12/261,677, dated Dec. 15, 2011.
Examiner's First Report on Australian Patent Application No. 2007292917 dated Jan. 10, 2012.
Non-Final Office Action in U.S. Appl. No. 12/685,375, dated Jan. 19, 2012.
Office Action regarding U.S. Appl. No. 12/261,643, dated Feb. 15, 2012.
Examiner's Report No. 2 regarding Australian Patent Application No. 2008325240, dated Mar. 5, 2012.
Issue Notification regarding U.S. Appl. No. 11/214,179, dated Mar. 14, 2012.
Non-Final Office Action for U.S. Appl. No. 11/776,879, dated Mar. 16, 2012.
Office Action regarding U.S. Appl. No. 13/303,286, dated Mar. 26, 2012.
Non-Final Office Action for U.S. Appl. No. 12/054,011, dated Apr. 10, 2012.
First Office Action regarding Chinese Patent Application No. 200910211779.0, dated May 3, 2012. English translation provided by Unitalen Attorneys at Law.
International Preliminary Report on Patentability regarding Application No. PCT/US2010/056315, dated May 24, 2012.
Non-Final Office Action regarding U.S. Appl. No. 13/176,021, dated May 8, 2012.
Non-Final Office Action regarding U.S. Appl. No. 13/435,543, dated Jun. 21, 2012.
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jun. 27, 2012.
Notice of Allowance regarding U.S. Appl. No. 11/776,879, dated Jul. 9, 2012.
Notice of Allowance regarding U.S. Appl. No. 13/303,286, dated Jul. 19, 2012.
Patent Examination Report No. 3 regarding Australian Patent Application No. 2008325240, dated Jul. 19, 2012.
Non-Final Office Action for U.S. Appl. No. 12/685,375, dated Aug. 6, 2012.
Final Office Action for U.S. Appl. No. 11/850,846, dated Aug. 13, 2012.
Non-Final Office Action regarding U.S. Appl. No. 12/955,355, dated Sep. 11, 2012.
Notice of Allowance and Fee(s) Due regarding U.S. Appl. No. 12/789,562, dated Oct. 26, 2012.
European Search Report for Application No. EP 12 182 243.1, dated Oct. 29, 2012.
Extended European Search Report regarding Application No. 12182243.1-2311, dated Oct. 29, 2012.
Non-Final Office Action for U.S. Appl. No. 13/030,549, dated Nov. 5, 2012.
Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880122964.6, dated Nov. 5, 2012. Translation provided by Unitalen Attorneys at Law.
Record of Oral Hearing regarding U.S. Appl. No. 09/977,552, dated Nov. 29, 2012.
Non-Final Office Action regarding U.S. Appl. No. 12/943,626, dated Dec. 20, 2012.
First Examination Report regarding Australian Patent Application No. 2010319488, dated Jan. 10, 2013.
Second Office Action regarding Chinese Patent Application No. 200910211779.0, dated Feb. 4, 2013. English translation provided by Unitalen Attorneys at Law.
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Mar. 12, 2013.
International Search Report regarding Application No. PCT/US2013/021161, dated May 8, 2013.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/021161, dated May 8, 2013.
Non-Final Office Action in U.S. Appl. No. 11/850,846, dated May 24, 2013.
Non-Final Office Action in U.S. Appl. No. 13/784,890, dated Jun. 11, 2013.
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jul. 3, 2013.
First Office Action regarding Canadian Patent Application No. 2,777,349, dated Jul. 19, 2013.
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Sep. 16, 2013.
First Examination Report regarding Australian Patent Application No. 2012241185, dated Sep. 27, 2013.
Notice of Grounds for Refusal regarding Korean Patent Application No. 10-2009-7000850, dated Oct. 4, 2013. English translation provided by Y.S. Chang & Associates.
Final Office Action regarding U.S. Appl. No. 13/770,123, dated Nov. 15, 2013.
First Office Action regarding Chinese Patent Application No. 201110349785.X, dated Nov. 21, 2013, and Search Report. English translation provided by Unitalen Attorneys at Law.
Advisory Action regarding U.S. Appl. No. 12/261,643, dated Nov. 22, 2013.
Non-Final Office Action regarding U.S. Appl. No. 13/932,611, dated Nov. 25, 2013.
Office Action regarding U.S. Appl. No. 13/737,566, dated Dec. 20, 2013.
Final Office Action regarding U.S. Appl. No. 13/784,890, dated Dec. 30, 2013.
Fourth Office Action regarding Chinese Patent Application No. 200910211779.0, dated Jan. 6, 2014. English translation provided by Unitalen Attorneys at Law.
European Search Report regarding Application No. 07811712.4-1608 / 2069638 PCT/US2007019563, dated Jan. 7, 2014.
Non-Final Office Action regarding U.S. Appl. No. 13/770,479, dated Jan. 16, 2014.
Final Office Action regarding U.S. Appl. No. 11/850,846, dated Jan. 17, 2014.
International Search Report for PCT/US2012/026973, Sep. 3, 2012, 5 pages.
International Search Report for PCT/US2013/061389, Jan. 22, 2014, 7 pages.
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Oct. 4, 2013; 11 pages.
Restriction from related U.S. Appl. No. 13/269,188 dated Apr. 9, 2013; 5 pages.
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Aug. 14, 2012; 9 pages.
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Jul. 17, 2014; 10 pages.
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Feb. 20, 2014; 9 pages.
Final Office Action from related U.S. Appl. No. 13/269,188 dated May 23, 2013; 11 pages.
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Oct. 24, 2013; 8 pages.
Final Office Action from related U.S. Appl. No. 13/767,479 dated Mar. 14, 2014; 6 pages.
Non Final Office Action from related U.S. Appl. No. 13/835,742 dated Oct. 7, 2013; 9 pages.
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jan. 31, 2014; 7 pages.
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jun. 2, 2014; 8 pages.
Non Final Office Action from related U.S. Appl. No. 13/835,810 dated Nov. 15, 2013; 9 pages.
Notice of Allowance from related U.S. Appl. No. 13/835,810 dated Mar. 20, 2014; 9 pages.
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Oct. 30, 2013; 8 pages.
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Apr. 2, 2014; 11 pages.
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Oct. 23, 2013; 8 pages.
Final Office Action from related U.S. Appl. No. 13/836,043 dated Mar. 12, 2014; 5 pages.
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Jul. 11, 2014; 5 pages.
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Oct. 15, 2013; 11 pages.
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Feb. 20, 2014; 10 pages.
Notice of Allowance from related U.S. Appl. No. 13/836,244 dated Jul. 2, 2014; 8 pages.
Non Final Office Action from related U.S. Appl. No. 13/836,453 dated Aug. 20, 2013; 8 pages.
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Jan. 14, 2014; 8 pages.
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Apr. 21, 2014; 8 pages.
Non Final Office Action from related U.S. Appl. No. 13/369,067 dated Jan. 16, 2014; 16 pages.
Final Office Action from related U.S. Appl. No. 13/369,067 dated May 1, 2014; 19 pages.
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Jul. 23, 2014; 9 pages.
Final Office Action regarding U.S. Appl. No. 13/932,611, dated May 28, 2014.
Supplementary European Search Report regarding Application No. EP 07 81 1712, dated Jan. 7, 2014.
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/261,643, dated Jun. 23, 2014.
Extended European Search Report regarding Application No. 07796879.0-1602 / 2041501 PCT/US2007016135, dated Jul. 14, 2014.
Written Opinion from related PCT Application No. PCT/US2014/028074 dated Jun. 19, 2014.
Advisory Action from related U.S. Appl. No. 13/784,890 dated Mar. 14, 2014.
International Search Report from related PCT Application No. PCT/US2014/028074 dated Jun. 19, 2014.
Examiner's Answer from related U.S. Appl. No. 13/784,890 dated Jul. 3, 2014.
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Aug. 4, 2014.
Non Final Office Action for related U.S. Appl. No. 13/835,621 dated Aug. 8, 2014.
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 6, p. 322, Copyright 2004.
Reh, F. John, “Cost Benefit Analysis”, http://management.about.com/cs/money/a/CostBenefit.htm, Dec. 8, 2003.
“Air Conditioning Equipment and Diagnostic Primer,” Field Diagnostic Services, Inc., Sep. 9, 2002.
Udelhoven, Darrell, “Optimizing Air Conditioning Efficiency TuneUp Optimizing the Condensor Output, Seer, Air, HVAC Industry,” http://www.udarrell.com/air-conditioning-efficiency.html, Jul. 19, 2002, 13 pages.
Flow & Level Measurement: Mass Flowmeters, http://www.omega.com/literature/transactions/volume4/T9904-10-MASS.html, 2001, 19 pages.
Palani, M. et al, The Effect of Reducted Evaporator Air Flow on the Performance of a Residential Central Air Conditioner, ESL-HH-92-05-04, Energy Systems Laboratory, Mechanical Engineering Department, Texas A&M University, Eighth Symposium on Improving Building System in Hot and Humid Climates, May 13-14, 1992.
International Search Report; International Application No. PCT/IB96/01435; dated May 23, 1997; 1 Page.
European Search Report for EP 02 25 0266; dated May 17, 2002; 3 Pages.
Final Office Action regarding U.S. Appl. No. 10/061,964, dated Mar. 8, 2004.
Office Action regarding U.S. Appl. No. 10/698,048, dated Mar. 21, 2005.
Office Action dated May 4, 2005 from Related U.S. Appl. No. 10/916,223.
Final Office Action regarding U.S. Appl. No. 09/977,552, dated May 13, 2005.
Notice of Allowance for U.S. Appl. No. 10/698,048, dated Sep. 1, 2005.
Office Action dated Nov. 8, 2005 from Related U.S. Appl. No. 10/916,222.
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,871.
Notice of Allowance dated May 29, 2007 from Related U.S. Appl. No. 11/130,569.
Office Action dated Aug. 21, 2007 from Related U.S. Appl. No. 11/417,557.
Office Action regarding U.S. Appl. No. 11/256,641, dated Apr. 29, 2008.
Office Action dated Jul. 16, 2008 from Related U.S. Appl. No. 11/417,701.
Written Opinion of International Searching Authority for International Application No. PCT/US2008/009618, dated Dec. 8, 2008.
Office Action for U.S. Appl. No. 11/394,380, dated Jan. 6, 2009.
Interview Summary regarding U.S. Appl. No. 11/214,179, dated Jan. 30, 2009.
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Apr. 27, 2009.
Office Action regarding U.S. Appl. No. 11/098,582, dated Aug. 4, 2009.
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/098,575, dated Nov. 16, 2009.
International Preliminary Report on Patentability for International Application No. PCT/US2008/009618, dated Mar. 24, 2010.
Examiner Interview Summary regarding U.S. Appl. No. 11/394,380, dated Jul. 29, 2010.
Final Office Action regarding U.S. Appl. No. 11/497,644, dated Dec. 22, 2010.
International Search Report regarding Application No. PCT/US2010/036601, dated Dec. 29, 2010.
Notice of Allowance for related U.S. Appl. No. 13/835,810 dated Aug. 5, 2014.
Non Final Office Action for related U.S. Appl. No. 13/369,067 dated Aug. 12, 2014.
European Search Report for Application No. EP 04 81 5853, dated Jul. 17, 2007, 2 Pages.
European Search Report for Application No. EP 06 02 6263, dated Jul. 17, 2007, 4 Pages.
First Office Action issued by the Chinese Patent Office dated May 30, 2008 regarding Application No. 200580013451.8, 8 Pages.
Second Office Action issued by the Chinese Patent Office dated Mar. 6, 2009 regarding Application No. 200580013451.8, 7 Pages.
Second Office Action received from the Chinese Patent Office dated Jun. 26, 2009 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office.
Office Action regarding U.S. Appl. No. 09/977,552, dated Jan. 11, 2008.
Invitation to Indicate Claims to be Searched regarding European Patent Application No. 07 796 879.0, dated Feb. 20, 2013.
Non-Final Office Action regarding U.S. Appl. No. 13/784,890, dated Jun. 11, 2013.
Restriction Requirement regarding U.S. Appl. No. 11/776,879, dated Jun. 4, 2010.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2007/016135, dated Oct. 22, 2007.
International Search Report and Written Opinion of the ISA regarding International Application No. PCT/US2014/032927, ISA/KR dated Aug. 21, 2014.
Honeywell, Alerts and Delta T Diagnostics with Prestige® 2.0 IAQ Thermostat, 69-2678-02, Sep. 2011.
Honeywell, Prestige System Installation Guide, THX9321/9421 Prestige® IAQ and RF EIM, 64-2490-03, Jul. 2011.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/061389, dated Jan. 22, 2014.
Honeywell, RedLINK™ Wireless Comfort Systems brochure, 50-1194, Sep. 2011.
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/943,626, dated Jun. 19, 2014.
Fourth Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Applicaiton No. 200510005907.8, dated Dec. 8, 2011. Translation provided by Unitalen Attorneys at Law.
European Search Report regarding Application No. 04022784.5-2315 / 1500821, dated Aug. 14, 2012.
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Jun. 18, 2014.
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jun. 11, 2014.
Notice of Allowance for related U.S. Appl. No. 13/836,043, dated Oct. 9, 2014.
Notice of Allowance for related U.S. Appl. No. 13/836,244, dated Oct. 30, 2014.
Office Action for related U.S. Appl. No. 13/269,188, dated Oct. 6, 2014.
Office Action for related U.S. Appl. No. 13/767,479, dated Oct. 21, 2014.
International Search Report and Written Opinion for related PCT Application No. PCT/US2014/028859, dated Aug. 22, 2014.
Non Final Office Action for U.S. Appl. No. 13/407,180, dated Dec. 2, 2014.
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Sep. 24, 2014.
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 201110349785.X, dated Jul. 25, 2014. Translation provided by Unitalen Attorneys at Law.
Examiner's Report No. 1 regarding Australian Patent Application No. 2013202431, dated Nov. 25, 2014.
Patent Examination Report for Austrialian Application No. 2012223466 dated Jan. 6, 2015.
Notice of Allowance for U.S. Appl. No. 13/835,742 dated Dec. 24, 2014.
Notice of Allowance for U.S. Appl. No. 13/835,810 date Jan. 2, 2015.
Notice of Allowance for U.S. Appl. No. 13/836,453 dated Dec. 24, 2014.
Office Action for U.S. Appl. No. 13/835,621 dated Dec. 29, 2014.
Final Office Action for U.S. Appl. No. 13/770,123 dated Dec. 22, 2014.
Notice of Allowance for U.S. Appl. No. 13/836,043 dated Feb. 4, 2015.
Office Action for U.S. Appl. No. 13/767,479 dated Feb. 6, 2015.
Office Action for U.S. Appl. No. 13/269,188 dated Feb. 10, 2015.
Office Action for Canadian Application No. 2,828,740 dated Jan. 12, 2015.
Third Chinese Office Action regarding Application No. 201110349785.X, dated Jan. 30, 2015. Translation provided by Unitalen Attorneys at Law.
Non-Final Office Action regarding U.S. Appl. No. 13/932,611, dated Jan. 30, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/835,621, dated Mar. 10, 2015.
Interview Summary regarding U.S. Appl. No. 13/269,188, dated Mar. 18, 2015.
Final Office Action and Interview Summary regarding U.S. Appl. No. 13/407,180, dated Mar. 13, 2015.
Office Action regarding U.S. Appl. No. 13/770,479, dated Mar. 16, 2015.
Office Action regarding U.S. Appl. No. 13/770,123, dated Apr. 2, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/767,479, dated Mar. 31, 2015.
Office Action from U.S. Appl. No. 13/369,067 dated Apr. 3, 2015.
Haiad et al., “EER & SEER as Predictors Of Seasonal Energy Performance”, Oct. 2004, Southern California Edison, http://www.doe2.com/download/DEER/SEER%2BProgThermostats/EER-SEER_CASE_ProjectSummary_Oct2004_V6a.pdf.
Notice of Allowance regarding U.S. Appl. No. 13/835,742, dated Apr. 17, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/836,453, dated Apr. 15, 2015.
Advisory Action regarding U.S. Appl. No. 13/269,188, dated Apr. 13, 2015.
U.S. Office Action regarding U.S. Appl. No. 13/269,188, dated May 8, 2015.
U.S. Office Action regarding U.S. Appl. No. 14/212,632, dated May 15, 2015.
First Chinese Office Action regarding Application No. 201380005300.2, dated Apr. 30, 2015. Translation provided by Unitalen Attorneys at Law.
Advisory Action and Interview Summary regarding U.S. Appl. No. 13/407,180, dated May 27, 2015.
Interview Summary regarding U.S. Appl. No. 13/407,180, dated Jun. 11, 2015.
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Jun. 16, 2015.
Extended European Search Report regarding European Application No. 08845689.2-1608/2207964, dated Jun. 19, 2015.
Extended European Search Report regarding European Application No. 08848538.8-1608 / 2220372, dated Jun. 19, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/932,611, dated Jul. 6, 2015.
Restriction Requirement regarding U.S. Appl. No. 14/244,967, dated Jul. 14, 2015.
Interview Summary regarding U.S. Appl. No. 13/369,067, dated Jul. 16, 2015.
Applicant-Initiated Interview Summary and Advisory Action regarding U.S. Appl. No. 13/369,067, dated Jul. 23, 2015.
Faramarzi et al., “Performance Evaluation of Rooftop Air Conditioning Units at High Ambient Temperatures,” 2004 ACEEE Summer Study on Energy Efficiency in Buildings—http://aceee.org/files/proceedings/2004/data/papers/SSO4_Panel3_Paper05.pdf.
Notice of Allowance regarding U.S. Appl. No. 12/261,643, dated Jul. 29, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/770,123, dated Aug. 13, 2015.
Notice of Allowance and Interview Summary regarding U.S. Appl. No. 13/269,188, dated Aug. 26, 2015.
Office Action regarding Indian Patent Application No. 733/KOLNP/2009, dated Aug. 12, 2015.
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 14/212,632, dated Sep. 2, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/369,067, dated Sep. 2, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/407,180, dated Sep. 4, 2015.
Final Office Action regarding U.S. Appl. No. 13/770,479, dated Sep. 4, 2015.
Office Action regarding U.S. Appl. No. 14/209,415, dated Sep. 10, 2015.
Search Report regarding European Patent Application No. 13736303.2-1806, dated Sep. 17, 2015.
First Office Action regarding Chinese Patent Application No. 201280010796.8, dated Sep. 14, 2015. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 13/770,123, dated Oct. 1, 2015.
Office Action regarding Australian Patent Application No. 2013323760, dated Sep. 25, 2015.
Office Action and Interview Summary regarding U.S. Appl. No. 14/244,967, dated Oct. 7, 2015.
Office Action regarding U.S. Appl. No. 14/255,519, dated Nov. 9, 2015.
Office Action regarding U.S. Appl. No. 14/212,632, dated Nov. 19, 2015.
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Nov. 25, 2015.
Office Action regarding Chinese Patent Application No. 201380049458.X, dated Nov. 13, 2015. Translation provided by Unitalen Attorneys at Law.
Search Report regarding European Patent Application No. 08251185.8-1605 / 2040016, dated Dec. 4, 2015.
Interview Summary regarding U.S. Appl. No. 12/054,011, dated Jan. 30, 2012.
Office Action regarding U.S. Appl. No. 14/193,568, dated Nov. 3, 2015.
Office Action regarding Chinese Patent Application No. 201380005300.2, dated Jan. 4, 2016. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Australian Patent Application No. 2015207920, dated Dec. 4, 2015.
Advisory Action regarding U.S. Appl. No. 14/212,632, dated Feb. 9, 2016.
Office Action regarding U.S. Appl. No. 14/244,967, dated Feb. 12, 2016.
Office Action regarding European Patent Application No. 08848538.8-1608, dated Feb. 3, 2016.
Advisory Action regarding U.S. Appl. No. 14/212,632, dated Mar. 8, 2016.
Office Action regarding U.S. Appl. No. 14/209,415, dated Mar. 10, 2016.
Office Action regarding U.S. Appl. No. 14/212,632, dated Apr. 7, 2016.
Office Action regarding U.S. Appl. No. 12/943,626, dated May 4, 2016.
Office Action regarding Australian Patent Application No. 2014229103, dated Apr. 28, 2016.
Office Action regarding U.S. Appl. No. 14/617,451, dated Jun. 2, 2016.
Office Action regarding U.S. Appl. No. 14/193,568, dated Jun. 1, 2016.
Office Action regarding U.S. Appl. No. 14/080,473, dated Jun. 6, 2016.
Interview Summary regarding U.S. Appl. No. 14/209,415, dated Jun. 20, 2016.
Search Report regarding European Patent Application No. 13841699.5, dated Jun. 30, 2016.
Office Action regarding Chinese Patent Application No. 201480016023.X, dated Jun. 22, 2016. Translation provided by Unitalen Attorneys at Law.
Interview Summary regarding U.S. Appl. No. 14/617,451, dated Jul. 28, 2016.
Office Action regarding U.S. Appl. No. 14/208,636, dated Aug. 4, 2016.
Advisory Action regarding U.S. Appl. No. 14/193,568, dated Aug. 10, 2016.
Office Action regarding U.S. Appl. No. 14/727,756, dated Aug. 22, 2016.
Office Action regarding U.S. Appl. No. 14/244,967, dated Aug. 29, 2016.
Office Action regarding U.S. Appl. No. 13/770,479, dated Sep. 7, 2016.
Office Action regarding U.S. Appl. No. 15/096,196, dated Sep. 13, 2016.
Office Action regarding Canadian Patent Application No. 2,904,734, dated Sep. 13, 2016.
Office Action regarding U.S. Appl. No. 14/300,782, dated Sep. 30, 2016.
Office Action regarding U.S. Appl. No. 14/255,519, dated Oct. 5, 2016.
Office Action regarding Australian Patent Application No. 2015255255, dated Sep. 8, 2016.
Office Action regarding Canadian Patent Application No. 2,908,362, dated Sep. 21, 2016.
Search Report regarding European Patent Application No. 14764311.8, dated Oct. 27, 2016.
Search Report regarding European Patent Application No. 14763232.7, dated Oct. 27, 2016.
Office Action regarding U.S. Appl. No. 12/943,626, dated Nov. 4, 2016.
Louis Goodman et al. “Vertical Motion of Neutrally Buoyant Floats.” Journal of Atmospheric and Oceanic Technology. vol. 7. Feb. 1990.
Search Report regarding European Patent Application No. 14780284.7, dated Nov. 2, 2016.
Office Action regarding U.S. Appl. No. 14/080,473, dated Nov. 16, 2016.
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 13/770,479, dated Dec. 9, 2016.
Office Action regarding U.S. Appl. No. 14/244,967, dated Jan. 20, 2017.
Search Report regarding European Patent Application No. 16187893.9, dated Jan. 19, 2017.
Advisory Action regarding U.S. Appl. No. 14/080,473, dated Jan. 30, 2017.
Office Action regarding U.S. Appl. No. 14/208,636, dated Jan. 26, 2017.
Office Action regarding Indian Patent Application No. 102/KOLNP/2009, dated Mar. 10, 2017.
Office Action regarding U.S. Appl. No. 14/080,473, dated Mar. 14, 2017.
Office Action regarding U.S. Appl. No. 13/770,479, dated Mar. 17, 2017.
Advisory Action regarding U.S. Appl. No. 14/208,636, dated Mar. 23, 2017.
Richard E. Lofftus, Jr. “System Charge and Performance Evaluation.” HVAC/R Training, Vatterott College. Jan. 2007.
Search Report regarding European Patent Application No. 12752872.7, dated May 4, 2017.
Interview Summary regarding U.S. Appl. No. 13/770,479, dated May 10, 2017.
Advisory Action and Examiner-Initiated Interview Summary regarding U.S. Appl. No. 13/770,479, dated May 23, 2017.
Office Action regarding Canadian Patent Application No. 2,934,860, dated May 4, 2017.
Restriction Requirement regarding U.S. Appl. No. 14/607,782, dated Jun. 29, 2017.
Search Report regarding European Patent Application No. 10830696.0, dated Jul. 18, 2017.
Office Action regarding European Patent Application No. 07811712.4, dated Jul. 25, 2017.
Office Action regarding U.S. Appl. No. 14/607,782, dated Sep. 21, 2017.
Examiner's Answer regarding U.S. Appl. No. 12/943,626, dated Sep. 19, 2017.
Office Action regarding Indian Patent Application No. 456/MUMNP/2010, dated Oct. 3, 2017.
Office Action regarding European Patent Application No. 07796879.0, dated Oct. 19, 2017.
Office Action regarding Australian Patent Application No. 2014248049, dated Oct. 10, 2017.
Corrected Notice of Allowability regarding U.S. Appl. No. 14/080,473 dated Dec. 27, 2017.
Office Action regarding Chinese Patent Application No. 201480016177.9, dated Apr. 7, 2017. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/208,636 dated Jan. 3, 2018.
Office Action regarding Chinese Patent Application No. 201480025776.7, dated Jan. 10, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/645,970 dated Feb. 16, 2018.
Final Office Action regarding U.S. Appl. No. 15/583,942 dated Apr. 18, 2018.
First Office Action regarding Chinese Application No. 201610422700.4 dated Apr. 2, 2018. Translation provided by Unitalen Attorneys at Law.
Search Report regarding Chinese Patent Application No. 201610244700.4, dated Mar. 25, 2018.
Notice of Allowance regarding U.S. Appl. No. 14/607,782 dated May 21, 2018.
Kim, Minsung et al., “Performance of a Residential Heat Pump Operating in the Cooling Mode With Single Faults Imposed”, Sep. 2006, U.S. Department of Commerce, NISTIR 7350 (175 pages).
Notice of Allowance regarding U.S. Appl. No. 15/645,970 dated Jun. 29, 2018.
Non-Final Office Action regarding U.S. Appl. No. 14/949,090 dated Jul. 5, 2018.
Notice of Allowance regarding U.S. Appl. No. 14/607,782 dated Jul. 3, 2018.
Notice of Allowance regarding U.S. Appl. No. 14/208,636 dated Jul. 30, 2018.
Notice of Allowance regarding U.S. Appl. No. 15/583,942 dated Aug. 7, 2018.
Non-Final Office Action regarding U.S. Appl. No. 15/613,375 dated Aug. 30, 2018.
Notice of Allowance regarding U.S. Appl. No. 14/208,636 dated Sep. 25, 2018.
Notice of Allowance regarding U.S. Appl. No. 15/645,970 dated Oct. 31, 2018.
Notice of Allowance regarding U.S. Appl. No. 14/949,090 dated Nov. 26, 2018.
Non Final Office Action for U.S. Appl. No. 15/096,186 dated Sep. 20, 2018, 14 pages.
Non-Final Office Action regarding U.S. Appl. No. 16/113,271 dated Jan. 25, 2019.
First Examination Report issued by the Indian Patent Office regarding Application No. 479/MUMNP/2015 dated Dec. 21, 2018.
Non-Final Office Action regarding U.S. Appl. No. 15/633,657 dated Feb. 20, 2019.
Non-Final Office Action regarding U.S. Appl. No. 14/949,090 dated Feb. 14, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/613,375 dated Feb. 27, 2019.
First Examination Report issued by the Indian Patent Office regarding Application No. 2574/MUMNP/2015 dated Mar. 20, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/096,186 dated Feb. 26, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/633,657 dated Jun. 6, 2019.
Response to 312 Amendment regarding U.S. Appl. No. 15/096,186 dated Jun. 11, 2019.
Final Office Action regarding U.S. Appl. No. 14/949,090 dated Jul. 19, 2019.
Notice of Allowance regarding U.S. Appl. No. 16/113,271 dated Jun. 13, 2019.
Non-Final Office Action regarding U.S. Appl. No. 15/798,081 dated Jul. 25, 2019.
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 14/949,090 dated Aug. 13, 2019.
Supplemental Notice of Allowability regarding U.S. Appl. No. 16/113,271 dated Aug. 14, 2019.
Notice of Allowance regarding U.S. Appl. No. 14/949,090 dated Sep. 3, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/633,657 dated Sep. 27, 2019.
Advisory Action regarding U.S. Appl. No. 15/798,081 dated Feb. 13, 2020.
Notice of Allowance regarding U.S. Appl. No. 15/798,081 dated Jun. 29, 2020.
European Office Action regarding Application No. 127528772.7 dated Nov. 6, 2020.
Related Publications (1)
Number Date Country
20190212722 A1 Jul 2019 US
Provisional Applications (2)
Number Date Country
61548009 Oct 2011 US
61447681 Feb 2011 US
Continuations (3)
Number Date Country
Parent 15645970 Jul 2017 US
Child 16357235 US
Parent 14300782 Jun 2014 US
Child 15645970 US
Parent 13407180 Feb 2012 US
Child 14300782 US