The present invention will become more fully understood from the detailed description given hereinbelow illustration only, and thus are not limitative of the present invention, and wherein:
Please refer to
The local mainboard 01 mainly includes a computer host domain 10, a system I/O bus 40 and a remote monitor module 50.
The computer host domain 10 operates as a computer, generally including CPU(s) 11, system memory (not shown), a BIOS 13, a system chipset(s) 12 connected between the CPU 11 and the BIOS (Basic Input/Output System) 13, power supplies (not shown) and other system components (not shown). In some implementation the CPU has a memory controller therein, such as AMD (Advanced Micro Devices, Inc.) based x86 processors, to access the system memory directly. For those CPUs equipped with no memory controller, a memory hub or North Bridge is necessary for the CPUs to access the system memory.
The so-called BIOS 13 includes bootable image or initialization codes, usually stored/embedded in a ROM/Flash memory device. The memory device is one of the I/O devices and the CPU 11 needs to fetch the BIOS 13 from the memory device through the system chipset(s) 12 to boot up the local mainboard 01. In the present invention, the system chipset(s) 12 operates as a bridge interface between the CPU(s) 11 and the BIOS 13. Also, the system chipset(s) 12 is an I/O hub between the CPU(s) 11 and I/O devices (not shown).
The system I/O bus 40, such as LPC (Low Pin Count) or PCI (Peripheral Component Interconnect) based bus (such as PCI, PCI-X, PCI-E) connects the computer host domain 10 with the I/O devices. Also the system I/O bus 40 allows the BIOS 13 to write the check data (BIOS check-point information) to a specific I/O address thereon, such as “0x0080” (or Port 80). In an actual implementation, the system I/O bus 40 may connect the system chipset(s) 12 and the BIOS 13.
The remote monitor module 50 mainly includes a BMC (Baseboard Management Controller) 51, one or more event monitor 52 and a decoder 53. The BMC 51 is a local management controller with firmware, in circuit connection with the computer host domain 10 and the remote management host. It transmits event signals and check data signals and provides remote control/monitor capability to the remote management host through the remote management link(s). Basically, the BMC 51 may be implemented as a dedicated local management controller configured on the local mainboard or on a SMDC (System Management Daughter Card), or as a centralized system-level local management controller for the local mainboards. The BMC 51 may connect with the computer host domain through IPMI-compatible links, including SMBus (System Management Bus), Serial Port link, network interface link or the system I/O bus.
The event monitor(s) 52 is also in circuit connection with the computer host domain 10 and the BMC 51. It detects status signal(s) corresponding to certain initialization events such as reset release, first BIOS fetch and etc. from the computer host domain 10 during system initialization process and generates and transmits event signal Se as the initialization events to the BMC 51. Please refer to
The synchronizer 521 receives the monitored status signal(s) Sm, synchronizing with the system clock and then send to the condition checker 522. The monitored status signal(s) Sm may be provided by system hardware components, the system I/O bus 40 or a status monitor (not shown). The condition checker 522 connects between the synchronizer 521 and the event latch 523, and confirms whether the synchronized status signal Sm is at a designed voltage level. The event latch 523 latches and remains the event signal Se at a specific voltage level, and transmits to the BMC 51. All the three elements of the event monitor 52 may be realized by circuits with flip-flops; only the detailed actual implementation depends. Besides, for those signals that already has the synchronized system clock, the synchronizer 521 is not essential for the event monitor 52.
Namely, the involved signals and the condition are implementation dependent. The types of system I/O bus and the system chipset actually used in an application will give various definitions to signal conditions for the initialization events. Besides, even the initialization events could be different. For example, an nVIDIA chip such as CK804 or MCP55 is able to access chip initialization information from some specific BIOS, with the access timing earlier than the initialization event of first BIOS fetch. Furthermore, the same signal may also be used for various monitoring tasks. For instance, if the system I/O bus is PCI based, an initialization event of “ROM Strapping” will possibly be monitored by detecting a PCI_RESET*(LOW) signal, along with the initialization event of first BIOS fetch.
The decoder 53 connects to the system I/O bus 40 and decodes the check data written to the specific I/O address “Port 80” on the system I/O bus 40. The decoded check data will be transmitted as check data signal(s) SS to the BMC 51.
Eventually, through the BMC 51 the remote management host may access the designed event data of the system initialization and the check data of BIOS check-point information. The event monitor of the present invention allows the user to monitor any necessary initialization events.
Please refer
Please refer to
Accordingly, the event monitors 52 may gather various status signals during the system initialization process for the BMC 51. Plus with the check data signals from the decoder 53, the remote monitor module 51 may monitor almost every detailed events instantly happening on the local mainboard 01 during the system initialization process. The BMC 51 may connect to a network interface 17, such as a local area network (LAN) module with NIC (Network Interface Controller) and LAN communication port, to transmit aforesaid signals through the remote management link (such as LAN) to the remote management host. Sure the decoder may be omitted from the remote control module for those non-BIOS events during the system initialization process.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
| Number | Date | Country | |
|---|---|---|---|
| 60822424 | Aug 2006 | US |