BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a brush chipper including the safety features of the present invention;
FIG. 2 is a perspective view of a portion of the brush chipper, with portions broken away to show some of the internal parts of the chipper;
FIG. 3 is a side elevation view of a portion of the brush chipper, showing some of the safety features of the present invention;
FIG. 4 is a remote module, used to operate the chipper remotely;
FIG. 5 shows an overlay for the remote module having a plurality of operations; and
FIG. 6 is a wiring schematic for the remotely operated chipper of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
A brush chipper 100 featuring wireless remote operation capabilities and associated safety aspects is shown in FIGS. 1-3. The brush chipper 100 is moved from place to place on a set of tracks 110. Control of the actuation of the tracks 110 may be accomplished locally and remotely.
Brush and wood 210 are loaded into the infeed area 120 and drawn in by feed rollers 220. The chipping actually occurs at a chipping drum or disk 230. FIG. 2 shows a chipping disc, but machines with drums are also common. The feed rollers 220 and the chipping drum or disk 230 may both be controlled locally and remotely. Local controls of the feed rollers 220 include a lower feed control bar 180, which may be actuated by an operator in an emergency situation to stop the feed rollers 220, and an upper feed control bar 115, which is routinely used to engage, disengage, and reverse the feed rollers 220.
Chipped matter is expelled from the brush chipper 100 via a spout 130, preferably having a deflector 135. The spout 130 may be aimed with local controls and remote controls.
A remote enable strobe light 140 is mounted on the brush chipper 100 to be visible from almost any angle. The remote enable light 140 flashes whenever the remote module 410 (see FIG. 4) is enabled to operate the brush chipper 100. In the preferred embodiment, the remote enable light 140 is amber in color and is a strobe light. However, the present invention is not limited to the color or lighting sequence of the remote enable light 140.
Two mushroom switches 150 are located on opposite sides of the brush chipper 100. Both mushroom switches 150 must be pulled out, and the upper feed control bar 115 must be in its neutral position in order to permit remote operation. During remote operation, if either of the mushroom switches 150 is pushed in, remote operation is immediately disabled. Additionally, if the upper feed control bar 115 is removed from its neutral position, remote operation is immediately disabled.
Other controls provided locally on the chipper 100 include a hold-to-run switch 160, providing an operator an opportunity to override a stop condition caused by a tree branch contacting the lower feed control bar 180, for instance. The hold-to-run switch 160 must be depressed and held by the operator all the time the stop condition is overridden.
Another control located on the chipper 100 is a lower feed control bar sensitivity switch 170. The lower feed control bar 180 causes a stop condition when it is engaged by a branch or an operator. The sensitivity of this lower feed control bar 180 is adjustable via the lower feed control bar sensitivity switch 170. In its high sensitivity position, the lower feed control bar 180 will more readily stop the feed rollers 220 than in the lower sensitivity setting.
A wireless remote control system is included as part of the brush chipper 100. A wireless remote module 400 is shown in FIG. 4, and is used by an operator at a location remote from the brush chipper 100. Often, the use of the remote module 400 is by an operator that is transporting the chipper. Joy sticks 410 are provided to maneuver the brush chipper 100 via the tracks 110. As with most tracked vehicles, the tracks 110 are powered independently, so while one track 110 is turning forward, the other track 110 may be turning forward, backward, or stopped. Having the joysticks, used to control the tracks, on the remote control module allows the operator to stay away from the machine, to avoid potential hazards inherent with the movement of the chipper.
Other machine functions can also be controlled with the remote module, for which a control panel 420 is also provided, an example of which is shown in FIG. 5. The control panel 420 is constructed to be installed on the remote module in the space between the joysticks as shown in FIG. 4. The functions provided by the controls included on the control panel 420 shown in FIG. 5 include start control 510 to start the engine; rotation control 520 to rotate the discharge spout; stop control 530 which stops the engine, and ultimately also stops the feed wheels 220, and chipping disk 230; deflector control 540 which controls the orientation of the deflector; clutch engage/disengage 550 which controls a clutch that stops or starts the cutter drum or disc; speed control 560 which allows selection of a gear ratio providing either fast or slow track speed; number keypad 570 with which to enter the security code to enable remote operation and for selection and storing of configuration variables, and speed control 580 which allows selection of either high engine rpm or low engine rpm. These controls are typically used in preparation for, and in advance of performing chipping.
Another control on the remote module 400 is the hold-to-run control 430 as shown in FIG. 4, which is typically used during the chipping operation, particularly when the remote operator may also be operating a separate loader machine. Two hold-to-run buttons 430 are included for convenience. The function of these hold-to-run buttons 430 is the same as the hold-to-run switch 160 on the brush chipper 100, while the machine configuration must be different in order for the remote hold to run controls to work. In order for the remote hold to run controls to work, the machine must be placed in a configuration for remote operation.
To configure the local controls on the brush chipper 100 for remote operation, the upper feed control bar 115 must be in a neutral position. The two mushroom switches 150 must be pulled out, that is, away from the body of the brush chipper 100 in order to permit remote operation. During remote operation, if either of the mushroom switches 150 is pushed in, or if the upper feed control bar 115 is pushed out of its neutral position, remote operation is immediately disabled.
A wiring schematic is shown in FIG. 6, focusing on the microprocessors, 600, 602, wherein the microprocessor 602 is associated with the wireless remote operation of the brush chipper 100. The following describes the pinouts for the two microprocessors, 600, 602 as illustrated in FIG. 6:
- 604 Ignition switch on
- 606 Forward feed switch
- 608 Reverse feed switch
- 610 Emergency stop switch
- 612 Normal sensitivity switch
- 614 Reduced sensitivity switch
- 616 Hydraulic over-pressure switch
- 618 Sensitivity select switch
- 620 Engine droop setting switch
- 622 Chute rotate switch
- 624 Deflector up/down switch
- 626 Reset/hold-to-run switches
- 630 Power relay 2
- 632 Power relay
- 634 Forward left track solenoid
- 636 Reverse left track solenoid
- 638 Forward right track solenoid
- 640 Reverse right track solenoid
- 642 Engine speed sensor
- 644 Reverse feed solenoid
- 646 Reverse feed solenoid
- 648 Winch enable solenoid
- 650 Clutch engage solenoid
- 652 Normal sensitivity light
- 654 High track speed solenoid
- 656 Info light
- 658 Chute rotate counter clockwise solenoid
- 660 Chute rotate clockwise solenoid
- 662 Deflector up solenoid
- 664 Deflector down solenoid
- 668 Remote beacon light
The above embodiments are the preferred embodiments, but this invention is not limited thereto. It is, therefore, apparent that many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.