This disclosure relates in general to an interface for receiving a drive tool of a remote operated vehicle for rotating subsea equipment, such as subsea valve actuators, and particularly to an interface having an overtorque protection device.
Subsea well equipment, such as subsea trees, employs valves that are typically hydraulically or electrically actuated. The valve actuators normally have an overriding mechanism that allows the valve to be opened or closed manually, rather than hydraulically or electrically. The manual actuation occurs in response to rotation of a drive stem or shaft by an external device, such as a remote operated vehicle (ROV). Subsea well equipment may have other shafts that are rotated by an ROV. An ROV is deployed on an umbilical from a surface vessel and controlled from the surface vessel.
Valve actuators have components in their drive train that may fail or be damaged if the torque imposed by the ROV is excessive. Typically, an operator will calibrate the ROV while at the vessel so that it will not impose a torque greater than the maximum capability of the device that it is to rotate. On occasion, personnel may err and set the torque limit for the ROV too high. If that occurs, a possibility exists that the drive train of the subsea device will be damaged. Retrieving the subsea device for repair can be difficult and expensive.
An interface device coupled to a shaft of the subsea well device is adapted to receive an ROV drive tool to rotate the interface device and shaft of the well device. The interface device has two components: a permanent module and a retrievable module. The permanent module is coupled to the shaft of the well device to transmit rotation of the permanent module to the shaft. This permanent portion of the ROV interface is mounted so as to remain subsea for an extended period of time. The ROV interface has a retrievable module with drive and driven members that are coupled together for rotation in unison by a shear element. The driven member is releasably coupled to the permanent module for transmitting rotation of the driven member to the permanent module. The drive member of the retrievable module is engageable with a drive tool of the ROV to cause the drive member, the driven member and the permanent module to rotate the subsea well device shaft. The retrievable module also has an ROV retrieval profile to retrieve the retrievable module in the event the shear element shears. The retrieval profile is configured to be engaged by retrieving tool of the ROV. The drive and driven members are retrievable together by the ROV while the permanent module remains attached to the shaft.
In the preferred embodiment, the drive and driven members have cylindrical surfaces that mate with each other. A recess in one of the cylindrical surfaces mates with a recess in the other of the cylindrical surfaces to define a shear element cavity. A shear element locates within this shear element cavity. A spring biased retainer releaseably retains the driven member in engagement with the permanent module. The retainer will release upon a straight pull by the ROV that is sufficient to overcome the force of the spring-biased retainer.
Preferably, the retrieval profile for the ROV is located on the driven member. It may comprise a pair of slots located in a forward end of the driven member. Each of the slots may have an entry portion with an open end sized to receive a retrieval tool of the ROV. Each of the slots has a retainer portion that prevents removal of the retrieval tool once it is rotated from the entry portion into the retainer portion of the slot. Preferably, the driven and drive members are secured together by retainer mechanism that prevents them from being separated after shearing and retrieval.
In the embodiment shown, the permanent module comprises a housing with forward and rearward ends. A drive cavity extends into the housing from the rearward end for coupling to the well device shaft. A pod cavity extends into the housing from the forward end. The retrievable module includes a pod body that is located in the pod cavity for rotation with the housing. The pod body has a cylindrical receptacle that extends into the pod body from the forward end of the pod body. A spring-biased retainer releaseably retains the pod body in the pod cavity.
The retrievable module also includes a drive pin, which is the drive member. The drive pin has a cylindrical base that locates within the receptacle of the pod body. The drive pin has a protruding polygonal portion for engagement by a drive member of the ROV.
The shear element may be located between the base of the drive pin and the receptacle. The shear element applies to the pod body torque imposed by the ROV on the drive pin to cause rotation at the housing and the drive shaft. The shear element shears in the event the ROV applies excessive torque.
In the embodiment shown, the housing cavity that receives the pod body is not cylindrical. In the embodiment shown, the housing cavity is elongated, having a major axis dimension and a minor axis dimension. The major axis dimension is greater than the minor axis dimension. The portion of the pod body that locates within the cavity of the housing has a mating configuration for alignment and torque transfer. In one embodiment, the elongated sides of the housing cavity are flat and parallel with each other. The spring-biased retainer in that instance may comprise two detent members, each protruding into the cavity and engaging depressions formed on the flat sides of the pod body. A detent member is biased by coil spring into engagement with one of the depressions.
Referring to
A filler ring 23 may be secured to the outer diameter of housing 13 and in abutment with subsea panel 21. Part of panel 21 fits between flange 19 and filler ring 23. Other ways to mount housing 13 to a subsea well device are feasible. Housing 13 is considered to be part of a permanent module in that once mounted to subsea panel 21, it is intended to remain there for an indefinite period, which could be years.
Housing 13 has a drive cavity 25 that extends from housing rearward end 17 in a forward direction. Drive cavity 25 is illustrated to be a cylindrical closed bottom hole, but it could have different configurations. A cylindrical drive stem or shaft 27 is mounted within drive cavity 25 for rotation with housing 13. Drive shaft 27 is a part of a subsea well device, such as a rotatable drive stem of a subsea valve actuator. In this example, the end portion of drive shaft 27 has a smooth cylindrical exterior surface and is secured by an antirotation device so that rotation of housing 13 causes rotation of drive shaft 27. The antirotation device could be many different types. As an example, it is shown to be a set screw 29 extending through a threaded hole in housing 13. Set screw 29 has an inner end that engages a conical recess or depression 31 formed in drive shaft 27. A pin extending completely through drive shaft 27 and secured by cotter pins at both ends is another type of antirotation device. A key or splines between drive shaft 27 and cavity 25 would also be feasible. Drive shaft 27 and drive cavity 25 extend along an axis 33 of rotation of ROV interface 11.
A pod cavity 35 is formed in housing 13, also along axis 33. Pod cavity 35 extends from forward end 15 into housing 13. In this example, pod cavity 35 does not intersect drive cavity 25, rather it is spaced a short distance in a forward direction from the base of drive cavity 25. Referring to
A pod body 43, which forms part of a retrievable module, has a mating contour to and fits within pod cavity 35. The forward end of pod body 43 may be flush with forward end 15 of housing 13. Pod body 43 is illustrated in more detail in
Referring to
The assembly for each detent 57 includes a sleeve 59 with external threads 61 that engage threaded hole 58. Each detent 57 comprises a cylindrical pin that is carried within sleeve 59 for movement in inner and outer directions along a detent axis 63. Shapes other than cylindrical are feasible. A coil spring 65 encircles detent 57 for urging detent 57 in an inward direction. Coil spring 65 has an outer end that abuts an internal shoulder 67 on an outer end of sleeve 59. Coil spring 65 has an inner end that abuts a split ring or shoulder 69 mounted around detent 57 near its inner end. An internal shoulder 71 extending internally from sleeve 59 near its inner end is abutted by split ring 69 to provide a stop to movement of detent 57 in the inward direction. Detent 57 has a bevel 73 on its inner end that mates with a similar configuration for depression 55 (
Referring still to
As shown in
Referring still to
Shear elements 89 are shown to be rectangular, but they may have other shapes, such as cylindrical. Each cavity defined by slots 85, 87 has an entrance on the rearward end of drive pin base 81. In this example, receptacle slots 87 extend from receptacle bottom 75 to the forward end of pod body 43. Drive pin slots 85 extend from the rearward end of drive pin 77 part of the length of drive pin base 81.
To assemble drive pin 77 with pod body 43, shear elements 89 are inserted into slots 85 from the rearward end of drive pin 77, then drive pin 77 is inserted into receptacle 53 as shear elements 89 slide into slots 87. Then retaining ring 79 (
Referring again to
As illustrated in
In operation, the ROV interface 11 will be installed as illustrated in
In the event excessive torque is applied by ROV drive tool 84, shear elements 89 (
To begin the retrieval of the retrievable module, retrieval tool members 97 are pushed into retrieval slots 91. The operator causes a short amount of rotation of the two members of retrieving tool 97, which will place heads 99 below ledges 101, as shown in
When retrieving the sheared retrievable module, the sheared portions of shear elements 89 will also be contained within the retrievable module as these portions will remain within shear element slots 85 and 87. To repair the retrievable module at the surface vessel, the operator removes retaining ring 79 and pulls drive pin 77 from receptacle 53. The operator replaces shear elements 89 and reassembles drive pin 77 with drive pod 43.
Configuring the interface into a retrievable and permanent portion allows a readily accessible portion of interface 11 to be retrieved. This retrievable module comprises only the portion of interface 11 that needs repairing or replacing, making it unnecessary for retrieval of any of the portions that would normally remain permanently connected with the subsea well device.
Although the disclosure has shown only one of its forms, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes and modifications.
Number | Name | Date | Kind |
---|---|---|---|
3211223 | Hoch | Oct 1965 | A |
3732923 | Fowler | May 1973 | A |
5002129 | Hopper | Mar 1991 | A |
6041804 | Chatufale | Mar 2000 | A |
6231027 | Baker et al. | May 2001 | B1 |
6572076 | Appleford et al. | Jun 2003 | B1 |
6585227 | Newport et al. | Jul 2003 | B2 |
6609532 | Peterson | Aug 2003 | B1 |
6609533 | Sundararajan | Aug 2003 | B2 |
6659133 | Russell | Dec 2003 | B2 |
7108006 | Armstrong | Sep 2006 | B2 |
7398764 | Koehler et al. | Jul 2008 | B2 |
7523916 | Fenton | Apr 2009 | B2 |
7641487 | Morgan | Jan 2010 | B2 |
8011434 | Cosgrove et al. | Sep 2011 | B2 |
8281863 | Voss | Oct 2012 | B2 |
20010011592 | Baker | Aug 2001 | A1 |
20030020034 | Newport et al. | Jan 2003 | A1 |
20030098151 | Cove et al. | May 2003 | A1 |
20050051336 | Bartlett | Mar 2005 | A1 |
20050081916 | Williams et al. | Apr 2005 | A1 |
20080264646 | Sten-Halvorsen et al. | Oct 2008 | A1 |
20110056696 | Bamford | Mar 2011 | A1 |
20120048565 | Udipi et al. | Mar 2012 | A1 |
20120186039 | Long | Jul 2012 | A1 |
20120234410 | Borchgrevink et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
2390654 | Jan 2004 | GB |
2408299 | May 2005 | GB |
2473444 | Mar 2011 | GB |
2010141795 | Dec 2010 | WO |
Entry |
---|
GB Search Report dated Jul. 16, 2012 from corresponding Application No. GB1204656.1. |
GB Search Report dated Sep. 27, 2012 from corresponding Application No. GB1204656.1. |
Number | Date | Country | |
---|---|---|---|
20120241159 A1 | Sep 2012 | US |