This application claims the benefit under 35 USC §119 of the filing date of International Application Serial No. PCT/US10/57539, filed 20 Nov. 2010. The entire disclosure of this prior application is incorporated herein by this reference.
The present disclosure relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in an embodiment described herein, more particularly provides for remote operation of a rotating control device bearing clamp.
A conventional rotating control device may require human activity in close proximity thereto, in order to maintain or replace bearings, seals, etc. of the rotating control device. It can be hazardous for a human to be in close proximity to a rotating control device, for example, if the rotating control device is used with a floating rig.
Therefore, it will be appreciated that improvements are needed in the art of constructing rotating control devices. These improvements would be useful whether the rotating control devices are used with offshore or land-based rigs.
Representatively illustrated in
It will be readily appreciated by those skilled in the art that the area (known as the “moon pool”) surrounding the top of the riser assembly 14 is a relatively hazardous area. For example, the rig 16 may heave due to wave action, multiple lines and cables 18 may be swinging about, etc. Therefore, it is desirable to reduce or eliminate any human activity in this area.
Seals and bearings in a rotating control device (such as the RCD 12) may need to be maintained or replaced, and so one important feature of the RCD depicted in
Referring additionally now to
Rotating control devices are also known by the terms “rotating control head,” “rotating blowout preventer,” “rotating diverter” and “RCD.” A rotating control device is used to seal off an annulus 24 formed radially between a body 26 of the rotating control device and a tubular string 28 (such as a drill string) positioned within the body. The annulus 24 is sealed off by the rotating control device, even while the tubular string 28 rotates therein.
For this purpose, the rotating control device includes one or more annular seals 30. If multiple seals 30 are used, the rotating control device may include an upper seal housing 54. To permit the seals 30 to rotate as the tubular string 28 rotates, a bearing assembly 32 is provided in a bearing housing assembly 33.
A clamp 34 releasably secures the housing assembly 33 (with the bearing assembly 32 and seals 30 therein) to the body 26, so that the bearing assembly and seals can be removed from the body for maintenance or replacement. However, in the prior art configuration of
Referring additionally now to
An unclamped configuration of the clamp device 22 is depicted in
The clamp sections 40 are displaced outward (in opposite directions, away from each other) by two fluid motors 42. The motors 42 rotate respective threaded members 44, which are threaded into each of the clamp sections 40.
Note that each threaded member 44 has two oppositely threaded portions 46, 48 (e.g., with one portion being right-hand threaded, and the other portion being left-hand threaded). Thus, as a threaded member 44 rotates, it will cause the clamp sections 40 to displace in opposite directions (toward or away from each other, depending on the direction of rotation of the threaded member).
The motors 42, ends of the clamp sections 40 and ends of the threaded members 44 are supported by bracket-type supports 50. The ends of the threaded members 44 preferably are rotationally mounted to the supports 50 using, for example, bushings 52. The motors 42 are preferably rigidly mounted to the supports 50, for example, using fasteners (not shown).
Although two each of the clamp sections 40, motors 42 and threaded members 44 are depicted in
Referring additionally now to
In this view it may be seen that the bearing housing assembly 33 and an upper seal housing 54 (see
Referring additionally now to
Note that the motors 42 are preferably fluid motors, that is, motors which are operated in response to fluid pressure applied thereto. For example, the motors 42 could be hydraulic or pneumatic motors. However, other types of motors (such as electric motors) could be used, if desired.
Referring additionally now to
Pressure is delivered to the motors 42 from the pressure source 56 under control of a control system 58. For example, when it is desired to unclamp the clamp device 22, the control system 58 may cause the pressure source 56 to deliver a pressurized fluid flow to one of the lines 20 (with fluid being returned via the other of the lines), in order to cause the motors 42 to rotate the threaded members 44 in one direction. When it is desired to clamp the clamp device 22, the control system 58 may cause the pressure source 56 to deliver a pressurized fluid flow to another of the lines 20 (with fluid being returned via the first line), in order to cause the motors 42 to rotate the threaded members 44 in an opposite direction.
Connectors 60 may be provided for connecting the lines 20 to the pressure source 56, which is preferably positioned at a remote location on the rig 16. The motors 42 and/or threaded members 44 are preferably designed so that the threaded members will not rotate if the connectors 60 are disconnected, or if pressurized fluid is not flowed through the lines.
For example, a pitch of the threads on the threaded members 44 could be sufficiently fine, so that any force applied from the clamp sections 40 to the threaded members will not cause the threaded members to rotate. In this manner, the loss of a capability to apply fluid pressure to the motors 42 will not result in any danger that the clamp device 22 will become unclamped, even if the body 26 is internally pressurized.
Note that the motors 42 are preferably connected to the lines 20 in series, so that they operate simultaneously. In this manner, the ends of the clamp sections 40 will be displaced the same distance, at the same time, in equal but opposite directions, by the motors 42.
Although two lines 20 are depicted in
Referring additionally now to
However, the threaded members 44 in the configuration of
Two of the motors 42 are depicted in
Referring additionally now to
Unlike the previously described example, the motor 42 in the example of
The clamp device 22 is depicted in its clamped arrangement in
The motor 42 is preferably slidably mounted to the body 26 so that, when the clamp sections 40 are displaced away from each other, the motor can move laterally inward toward the body. When the clamp sections 40 are displaced toward each other, the motor 42 can move laterally outward away from the body 26.
Referring additionally now to
The motor 42 is pivotably mounted to one of the clamp section ends 62. The threaded portion 46 of the threaded member 44 is received in an internally threaded member 70 pivotably mounted to the other clamp section end 62. A central stabilizer 72 is mounted to the support 50 for supporting the threaded member 44.
When the motor 42 rotates the threaded member 44, the ends 62 of the clamp sections 40 displace either toward or away from each other, with the clamp sections pivoting about the pivot 66. As with the other configurations described above, the motor 42 and/or threaded member 44 are preferably designed (e.g., with sufficiently fine pitch threads, by providing a brake for the motor, etc.) so that the loss of a capability to apply fluid pressure to the motor will not result in any danger that the clamp device 22 will become unclamped, even if the body 26 is internally pressurized.
Referring additionally now to
In addition, one or more lines 74 may be used to transmit lubrication to the bearing assembly 32. One or more ports 76 (see
One advantage of the
Although the RCD 12 in its various configurations is described above as being used in conjunction with the floating rig 16, it should be clearly understood that the RCD can be used with any types of rigs (e.g., on a drill ship, semi-submersible, jack-up, tension leg, land-based, etc., rigs) in keeping with the principles of this disclosure.
Although separate examples of the clamp device 22 are described in detail above, it should be understood that any of the features of any of the described configurations may be used with any of the other configurations. For example, the pneumatic motor 42 of
It may now be fully appreciated that the above disclosure provides advancements to the art of operating a clamp device on a rotating control device. The clamp device 22 can be remotely operated, to thereby permit removal and/or installation of the bearing assembly 32 and seals 30, without requiring human activity in close proximity to the RCD 12.
The above disclosure provides to the art a rotating control device 12 which can include a housing assembly 33 containing a bearing assembly 32 and at least one annular seal 30 which rotates and seals off an annulus 24 between a tubular string 28 and a body 26 of the rotating control device 12, and a remotely operable clamp device 22 which selectively permits and prevents displacement of the housing assembly 33 relative to the body 26.
Pressure may be selectively supplied to the clamp device 22 from a pressure source 56, with the pressure source 56 being remotely located relative to the clamp device 22. Lubricant may also be supplied from the pressure source 56 to the bearing assembly 32.
The clamp device 22 can include at least one motor 42 which rotates at least one threaded member 44. The motor 42 may comprise a fluid motor. The threaded member 44 may comprise multiple threaded members. The motor 42 may comprise multiple motors.
The clamp device 22 may selectively permit and prevent separation of the bearing assembly 32 and annular seal 30 from the body 26.
Also provided by the above disclosure is a method of remotely operating a clamp device 22 on a rotating control device 12. The method can include rotating at least one threaded member 44 which is rotationally secured relative to a body 26 of the rotating control device 12; and displacing at least one clamp section 40 of the clamp device 22 in response to rotation of the threaded member 44, thereby selectively securing and releasing a bearing assembly 32 and at least one annular seal 30 relative to the body 26.
The method can also include supplying fluid pressure to at least one fluid motor 42, thereby causing the fluid motor to rotate the threaded member 44 The fluid pressure can be supplied from a location which is remote from the rotating control device 12.
The fluid motor 42 may comprise a hydraulic or pneumatic motor. Multiple fluid motors 42 can be used for rotating multiple respective threaded members 44. The method can include connecting the multiple fluid motors 42 in series, whereby the fluid motors 42 operate simultaneously.
The above disclosure also describes a rotating control device 12 which can comprise at least one annular seal 30 which rotates and seals off an annulus 24 between a tubular string 28 and a body 26 of the rotating control device 12, and a remotely operable clamp device 22 which selectively permits and prevents access to an interior of the body 26. The clamp device 22 can include at least one motor 42 which rotates a threaded member 44.
A pressure source 56 may supply fluid pressure to the motor 42, and the pressure source 56 may be remotely located from the motor 42.
The clamp device 22 may selectively prevent and permit separation of a bearing assembly 32 from the body 26. The annular seal 30 may rotate relative to the body 26 via the bearing assembly 32. The clamp device 22 may selectively prevent and permit separation of the annular seal 30 from the rotating control device 12.
It is to be understood that the various embodiments of the present disclosure described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of the present disclosure. The embodiments are described merely as examples of useful applications of the principles of the disclosure, which is not limited to any specific details of these embodiments.
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the disclosure, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of the present disclosure. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present invention being limited solely by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
PCT/US2010/057539 | Nov 2010 | WO | international |
Number | Name | Date | Kind |
---|---|---|---|
5651 | West et al. | Jun 1848 | A |
2326941 | Heitner | Aug 1943 | A |
2684166 | Jarnett | Jul 1954 | A |
2897895 | Ortloff | Aug 1959 | A |
3071188 | Raulins | Jan 1963 | A |
3142337 | Poorman, Jr. et al. | Jul 1964 | A |
3163223 | Bauer et al. | Dec 1964 | A |
3251611 | Haeber et al. | May 1966 | A |
3387851 | Cugini | Jun 1968 | A |
3472518 | Harlan | Oct 1969 | A |
3561723 | Cugini | Feb 1971 | A |
3614111 | Regan | Oct 1971 | A |
3621912 | Woody, Jr. et al. | Nov 1971 | A |
3695633 | Hanes | Oct 1972 | A |
3868832 | Biffle | Mar 1975 | A |
3967678 | Blackwell | Jul 1976 | A |
4033701 | Labyer et al. | Jul 1977 | A |
4098341 | Lewis | Jul 1978 | A |
4185856 | McCaskill | Jan 1980 | A |
4258792 | Restarick | Mar 1981 | A |
4285406 | Garrett et al. | Aug 1981 | A |
4293047 | Young | Oct 1981 | A |
4304310 | Garrett | Dec 1981 | A |
4312404 | Morrow | Jan 1982 | A |
4416340 | Bailey | Nov 1983 | A |
4448255 | Shaffer et al. | May 1984 | A |
4494609 | Schwendemann | Jan 1985 | A |
4526406 | Nelson | Jul 1985 | A |
4531580 | Jones | Jul 1985 | A |
4546828 | Roche | Oct 1985 | A |
4601608 | Ahlstone | Jul 1986 | A |
4626135 | Roche | Dec 1986 | A |
4673041 | Turner et al. | Jun 1987 | A |
4693497 | Pettus et al. | Sep 1987 | A |
4754820 | Watts et al. | Jul 1988 | A |
4813495 | Leach | Mar 1989 | A |
4828024 | Roche | May 1989 | A |
5022472 | Bailey et al. | Jun 1991 | A |
5085129 | Dugan | Feb 1992 | A |
5137084 | Gonzales et al. | Aug 1992 | A |
5166650 | Simmons et al. | Nov 1992 | A |
5178215 | Yenulis et al. | Jan 1993 | A |
5213158 | Bailey et al. | May 1993 | A |
5224557 | Yenulis et al. | Jul 1993 | A |
5277249 | Yenulis et al. | Jan 1994 | A |
5279365 | Yenulis et al. | Jan 1994 | A |
5322137 | Gonzales | Jun 1994 | A |
5409073 | Gonzales | Apr 1995 | A |
5588491 | Brugman et al. | Dec 1996 | A |
5647444 | Williams | Jul 1997 | A |
5662181 | Williams et al. | Sep 1997 | A |
5720356 | Gardes | Feb 1998 | A |
6016880 | Hall et al. | Jan 2000 | A |
6024172 | Lee | Feb 2000 | A |
6065550 | Gardes | May 2000 | A |
6109348 | Caraway | Aug 2000 | A |
6129152 | Hosie et al. | Oct 2000 | A |
6138774 | Bourgoyne, Jr. et al. | Oct 2000 | A |
6230824 | Peterman et al. | May 2001 | B1 |
6263982 | Hannegan et al. | Jul 2001 | B1 |
6276450 | Senevirante | Aug 2001 | B1 |
6325159 | Peterman et al. | Dec 2001 | B1 |
6457540 | Gardes | Oct 2002 | B2 |
6470975 | Bourgoyne et al. | Oct 2002 | B1 |
6547002 | Bailey et al. | Apr 2003 | B1 |
6554016 | Kinder | Apr 2003 | B2 |
6588502 | Nice | Jul 2003 | B2 |
6702012 | Bailey et al. | Mar 2004 | B2 |
6732804 | Hosie et al. | May 2004 | B2 |
6749172 | Kinder | Jun 2004 | B2 |
6896076 | Nelson et al. | May 2005 | B2 |
6904981 | van Riet | Jun 2005 | B2 |
6913092 | Bourgoyne et al. | Jul 2005 | B2 |
6953085 | Nice | Oct 2005 | B2 |
6981561 | Krueger et al. | Jan 2006 | B2 |
7004444 | Kinder | Feb 2006 | B2 |
7007913 | Kinder | Mar 2006 | B2 |
7040394 | Bailey et al. | May 2006 | B2 |
7044237 | Leuchtenberg | May 2006 | B2 |
7055627 | Fontana et al. | Jun 2006 | B2 |
7080685 | Bailey et al. | Jul 2006 | B2 |
7096975 | Aronstam et al. | Aug 2006 | B2 |
7134489 | Van Riet | Nov 2006 | B2 |
7159669 | Bourgoyne et al. | Jan 2007 | B2 |
7165610 | Hopper | Jan 2007 | B2 |
7174975 | Krueger et al. | Feb 2007 | B2 |
7185718 | Gardes | Mar 2007 | B2 |
7185719 | van Riet | Mar 2007 | B2 |
7237623 | Hannegan | Jul 2007 | B2 |
7258171 | Bourgoyne et al. | Aug 2007 | B2 |
7264058 | Fossli | Sep 2007 | B2 |
7270185 | Fontana et al. | Sep 2007 | B2 |
7273102 | Sheffield | Sep 2007 | B2 |
7278496 | Leuchtenberg | Oct 2007 | B2 |
7350597 | Reitsma et al. | Apr 2008 | B2 |
7353887 | Krueger et al. | Apr 2008 | B2 |
7367410 | Sangesland | May 2008 | B2 |
7367411 | Leuchtenberg | May 2008 | B2 |
7395878 | Reitsma et al. | Jul 2008 | B2 |
7472870 | Zagorski et al. | Jan 2009 | B2 |
7487837 | Bailey et al. | Feb 2009 | B2 |
7497266 | Fossli | Mar 2009 | B2 |
7513310 | Fossli | Apr 2009 | B2 |
7562723 | Reitsma | Jul 2009 | B2 |
7650950 | Luechtenberg | Jan 2010 | B2 |
7658228 | Moksvold | Feb 2010 | B2 |
7665773 | Jones et al. | Feb 2010 | B2 |
7677329 | Stave | Mar 2010 | B2 |
7699109 | May et al. | Apr 2010 | B2 |
7708064 | Sehsah | May 2010 | B2 |
7721822 | Krueger et al. | May 2010 | B2 |
7779903 | Bailey et al. | Aug 2010 | B2 |
7806203 | Krueger et al. | Oct 2010 | B2 |
7836946 | Bailey et al. | Nov 2010 | B2 |
7926560 | Bailey et al. | Apr 2011 | B2 |
7926593 | Bailey et al. | Apr 2011 | B2 |
8033335 | Orbell et al. | Oct 2011 | B2 |
20020112888 | Leuchtenberg | Aug 2002 | A1 |
20030066650 | Fontana et al. | Apr 2003 | A1 |
20030098181 | Aronstam et al. | May 2003 | A1 |
20040009033 | Rieber et al. | Jan 2004 | A1 |
20040206548 | Aronstam et al. | Oct 2004 | A1 |
20060065402 | Fontana et al. | Mar 2006 | A9 |
20060086538 | Van Riet | Apr 2006 | A1 |
20060124318 | Sheffield | Jun 2006 | A1 |
20060144622 | Bailey et al. | Jul 2006 | A1 |
20060169491 | Fossli | Aug 2006 | A1 |
20070012457 | Curtis et al. | Jan 2007 | A1 |
20070068704 | Krueger et al. | Mar 2007 | A1 |
20070240875 | Van Riet | Oct 2007 | A1 |
20070278007 | Krueger et al. | Dec 2007 | A1 |
20080017388 | Kulhanek et al. | Jan 2008 | A1 |
20080105434 | Orbell et al. | May 2008 | A1 |
20080251257 | Luechtenberg | Oct 2008 | A1 |
20090057021 | Williams | Mar 2009 | A1 |
20090101351 | Hannegan | Apr 2009 | A1 |
20090211239 | Askeland | Aug 2009 | A1 |
20100006297 | Stave | Jan 2010 | A1 |
20100018715 | Orbell et al. | Jan 2010 | A1 |
20100175882 | Bailey et al. | Jul 2010 | A1 |
20110024195 | Hoyer et al. | Feb 2011 | A1 |
20110108282 | Kozicz et al. | May 2011 | A1 |
20110127040 | Humphreys | Jun 2011 | A1 |
20110168392 | Bailey et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
1432887 | Mar 2006 | EP |
1595057 | Jul 2006 | EP |
1488073 | Aug 2006 | EP |
1664478 | Dec 2006 | EP |
2150681 | Oct 2007 | EP |
2050924 | Apr 2009 | EP |
1356186 | Jun 2009 | EP |
2208855 | Jan 2010 | EP |
2216498 | Aug 2010 | EP |
2378056 | Oct 2011 | EP |
2478119 | Aug 2011 | GB |
9942696 | Aug 1999 | WO |
0183941 | Nov 2001 | WO |
0190528 | Nov 2001 | WO |
0244518 | Jun 2002 | WO |
03015336 | Feb 2003 | WO |
03025334 | Mar 2003 | WO |
2004005667 | Jan 2004 | WO |
03071091 | Aug 2004 | WO |
2004074627 | Sep 2004 | WO |
2004085788 | Nov 2004 | WO |
2005001237 | Jan 2005 | WO |
2005017308 | Feb 2005 | WO |
2006029379 | Mar 2006 | WO |
2006031119 | Mar 2006 | WO |
2006099362 | Sep 2006 | WO |
2006118920 | Nov 2006 | WO |
2006138565 | Dec 2006 | WO |
2007008085 | Jan 2007 | WO |
2007016000 | Feb 2007 | WO |
2007030017 | Mar 2007 | WO |
2007081711 | Jul 2007 | WO |
2007112292 | Oct 2007 | WO |
2007124330 | Nov 2007 | WO |
2007126833 | Nov 2007 | WO |
2008120025 | Oct 2008 | WO |
2008133523 | Nov 2008 | WO |
2008134266 | Nov 2008 | WO |
2008156376 | Dec 2008 | WO |
2009017418 | Feb 2009 | WO |
2009018448 | Feb 2009 | WO |
2009058706 | May 2009 | WO |
2009086442 | Jul 2009 | WO |
2008151128 | Feb 2010 | WO |
Entry |
---|
International Search Report with Written Opinion issued Aug. 19, 2011 for International Patent Application No. PCT/US/10/057540, 11 pages. |
International Search Report with Written Opinion issued Aug. 19, 2011 for International Patent Application No. PCT/US/10/057539, 12 pages. |
International Search Report with Written Opinion issued Sep. 28, 2011 for International Patent Application No. PCT/US11/029116, 9 pages. |
International Search Report with Written Opinion issued Sep. 29, 2011 for International Patent Application No. PCT/US11/028384, 11 pages. |
International Preliminary Report on Patentability issued Oct. 4, 2012 for US PCT Patent Application No. PCT/US2011/029116, 6 pages. |
Diamond Rotating Heads, Inc.; Diamond Model 8000/9000, Technical data sheet, received Dec. 3, 2010, 2 pages. |
Diamond Rotating Heads, Inc.; Product information, company brochure, received Dec. 3, 2010, 4 pages. |
Halliburton Energy Services, Inc.; “RCD 5000 Rotating Control Device”, H05284, dated Feb. 2010, 8 pages. |
Halliburton Energy Services, Inc.; “RCD 1000 Rotating Control Device”, H07903, dated Aug. 2010, 2 pages. |
Vector Group; “Optima Subsea Connector”, company web page, dated 2010, 2 pages. |
Weatherford; “Williams Model IP 1000”, brochure # 325.02, dated 2002, 2 pages. |
Weatherford; “Model 7000”, Technical data sheet, dated Nov. 2006, 2 pages. |
Weatherford; “Model 7100” Technical data sheet, dated Nov. 2006, 2 pages. |
Weatherford; “Model 7800 Rotating Control Device” Technical data sheet, dated Nov. 2006, 2 pages. |
Weatherford; “Model 8000” Technical data sheet, dated Nov. 2006, 2 pages. |
Weatherford; “Model 9000” Technical data sheet, dated Nov. 2006, 2 pages. |
Weatherford; “Model IP 1000” Technical data sheet, dated Nov. 2006, 2 pages. |
Weatherford; “Weatherford Model 7800 Rotating Control Device”, 4593.00, dated 2007, 5 pages. |
Weatherford; “Model 7875 Rotating Control Device”, 4594.01, dated 2010, 4 pages. |
Cameron; “Deepwater Collet Connector”, web page, dated 2006, 1 page. |
Don Hannegan; “Offshore drilling hazard mitigation: Controlled pressure drilling redefines what is drillable”, Drilling Contractor magazine, dated Jan./Feb. 2009, 4 pages. |
Vetcogray; “H-4 Subsea Connectors”, GE Oil & Gas article, dated Jan. 9, 2008, 7 pages. |
Smith Services; “Hold 2500 Rotating Control Device”, brochure SS-04-0055.10M, dated 2004, 4 pages. |
Smith Services; “Marine Riser RCD”, company presentation, dated Jul. 2009, 18 pages. |
Oceaneering; “Remotely Operated Connectors”, Grayloc Products webpage, received Feb. 18, 2010, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20120125636 A1 | May 2012 | US |