Remote power supply parameter adjustment

Information

  • Patent Grant
  • 11247289
  • Patent Number
    11,247,289
  • Date Filed
    Thursday, October 16, 2014
    10 years ago
  • Date Issued
    Tuesday, February 15, 2022
    2 years ago
Abstract
A welding system includes power supply configured to provide a welding power output. The welding system also includes a welding helmet having an electronic display and an inertial measurement unit. The electronic display is configured to display a representation of the power supply and to display one or more indications of one or more parameters of the power supply. The inertial measurement unit is configured to detect movement of the welding helmet. The welding system also includes a processing system communicatively coupled to the inertial measurement unit and configured to adjust at least one parameter of the one or more parameters based at least in part on the movement of welding helmet.
Description
BACKGROUND

The invention relates generally to welding systems and, more particularly, to sensing systems for displaying and changing power supply settings remotely.


Welding is a process that has become ubiquitous in various industries for a variety of types of applications. For example, welding is often performed in applications such as shipbuilding, aircraft repair, construction, and so forth. The welding systems often include power supplies that may generate power for consumption during the welding process. However, these power supplies may often be remote from a work area, thereby causing delays if a user changes settings of a power supply due to travel to and from the power supply to make the changes.


BRIEF DESCRIPTION

In a first embodiment, a welding-type system includes a helmet comprising. The helmet includes an electronic display configured to display a representation of a welding-type power supply and to display one or more indications of one or more parameters of the welding-type power supply. The helmet also includes a first inertial measurement unit configured to detect movement of the helmet. Furthermore, the welding system includes a processing system communicatively coupled to the first inertial measurement unit and configured to adjust at least one parameter of the one or more parameters based at least in part on the movement of helmet.


In another embodiment, a method includes displaying a representation of a welding power supply including one or more parameters of a welding-type power supply on an electronic display of a helmet. The method also includes receiving a command remote from the welding-type power supply, wherein the command is configured to set a parameter of the one or more parameters. Furthermore, the method includes adjusting the parameter, at the welding-type power supply, based at least in part on the command.


In a further embodiment, a welding-type system includes a helmet. The helmet includes an electronic display configured to display a representation of the welding-type power supply and to display one or more indications of one or more parameter of the welding-type power supply. The helmet also includes an audible command unit configured to receive audible commands. Additionally, the system includes a processing system communicatively coupled to the audible command unit and configured to adjust at least one parameter of the one or more parameters based at least in part on audible commands.





DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:



FIG. 1 is a block diagram of an embodiment of a welding system utilizing a welding helmet;



FIG. 2 is a block diagram of an embodiment of the welding helmet of FIG. 1 illustrating an electronic display;



FIG. 3 is an exploded view of an embodiment of layers that may be included in the electronic display of FIG. 2;



FIG. 4 is a perspective view of an embodiment of the welding system of FIG. 1 showing an inertial measurement unit;



FIG. 5 is an embodiment of an image of a working view that may be displayed by the display of FIG. 2;



FIG. 6 is an embodiment of an image of a parameter adjustment view that may be displayed by the display of FIG. 2; and



FIG. 7 is a flowchart diagram view of an embodiment of a process for adjusting parameters of the power supply of the welding system of FIG. 1.





DETAILED DESCRIPTION

As will be described in detail below, provided herein are systems and methods for viewing and controlling power sources remotely. By viewing and controlling the power sources remotely, an operator may weld a workpiece with desired parameters without walking away from the workpiece. In other embodiments, a welding operator may control the parameters of a weld without spending valuable weld time traveling to the power supply to view and control the power supply. Thus, the operator may weld more quickly and efficiently with desired parameters. Furthermore, the operator may confirm welding parameters prior to a weld without substantial delay that may be required when having to walk back to the power source to change welding parameters.


Turning now to the figures, FIG. 1 is a block diagram of an embodiment of a welding system 10 in accordance with the present techniques. The welding system 10 is designed to produce a welding arc 12 with a workpiece 14 (e.g., pipe). The welding arc 12 may be generated by any type of welding system or process, and may be oriented in any desired manner. For example, such welding systems may include gas metal arc welding (GMAW) systems, and may utilize various programmed waveforms and settings. The welding system 10 includes a power supply 16 that will typically be coupled to a power source 18, such as a power grid, an engine, or a combination thereof (e.g., hybrid power). Other power sources may, of course, be utilized including generators and so forth. In the illustrated embodiment, a wire feeder 20 is coupled to a gas source 22 and the power supply 16, and supplies welding wire 24 to a welding torch 26. The welding torch 26 is configured to generate the welding arc 12 between the welding torch 26 and the workpiece 14. The welding wire 24 is fed through the welding torch 26 to the welding arc 12, melted by the welding arc 12, and deposited on the workpiece 14.


The wire feeder 20 will typically include wire feeder control circuitry 28, which regulates the feed of the welding wire 24 from a spool 29 and also may command the output of the power supply 16, among other things. Similarly, the power supply 16 may include power supply control circuitry 30 for monitoring and controlling certain welding parameters and arc-starting parameters. In certain embodiments, the wire feeder control circuitry 28 or the power supply control circuitry 30 may include software, hardware, or a combination thereof. For example, in certain embodiments, the wire feeder control circuitry 28 and/or the power supply control circuitry 30 may include a processor and a tangible, non-transitory, computer-readable memory configured to store instructions to be executed by the processor. In some embodiments, the wire feeder control circuitry 28 may communicate with the power supply control circuitry 30 through a weld cable 31 that is also used to provide power to the wire feeder 20. In some embodiments, the power supply control circuitry 30 may be enclosed in a housing of the power supply 16. In some embodiments, at least some of the processing may be performed by another processor (e.g., processor in the helmet).


The spool 29 of the wire feeder 20 will contain a length of welding wire 24 that is consumed during the welding operation. The welding wire 24 is advanced by a wire drive assembly 32, typically through the use of an electric motor used to drive wheels 34 and 36 used to advance the welding wire 24. In some embodiments, the electric motor is under control of the control circuitry 28. In addition, the workpiece 14 may be coupled to the power supply 16 by a clamp 38 connected to a work cable 40 to complete an electrical circuit when the welding arc 12 is established between the welding torch 26 and the workpiece 14.


Placement of the welding torch 26 at a location proximate to the workpiece 14 allows electrical current, which is provided by the power supply 16 and routed to the welding torch 26, to arc from the welding torch 26 to the workpiece 14. As described above, this arcing completes an electrical circuit that includes the power supply 16, the welding torch 26, the workpiece 14, and the work cable 40. Particularly, in operation, electrical current passes from the power supply 16, to the welding torch 26, to the workpiece 14, which is typically connected back to the power supply 16 via the work cable 40. The arc generates a relatively large amount of heat that causes part of the workpiece 14 and the filler metal of the welding wire 24 to transition to a molten state that fuses the materials, forming the weld.


In certain embodiments, to shield the weld area from being oxidized or contaminated during welding, to enhance arc performance, and to improve the resulting weld, the welding system 10 may also feed an inert shielding gas to the welding torch 26 from the gas source 22. It is worth noting, however, that a variety of shielding materials for protecting the weld location may be employed in addition to, or in place of, the inert shielding gas, including active gases and particulate solids. Moreover, in other welding processes, such gases may not be used, while the techniques disclosed herein are equally applicable.


Although FIG. 1 illustrates a GMAW system, the presently disclosed techniques may be similarly applied across other types of welding systems, including gas tungsten arc welding (GTAW) systems and shielded metal arc welding (SMAW) systems, among others. Accordingly, embodiments of the sensor-based power supply controls may be utilized with welding systems that include the wire feeder 20 and gas source 22 or with systems that do not include a wire feeder 20 and/or a gas source 22 (e.g., embodiments where the welding torch 26 is directly coupled to the power supply 16), depending on implementation-specific considerations.


Presently disclosed embodiments are directed to remote power supply monitoring, viewing, and control. In some embodiments, data related to the power supply 16 may be sent to a welding helmet 42 and presented to an operator wearing the helmet 42. In some embodiments, the data may be presented visually or audibly to the operator. Furthermore, visual data may include images of the power supply 16 taken by one or more cameras 44 showing settings of the power supply 16. In certain embodiments, the operator may modify parameters remotely based on the presented parameters. For example, in certain embodiments, the operator may speak audible commands into the helmet 42 or issue commands that are detected by the helmet 42 or an inertial measurement unit (IMU) 46 in the welding torch 26, the helmet 42, gloves, and/or other suitable locations. In some embodiments, the commands may be detected via a camera and other sensory apparatus in a work area where welding is being performed. Additionally or alternatively, some commands may be received via an electronic device, such as a computer, smart phone, tablet, or other electronic device capable of receiving input from the operator.


In certain embodiments, the IMU 46 may include an accelerometer, a magnetometer, a rate sensor (e.g., a gyroscope sensor), or other sensors capable of measuring movements of the operator. As used herein, a rate sensor may include MEMs based sensors or any device which provides a signal output indicating an angular rate of change within a three dimensional frame of reference. For example, a single axis rate sensor would indicate a rate of change about a single coordinate normal to the sensor's reference plane. The accelerometer may include a single triaxial accelerometer capable of measuring dynamic motion, such as weld weaving. In other embodiments, the accelerometer may include one or more orientation sensors to determine a change of welding torch 26 orientations in one or more dimensions. For example, a two-dimensional position may be calculated with respect to a plane parallel to a direction of gravity based on two accelerometers. In some embodiments, the rate sensor may include one or more rate sensors, such as a single triaxial rate sensor. The power supply control circuitry 30 and/or the wire feeder control circuitry 28 may use the rate sensor to supplement data from the accelerometer to measure smaller or finer movements. In certain embodiments, the magnetometer may include one or more magnetometer sensors, such as a single triaxial magnetometer. The power supply control circuitry 30 and/or the wire feeder control circuitry 28 may use the magnetometer to determine changes in magnetic fields such as movement of the welding torch 26 or other objects in the weld area. Using one or more sensor types in the IMU 46, the welding system 10, via the control circuitry 30 and/or the wire feeder control circuitry 28, may receive detected motion data that may control the power supply 16.


Using data from one or more of the sensors, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may control the power supply 16 to change one or more parameters as desired by an operator without the operator physically walking to the power supply 16. As previously discussed, the welding helmet 42 may display the parameters to be controlled, the power supply 16, or a representation of the power supply 16 via a display, such as the display 48 included inside the welding helmet 42 of FIG. 2. In certain embodiments, the display 48 may include an electronic screen used to replace a viewing area of traditional welding helmets. For example, in some embodiments, auto-darkening glass of a welding helmet may be removed and replaced with the display 48. In certain embodiments, the display 48 may include two separate displays, each display capable of showing images independent from the other display. In such embodiments, the two displays may be used to show a stereoscopic view of various objects, such as the work area and/or the power supply 16.


In other embodiments, a clear display 48 may be layered onto glass of a welding helmet. FIG. 3 illustrates layers 50 of the display 48 that may be placed in the viewing area of the helmet 42. Although the layers 50 includes five layers, in some embodiments, additional layers may be included, some layers may be omitted, two or more layers may combined into a single layer, and/or some layers may be separable into multiple distinct layers (e.g., a polarizing layer, transistor layer, etc.). In other words, in some embodiments, the layers 50 may include 1, 2, 3, 4, 5, 6, or more layers. In the illustrated embodiment, the layers 50 include an inner transparent layer 52, a transparent display layer 54, an insulating layer 56, an autodarkening layer 58, and an outer transparent layer 60. The inner transparent layer 52 may protect the display layer 54 from contact and/or damage from contacting objects within the helmet 42 while enabling a user wearing the helmet 42 to see the images shown by the transparent display layer 54. For example, in some embodiments, the inner transparent layer 52 may include glass or a transparent plastic.


The transparent display layer 54 may include display circuitry that enables the user to see images created and intended to be displayed while still observing the user's actual surrounding area through the transparent display circuitry layer 54. For example, the transparent display layer 54 may include a transparent liquid crystal display (LCD), an organic light emitting diode (OLED) display, or other displays that enable an operator to see what is on the display layer 54 while still being able to see through the display layer 54. In some embodiments, the transparent display layer 54 may include a prism that reflects images projected to one or more parts of the prism. As discussed below, in some embodiments, the display layer 54 may only be capable of displaying images on a portion of the viewing area. However, in some embodiments, the display layer 54 may encompass the whole viewing area of the helmet 42.


In some embodiments, the layers 50 include an insulating layer 56 that separates the display layer 54 from the autodarkening layer 58 to block interference of operation of electronic components of the display layer 54 and/or the autodarkening layer 58 from other layers or each other. In some embodiments, the insulating layer 56 may include a substrate layer of the transparent display layer 54. The autodarkening layer 58 may include electrochromic, photochromic, thermochromic, suspended particle, micro-blind, or other autodarkening smart glass. In some embodiments, the display layer 54 and the autodarkening layers 58 may be combined into a single layer. For example, the liquid crystals of a transparent LCD may be used to darken incoming light by partially closing and/or displaying images using color filters on at least some of the liquid crystals. In some embodiments, the layers 50 may also include an outer transparent layer 60 that at least protects the other layers of the layers 50 from damage outside the helmet 42.


Returning to FIG. 2, in some embodiments, the display 48 may be coupled to the helmet 42 via a bevel 62 that houses display circuitry and couples the display 48 to display driving circuitry 64. In some embodiments, the display driving circuitry 64 may include row and column pixel controls for the display layer 54 or a projection device for projecting images onto a prism of the display layer 54. The helmet 42 may also include a transceiver 66 that receives image data from one or more remote devices (e.g., camera 44) and returns information to the remote device. In certain embodiments, the transceiver 66 may include a wireless transceiver, such as a ZigBee, 802.15.4, Bluetooth, 802.11, and/or other wireless transceiver. Additionally or alternatively, the transceiver 66 may include a wired connection transceiver. In some embodiments, the transceiver 66 may be a uni-direction receiver that receives video data. However, in some embodiments, the transceiver 66 may send commands from the helmet 42 back to a control unit, such as the power supply control circuitry 30 and/or the wire feeder control circuitry 28. For example, the transceiver 66 may send motion commands detected by the IMU 46, auditory commands (e.g., vocal commands) detected by an audible command unit 68, and/or visual commands detected by camera(s) 70. In some embodiments, at least in some modes, the transceiver 66 may not receive images for display via the display 42 because the display 42 merely displays images captured from the camera(s) 70 rather than receiving images from a remote location.


In some embodiments, the helmet 42 may include a speaker 71 used to convey auditory information to the user. For example, the speaker 71 may receive audible signals from the power supply control circuitry 30 and/or the wire feeder control circuitry 28 via the transceiver 66 indicating a power supply parameter, receipt of a command from the user, a type of power supply 16, or other information useful in informing a user of changes to operating parameters and generate an audible indication of such information to the user.


The helmet 42 may also include a power storage 72 that stores power for use by the transceiver 66, display 48, display driving circuitry 64, IMU 46, display 48, speaker 71, audible command unit 68, and/or additional circuitry. The power storage 72 may include any suitable unit for storing power that may be used to power electrical components, such as capacitors or batteries formed from galvanic cells, electrolytic cells, fuel cells, flow cells, and/or voltaic piles. The power storage 72 may store energy received from an energy harvesting unit 73 and/or external power source (e.g., AC line power). The energy harvesting unit 73 derives energy from around the user to provide power to the power storage 72. For example, the energy harvesting unit 73 may include kinetic energy captures using electromagnetic generators, photovoltaic cells, thermoelectric generators, antennas to recover radio wave energy, or other items capable of converting energy into a form (e.g., chemical or electrical) suitable for storage in the power storage 72.



FIG. 4 is a perspective view of an embodiment of the welding system 10 capable of monitoring a position of the welding helmet 42, welding torch 26, and/or gloves 74 to detect control commands from an operator. In the depicted welding system 10, an operator 76 is wearing the welding helmet 42 while welding. In certain embodiments, external helmet position detection sensors 78 are located near the operator 76 in a welding job area to aid the data from the IMUs 46 in assessing the position and orientation of the welding helmet 42, welding torch 26, and/or gloves 74.


It should be noted that the sensors 78 may include, or be replaced by, any method or device capable of detecting the position of the welding helmet 42. For example, the sensors 78 may include a stereo-vision camera or one or more mono-vision cameras located overhead to determine the location and orientation of the welding helmet 42. The cameras may be located on the welding helmet 42 (e.g., cameras 70) to locate the relative position of the helmet 42, welding torch 26, gloves 74, and/or capturing images of the work area for display via the display 48. The sensors 78 may include optical sensors for determining the position of the welding helmet 42, welding torch 26, and/or gloves 74 by determining a position of a predefined point, such as the workpiece 14. In some embodiments, the helmet 42 may include markings that reflect light or active visual markings that include infrared LEDs. In certain embodiments, the orientation of the helmet 42, welding torch 26, and/or gloves 74 in relation to each other, in relation to the workpiece 14, or in relation to the operator may be visually determined, for example, via helmet markings or geometric features detected by a plurality of camera imagers external to the welding helmet 42.


In still other embodiments, the sensors 78 may include a single optical sensor configured to detect structured light projected onto the welding helmet 42 from a light source external to the welding helmet 42. The light source may include a point source at a fixed location relative to the sensors 78. The light source may project a grid or other structured pattern toward the helmet 42, welding torch 26, and/or gloves 74. Wherever the pattern strikes the welding helmet 42 (or welding torch 26 or gloves 74), the light may produce a pattern indicative of the shape and distance of the welding helmet 42 (or welding torch 26 of gloves 74) from the sensors 78. As the light hits the welding helmet 42 (or welding torch 26 of gloves 74) from different angles, the projected grid may become distorted based on the contours of the welding helmet 42 (or welding torch 26 of gloves 74). The welding helmet 42 (or welding torch 26 of gloves 74) may be shaped such that the distorted grid may be utilized to identify a position, distance, and orientation of the welding helmet 42 (or welding torch 26 of gloves 74) via image processing of images acquired via the sensors 78. The structured light could include an array of points, circles, stripes, or any desirable collection of light patterns that can be recognizable.


As previously discussed, the helmet 42 may display various parameters of the power supply 16. For example, FIG. 5 illustrates an image that might be presented to the user via the display 48. The helmet 42 may enable the user to view a workpiece 14 and a welding arc 12. As previously discussed, in some embodiments, the display 48 reproduces a working view 80 via image capturing (e.g., via one or more cameras 70). In certain embodiments, the display 48 may be at least partially transparent to enable the user to view the working view 80. In other embodiments, the display 48 may display captured images of the working view 80 via the camera(s) 70. In some embodiments, the display 48 may be horizontally bifurcated into two separate displays or may be horizontally partitioned into two viewing areas that enable the helmet 42 to present different images to each eye of the welder. For example, the left display or display area may be used to present an image stream from a left-side camera that a captures a perspective similar to that which would be viewed by a left eye. Similarly, the right display or display area may be used to present an image stream from a right-side camera that captures a perspective similar to that which would be viewed by a right eye. This stereoscopic viewing would allow the welder to see the working area more accurately to add depth perception and three-dimensional viewing to the display 48.


In certain embodiments, the display 48 may include a heads up display (HUD) 82 that informs the user of various parameters of the power supply 16 and/or the welding process being used. For example, the HUD 82 may include a process type indication 84, a current level indication 86, a voltage level indication 88, and a link indication 90, and/or other parameters that may be helpful for the operator to know for the welding process. The process type indication 84 indicates what type of welding process is currently being employed, such as tungsten inert gas (TIG) welding, metallic inert gas (MIG) welding, shielded metal arc welding (SMAW), gas metal arc welding (GMAW), or other suitable welding processes. The current level indication 86 indicates a current level for the welding process. Similarly, the voltage level indication 88 indicates a voltage level for the welding process. Furthermore, the link indication 90 indicates that a connection to the power supply 16 from the welding torch 26 is active or inactive. In some embodiments, the link indication 90 indicates that the HUD 82 is actively receiving data from the power supply 16 and that the currently displayed parameters are recently received from the power supply 16.


In some embodiments, while viewing the working view 80, the operator may initiate a power supply view in which the display 48 shows a power supply 92. In some embodiments, the power supply 92 may be a caricature or simplified view corresponding to a type matching the type of power supply 16. In some embodiments, the power supply 92 may be an image of the actual power supply 16 either previously saved or shown in substantially real time via the camera 44. In certain embodiments, the power supply 92 may include various information and manipulatables that may be found on the front of the power supply 16. For example, the power supply 92 may include a process selection dial 94, a current unit 96, a voltage unit 98, and a parameter adjust dial 100. The process selection dial 94 may be used to set what type of process is used for the weld process and indicated by the process indicator 102 of the HUD 82. Similarly, the current unit 96 may display a current level that may also be reflected in the current level indicator 104 of the HUD 82, and the voltage unit 98 may display a voltage level that may also be reflected in the voltage level indicator 106 of the HUD 82.


In the present embodiment, the voltage level indicator 106 indicates an open circuit voltage (OCV) that corresponds to a difference in electrical potential between two terminals of the power supply 16 when disconnected from an external circuit (e.g., circuit including the welding torch 26 and the workpiece 14). In some embodiments, the parameter adjust dial 100 may be used to adjust voltage, current, or other parameters of the power supply 16. Although the process selection dial 94 and the parameter adjust dial 100 are dials, in some embodiments, the dials 94, 100 may be replaced by any other manipulatable capable of receiving user input, such as arrows, number entry keyboards, and so forth. In some embodiments, the operator may manipulate one or more parameters using a cursor 108.


In certain embodiments, the cursor may be a box or other indicator that indicates which parameter is being changed. In some embodiments, the cursor may be moved using gestures (e.g., head movements up or down, head movements left or right, hand gestures up or down, hand gestures left or right) or vocal commands (e.g., “left”). In some embodiments, the hand gestures may include a horizontal swipe (e.g., left or right), a vertical swipe (e.g., up or down), a circular motion (e.g., clockwise or counterclockwise loop), a twist (e.g., clockwise or counterclockwise rotation of the torch 26), or other gestures that may be recognized by the sensors. In other words, the raw data generated by the sensors may be analyzed to determine when certain gestures are being performed by the operator. In some embodiments, the gestures may be analyzed by a preprocessor prior to communication to the power supply control circuitry 30 and/or the wire feeder control circuitry 28. In other embodiments, the power supply control circuitry 30 and/or the wire feeder control circuitry 28 may analyze raw data from the sensors to recognize the gestures. In some embodiments, the cursor 108 and manipulatables may be replaced with vocal commands (e.g., “amplitude increase by 5”).


In some embodiments, the process selection dial 94 and/or the parameter adjust dial 100 may be omitted or collapsed with respective display portions. For example, functionality of the process selection dial 94 may be included into the process indicator 102. In some embodiments, the display portions (e.g., portions of the HUD 82) may be only manipulatable in one mode while locked in another mode. For example, a user may issue a voice command, such as “parameter adjustment mode,” that initiates the parameter adjustment mode that allows the operator to modify power supply parameters remotely.


Although the foregoing discussion contemplates displaying power supply monitoring and manipulation via the welding helmet 42, in some embodiments, at least some of the display and or control of the power supply 16 may be performed via a smart device (e.g., a smart phone). For example, when a smart device is on the same network (e.g., WiFi) as the power supply 16, a control application may be employed to monitor and change parameters of the power supply 16.



FIG. 7 illustrates a process 110 that may be used to monitor and/or change parameters of the power supply 16 remotely. The process 110 includes displaying, via a smart device or a welding helmet, one or more parameters of a power supply 16 to a user remote from the power supply 16 (block 112). The process 110 also includes receiving commands from a user remote from a power supply 16 (block 114). For example, the commands may include gestures and/or audio commands from a user that is far away from a power supply 16 without direct sight of the power supply 16. Based on the commands, at least one parameter of the power supply 16 may be adjusted (block 116).


For instance, in certain embodiments, when a welding operator is in the middle of a weld, the operator's welding helmet 42 may display a HUD 82 showing parameters of the power supply 16. For at least a portion of the weld, the operator may desire to change the current. Accordingly, the operator may say “parameter adjust mode” or press a button on the welding helmet 42. The display 48 may switch from a working view to show a caricature of the power supply 16. Although the operator may use hand, head, and/or body gestures to select and modify parameters, the operator may be currently welding and may not want to disturb the arc 12. For example, for certain welds or certain types of welds (e.g., TIG vs. MIG), more sensitivity may be desired. As such, the operator may say “amps up by five” into a microphone in the welding helmet 42. The welding helmet 42 sends the command—either as raw audio, processed audio, or a digital representation of the command—to a control device, such as the power supply control circuitry 30. Once the control device receives the command as either a vocal command or gesture, the control device increases the current of the power supply 16.


Although the foregoing discussion relates generally to displaying power supply information, in some embodiments, other information may be displayed by the display 48 either as additional information or as alternative information. Specifically, the IMUs 46 or other sensors may determine parameters about the weld joint and/or process that may be indicative of a quality of the weld joint. For example, the IMUs 46 may be used to determine travel speed of the welding torch 26. This information may be displayed to the user via the display 48. Additionally or alternatively, welding instructions based on the determined parameters may be provided to the user via the display 48. For example, the display 48 may show an up arrow asking that the user increase speed, current, or voltage of the weld. Additionally or alternatively, the display 48 may instruct the user to modify orientation of the welding torch 26 in relation to the welding helmet 42 and/or workpiece 14.


Although the foregoing discussion generally relates to welding torches, in some embodiments, motion sensing may be used for any welding-type tool or accessory associated with a welding-type process. As used herein, welding-type refers to any process related to welding, such as welding, cutting, or gouging. Furthermore, a welding-type tool or accessory may be any tool or accessory using in such processes. For example, welding-type tools may include torches, electrode holders, machining tools, or other similar tools that may be used in the welding-type processes. Moreover, welding-type accessories may include wearable devices, such as a helmet, a jacket, a glove, a bracelet, or other devices that may be worn by an operator.


While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims
  • 1. A welding system, comprising: a power supply configured to provide a welding power output;a welding helmet comprising: an electronic display configured to display a representation of the power supply and to display one or more indications of one or more parameters of the power supply, wherein the representation of the power supply includes at least one control element corresponding to at least one parameter of the one or more parameters; anda first inertial measurement unit configured to detect movement of the welding helmet by an operator; anda processing system communicatively coupled to the first inertial measurement unit and configured to adjust the at least one parameter of the one or more parameters during a weld process powered by the power supply based at least in part on data from the first inertial measurement unit,wherein the first inertial measurement unit is configured to detect at least one specific movement of the welding helmet corresponding to a user input by the operator to adjust a welding parameter of the power supply,wherein the processing system is configured to update the at least one control element on the representation of the power supply to reflect the adjusted welding parameter in response to the at least one specific movement of the welding helmet.
  • 2. The welding system of claim 1, comprising a welding torch communicatively coupled to the power supply, wherein the welding torch comprises a second inertial measurement unit configured to detect movement of the welding torch, wherein the processing system is configured to adjust the at least one parameter of the one or more parameters based at least in part on the movement of the welding torch.
  • 3. The welding system of claim 1, comprising a welding glove comprising a second inertial measurement unit configured to detect movement of the welding glove, wherein the processing system is configured to adjust the at least one parameter of the one or more parameters based at least in part on the movement of the welding glove.
  • 4. The welding system of claim 1, wherein the at least one parameter comprises a current level of the power supply, a voltage level of the power supply, or a welding process type.
  • 5. The welding system of claim 4, wherein the at least one parameter comprises a voltage for metal inert gas (MIG) welding, a current for shielded metal arc welding (SMA W), and a current for tungsten inert gas (TIG) welding.
  • 6. The welding system of claim 1, wherein the processing system comprises power supply control circuitry.
  • 7. The welding system of claim 1, wherein the first inertial measurement unit comprises at least one accelerometer or a gyroscope.
  • 8. The welding system of claim 1, wherein the first inertial measurement unit is configured to detect one or more predefined gestures.
  • 9. The welding system of claim 1, comprising a transceiver configured to transmit information indicative of the movement to the power supply.
  • 10. The welding system of claim 1, wherein the electronic display comprises a transparent light emitting diode display or a transparent organic light emitting diode display.
  • 11. The welding system of claim 1, wherein the welding helmet comprises a camera configured to capture images of a working view of a weld area, and the electronic display is configured to display the images.
  • 12. A welding system, comprising: a power supply;a welding helmet comprising: an electronic display configured to display a representation of the power supply and to display one or more indications of one or more parameters of the power supply, wherein the representation of the power supply includes at least one control element corresponding to at least one parameter of the one or more parameters; andan audible command unit configured to receive audible commands by an operator; anda processing system communicatively coupled to the audible command unit and configured to adjust at least one parameter of the one or more parameters during a weld process powered by the power supply and to update the one or more indications on the electronic display of one or more parameters based at least in part on data from the audible command unit,wherein the adjustment of the at least one parameter is based at least in part on at least one specific audible command corresponding to a user input by the operator to adjust a welding parameter of the power supply, andwherein the processing system is configured to update the at least one control element on the representation of the power supply to reflect the adjusted welding parameter in response to the at least one specific audible command.
  • 13. The welding system of claim 12, comprising an inertial measurement unit configured to detect movements of the welding helmet, welding gloves, or a welding torch, wherein the processing system is configured to adjust the at least one parameter based at least in part on the detected movements of the welding helmet, the welding gloves, or the welding torch.
  • 14. The welding system of claim 12, wherein the representation of the power supply comprises an image of the power supply, a simplified representation of the power supply, or a heads up display.
  • 15. The welding system of claim 12, wherein the audible command unit comprises a microphone configured to receive the at least one specific audible command from the operator.
  • 16. A welding system, comprising: a power supply configured to provide a welding power output;a welding helmet comprising: an electronic display configured to display a representation of the power supply, one or more indications of one or more parameters of the power supply, and a cursor, wherein the representation of the power supply includes at least one control element corresponding to at least one parameter of the one or more parameters; andan inertial measurement unit configured to detect movement of the welding helmet by an operator; anda processing system communicatively coupled to the inertial measurement unit and configured to control the cursor during a weld process powered by the power supply based at least in part on data from the inertial measurement unit,wherein the inertial measurement unit is configured to detect at least one specific movement of the welding helmet corresponding to a user input by the operator to adjust a welding parameter of the power supply, andwherein the at least one specific movement of the welding helmet results in a manipulation of the cursor to adjust the welding parameter via the electronic display.
  • 17. The welding system of claim 16, wherein the at least one control element is depicted on the electronic display as a dial or knob.
  • 18. The welding system of claim 16, further comprising an audible command unit configured to receive audible commands by the operator.
  • 19. The welding system of claim 18, wherein the processing system is configured to manipulate the cursor based at least in part on data from the audible command unit.
  • 20. The welding system of claim 16, wherein the cursor is a box or an arrow.
US Referenced Citations (461)
Number Name Date Kind
1340270 Emil May 1920 A
2045800 Walther Jun 1936 A
2045801 Richter Jun 1936 A
2045802 Walther Jun 1936 A
2333192 Moberg Oct 1942 A
2351910 Blankenbuehler Jun 1944 A
3391691 Young Jul 1968 A
3651290 Durbin Mar 1972 A
3679865 Jesnitzer Jul 1972 A
3867769 Schow Feb 1975 A
4028522 Chihoski Jun 1977 A
4041615 Whitehill Aug 1977 A
4044377 Bowerman Aug 1977 A
4124944 Blair Nov 1978 A
4132014 Schow Jan 1979 A
4144766 Wehrmeister Mar 1979 A
4163886 Omae Aug 1979 A
4224501 Lindbom Sep 1980 A
4253648 Meeks Mar 1981 A
4294440 Severt Oct 1981 A
4375026 Kearney Feb 1983 A
4375165 deSterke Mar 1983 A
4389561 Weman Jun 1983 A
4396945 DiMatteo Aug 1983 A
4412121 Kremers Oct 1983 A
4452589 Denison Jun 1984 A
4459114 Barwick Jul 1984 A
4471207 Hawkes Sep 1984 A
4484059 Lillquist Nov 1984 A
4518361 Conway May 1985 A
4541055 Wolfe Sep 1985 A
4555614 Morris Nov 1985 A
4577499 Silke Mar 1986 A
4590356 Povlick May 1986 A
4591689 Brown May 1986 A
4594497 Takahashi Jun 1986 A
4595186 Reed Jun 1986 A
4595368 Cole Jun 1986 A
4595820 Richardson Jun 1986 A
4609806 Grabkowski Sep 1986 A
4628176 Kojima Dec 1986 A
4638146 Koyama Jan 1987 A
4641292 Tunnell Feb 1987 A
4677277 Cook Jun 1987 A
4680014 Paton Jul 1987 A
4689021 Vasiliev Aug 1987 A
4716273 Paton Dec 1987 A
4721947 Brown Jan 1988 A
4728768 Cueman Mar 1988 A
4739404 Richardson Apr 1988 A
4767109 Raketich Aug 1988 A
4829365 Eichenlaub May 1989 A
4830261 Mello May 1989 A
4867685 Brush Sep 1989 A
4868649 Gaudin Sep 1989 A
4877940 Bangs Oct 1989 A
4881678 Gaudin Nov 1989 A
4920249 McLaughlin Apr 1990 A
4931018 Herbst Jun 1990 A
4937427 McVicker Jun 1990 A
4943702 Richardson Jul 1990 A
4954690 Kensrue Sep 1990 A
4992881 Tomasek Feb 1991 A
4996409 Paton Feb 1991 A
5061841 Richardson Oct 1991 A
5103376 Blonder Apr 1992 A
5185561 Good Feb 1993 A
5208436 Blankenship May 1993 A
5211564 Martinez Aug 1993 A
5231928 Phillips Aug 1993 A
5283418 Bellows Feb 1994 A
5302799 Kennedy Apr 1994 A
5304774 Durheim Apr 1994 A
5306893 Morris Apr 1994 A
5320538 Baum Jun 1994 A
5343011 Fujii Aug 1994 A
5380978 Pryor Jan 1995 A
5397872 Baker Mar 1995 A
5404181 Hung Apr 1995 A
5426732 Boies Jun 1995 A
5448405 Clausen Sep 1995 A
5464957 Kidwell Nov 1995 A
5508757 Chen Apr 1996 A
5514846 Cecil May 1996 A
5517420 Kinsman May 1996 A
5521843 Hashima May 1996 A
5533146 Iwai Jul 1996 A
5543863 Lin Aug 1996 A
5546476 Mitaka Aug 1996 A
5571431 Lantieri Nov 1996 A
5592241 Kita Jan 1997 A
5617335 Hashima Apr 1997 A
5659479 Duley Aug 1997 A
5668612 Hung Sep 1997 A
5674415 Leong Oct 1997 A
5675229 Thorne Oct 1997 A
5681490 Chang Oct 1997 A
5708253 Bloch Jan 1998 A
5709219 Chen Jan 1998 A
5747042 Choquet May 1998 A
5823785 Matherne, Jr. Oct 1998 A
5832139 Batterman Nov 1998 A
5856844 Batterman Jan 1999 A
5930093 Morrissett Jul 1999 A
5961859 Chou Oct 1999 A
5973677 Gibbons Oct 1999 A
5999909 Rakshit Dec 1999 A
6003052 Yamagata Dec 1999 A
6018729 Zacharia Jan 2000 A
6019359 Fly Feb 2000 A
6024273 Ludewig Feb 2000 A
6039494 Pearce Mar 2000 A
6046754 Stanek Apr 2000 A
6049059 Kim Apr 2000 A
6051805 Vaidya Apr 2000 A
6101455 Davis Aug 2000 A
6107601 Shimogama Aug 2000 A
6130407 Villafuerte Oct 2000 A
6136946 Yao Oct 2000 A
6153848 Nagae Nov 2000 A
6155475 Ekelof Dec 2000 A
6163946 Pryor Dec 2000 A
6226395 Gilliland May 2001 B1
6236017 Smartt May 2001 B1
6242711 Cooper Jun 2001 B1
6271500 Hirayama Aug 2001 B1
6288359 Koch Sep 2001 B1
6290740 Schaefer Sep 2001 B1
6301763 Pryor Oct 2001 B1
6315186 Friedl Nov 2001 B1
6329635 Leong Dec 2001 B1
6337458 Lepeltier Jan 2002 B1
6371765 Wall Apr 2002 B1
6417894 Goff Jul 2002 B1
6423936 Reed Jul 2002 B1
6441342 Hsu Aug 2002 B1
6445964 White Sep 2002 B1
6469752 Ishikawa Oct 2002 B1
6476354 Jank Nov 2002 B1
6479793 Wittmann Nov 2002 B1
6506997 Matsuyama Jan 2003 B2
6516300 Rakshit Feb 2003 B1
6572379 Sears Jun 2003 B1
6583386 Ivkovich Jun 2003 B1
6596972 Di Novo Jul 2003 B1
6614002 Weber Sep 2003 B2
6621049 Suzuki Sep 2003 B2
6622906 Kushibe Sep 2003 B1
6647288 Madill Nov 2003 B2
6670574 Bates Dec 2003 B1
6697761 Akatsuka Feb 2004 B2
6703585 Suzuki Mar 2004 B2
6710298 Eriksson Mar 2004 B2
6720878 Jumpertz Apr 2004 B2
6728582 Wallack Apr 2004 B1
6734393 Friedl May 2004 B1
6744011 Hu Jun 2004 B1
6748249 Eromaki Jun 2004 B1
6750428 Okamoto Jun 2004 B2
6753909 Westerman Jun 2004 B1
6768974 Nanjundan Jul 2004 B1
6839049 Koizumi Jan 2005 B1
6857553 Hartman Feb 2005 B1
6868726 Lemkin Mar 2005 B2
6910971 Alsenz Jun 2005 B2
6927360 Artelsmair Aug 2005 B2
6937329 Esmiller Aug 2005 B2
6967635 Hung Nov 2005 B2
6977357 Hsu Dec 2005 B2
6995536 Challoner Feb 2006 B2
7015419 Hackl Mar 2006 B2
7025053 Altamirano Apr 2006 B1
7032814 Blankenship Apr 2006 B2
7045742 Feichtinger May 2006 B2
7081888 Cok Jul 2006 B2
7120473 Hawkins Oct 2006 B1
7132617 Lee Nov 2006 B2
7132623 DeMiranda Nov 2006 B2
7150047 Fergason Dec 2006 B2
7173215 Kapoor Feb 2007 B1
7181413 Hadden Feb 2007 B2
7226176 Huang Jun 2007 B1
7261261 Ligertwood Aug 2007 B2
7342210 Fergason Mar 2008 B2
7358458 Daniel Apr 2008 B2
7465230 LeMay Dec 2008 B2
7474760 Hertzman Jan 2009 B2
7523069 Friedl Apr 2009 B1
7564005 Cabanaw Jul 2009 B2
7574172 Clark Aug 2009 B2
7577285 Schwarz Aug 2009 B2
7637622 Garbergs Dec 2009 B2
D614217 Peters Apr 2010 S
7698094 Aratani Apr 2010 B2
D615573 Peters May 2010 S
7766213 Henrikson Aug 2010 B2
7789811 Cooper Sep 2010 B2
7826984 Sjostrand Nov 2010 B2
7831098 Melikian Nov 2010 B2
7839416 Ebensberger Nov 2010 B2
7845560 Emanuel Dec 2010 B2
D631074 Peters Jan 2011 S
7899618 Ledet Mar 2011 B2
7962967 Becker Jun 2011 B2
8019144 Sugihara Sep 2011 B2
8044942 Leonhard Oct 2011 B1
8046178 Dai Oct 2011 B2
8100694 Portoghese Jan 2012 B2
8110774 Huonker Feb 2012 B2
8235588 Louban Aug 2012 B2
8248324 Nangle Aug 2012 B2
8274013 Wallace Sep 2012 B2
8316462 Becker Nov 2012 B2
8393519 Allehaux Mar 2013 B2
8406682 Elesseily Mar 2013 B2
8431862 Kachline Apr 2013 B2
8432476 Ashforth Apr 2013 B2
8502866 Becker Aug 2013 B2
8512043 Choquet Aug 2013 B2
8541746 Andres Sep 2013 B2
8569655 Cole Oct 2013 B2
8657605 Wallace Feb 2014 B2
8680434 Stoger Mar 2014 B2
8681178 Tseng Mar 2014 B1
8692157 Daniel Apr 2014 B2
8698843 Tseng Apr 2014 B2
8747116 Zboray Jun 2014 B2
8834168 Peters Sep 2014 B2
8851896 Wallace Oct 2014 B2
8860760 Chen Oct 2014 B2
8911237 Postlethwaite Dec 2014 B2
8915740 Zboray Dec 2014 B2
8946595 Ishida Feb 2015 B2
8953033 Yamane Feb 2015 B2
8953909 Guckenberger Feb 2015 B2
RE45398 Wallace Mar 2015 E
8987628 Daniel Mar 2015 B2
8990842 Rowley Mar 2015 B2
8992226 Leach Mar 2015 B1
9011154 Kindig Apr 2015 B2
9012802 Daniel Apr 2015 B2
9050678 Daniel Jun 2015 B2
9050679 Daniel Jun 2015 B2
9089921 Daniel Jul 2015 B2
9196169 Wallace Nov 2015 B2
9218745 Choquet Dec 2015 B2
9221117 Conrardy Dec 2015 B2
9269279 Rod Feb 2016 B2
9293056 Zboray Mar 2016 B2
9293057 Zboray Mar 2016 B2
9318026 Peters Apr 2016 B2
9330575 Peters May 2016 B2
9336686 Peters May 2016 B2
9402122 Richardson Jul 2016 B2
9511443 Pfeifer Dec 2016 B2
20010026445 Naghi Oct 2001 A1
20010032508 Lemkin Oct 2001 A1
20020043607 Tajima Apr 2002 A1
20020071550 Pletikosa Jun 2002 A1
20020105797 Navid Aug 2002 A1
20020114653 Gatta Aug 2002 A1
20020148745 Chang Oct 2002 A1
20020153354 Norby Oct 2002 A1
20030011673 Eriksson Jan 2003 A1
20030092496 Alsenz May 2003 A1
20030172032 Choquet Sep 2003 A1
20040058703 Eromaki Mar 2004 A1
20040068335 Ferla Apr 2004 A1
20040069754 Bates Apr 2004 A1
20040175684 Kaasa Sep 2004 A1
20040223148 Takemura Nov 2004 A1
20040227730 Sugihara Nov 2004 A1
20040251910 Smith Dec 2004 A1
20050006363 Hsu Jan 2005 A1
20050012598 Berquist Jan 2005 A1
20050016979 Stein Jan 2005 A1
20050017152 Fergason Jan 2005 A1
20050073506 Durso Apr 2005 A1
20050127052 Spencer Jun 2005 A1
20050133488 Blankenship Jun 2005 A1
20050135682 Abrams Jun 2005 A1
20050179654 Hawkins Aug 2005 A1
20050197115 Clark Sep 2005 A1
20050207102 Russo Sep 2005 A1
20050227635 Hawkins Oct 2005 A1
20050256611 Pretlove Nov 2005 A1
20060010551 Bishop Jan 2006 A1
20060081740 Bellavance Apr 2006 A1
20060136183 Choquet Jun 2006 A1
20060151446 Schneider Jul 2006 A1
20060163228 Daniel Jul 2006 A1
20060173619 Brant Aug 2006 A1
20060212169 Luthardt Sep 2006 A1
20060241432 Herline Oct 2006 A1
20070038400 Lee Feb 2007 A1
20070051711 Kachline Mar 2007 A1
20070114215 Bill May 2007 A1
20070115202 Kiesenhofer May 2007 A1
20070164006 Burgstaller Jul 2007 A1
20070187378 Karakas Aug 2007 A1
20070188606 Atkinson Aug 2007 A1
20070221636 Monzyk Sep 2007 A1
20070247793 Carnevali Oct 2007 A1
20070248261 Zhou Oct 2007 A1
20070264620 Maddix Nov 2007 A1
20070278196 James Dec 2007 A1
20070291166 Misawa Dec 2007 A1
20080030631 Gallagher Feb 2008 A1
20080038702 Choquet Feb 2008 A1
20080061113 Seki Mar 2008 A9
20080077422 Dooley Mar 2008 A1
20080124698 Ebensberger May 2008 A1
20080128395 Aigner Jun 2008 A1
20080149602 Lenzner Jun 2008 A1
20080149608 Albrecht Jun 2008 A1
20080158502 Becker Jul 2008 A1
20080168290 Jobs Jul 2008 A1
20080169277 Achtner Jul 2008 A1
20080234960 Byington Sep 2008 A1
20080314887 Stoger Dec 2008 A1
20090005728 Weinert Jan 2009 A1
20090057286 Ihara Mar 2009 A1
20090109128 Nangle Apr 2009 A1
20090146359 Canfield Jun 2009 A1
20090152251 Dantinne Jun 2009 A1
20090161212 Gough Jun 2009 A1
20090173726 Davidson Jul 2009 A1
20090189974 Deering Jul 2009 A1
20090200281 Hampton Aug 2009 A1
20090200282 Hampton Aug 2009 A1
20090230107 Ertmer Sep 2009 A1
20090231423 Becker Sep 2009 A1
20090249606 Diez Oct 2009 A1
20090283021 Wong Nov 2009 A1
20090298024 Batzler Dec 2009 A1
20090323121 Valkenburg Dec 2009 A1
20100020483 Ma Jan 2010 A1
20100048273 Wallace Feb 2010 A1
20100053541 Sundell Mar 2010 A1
20100062405 Zboray Mar 2010 A1
20100062406 Zboray Mar 2010 A1
20100088793 Ghisleni Apr 2010 A1
20100123664 Shin May 2010 A1
20100133247 Mazumder Jun 2010 A1
20100145520 Gerio Jun 2010 A1
20100201803 Melikian Aug 2010 A1
20100207620 Gies Aug 2010 A1
20100224610 Wallace Sep 2010 A1
20100238119 Dubrovsky Sep 2010 A1
20100245273 Hwang Sep 2010 A1
20100283588 Gomez Nov 2010 A1
20100291313 Ling Nov 2010 A1
20100314362 Albrecht Dec 2010 A1
20110000892 Mueller Jan 2011 A1
20110006047 Penrod Jan 2011 A1
20110091846 Kreindl Apr 2011 A1
20110092828 Spohn Apr 2011 A1
20110114615 Daniel May 2011 A1
20110117527 Conrardy May 2011 A1
20110176720 VanOsten Jul 2011 A1
20110183304 Wallace Jul 2011 A1
20110220616 Mehn Sep 2011 A1
20110220619 Mehn Sep 2011 A1
20110240605 Takayama Oct 2011 A1
20110249090 Moore Oct 2011 A1
20110284508 Miura Nov 2011 A1
20110286005 Yamamoto Nov 2011 A1
20110290765 Albrecht Dec 2011 A1
20110313731 Vock Dec 2011 A1
20110316516 Schiefermuller Dec 2011 A1
20120007748 Forgues Jan 2012 A1
20120012561 Wiryadinata Jan 2012 A1
20120048838 Ishida Mar 2012 A1
20120057240 Sundell Mar 2012 A1
20120067859 Albrecht Mar 2012 A1
20120072021 Walser Mar 2012 A1
20120077174 DePaul Mar 2012 A1
20120105476 Tseng May 2012 A1
20120113512 Tsanev May 2012 A1
20120122062 Yang May 2012 A1
20120175834 Hamm Jul 2012 A1
20120180180 Steve Jul 2012 A1
20120188365 Stork Jul 2012 A1
20120189993 Kindig Jul 2012 A1
20120205359 Daniel Aug 2012 A1
20120231894 Nicora Sep 2012 A1
20120248080 Hutchison Oct 2012 A1
20120248083 Garvey Oct 2012 A1
20120273473 Zhang Nov 2012 A1
20120280576 Wood Nov 2012 A1
20120291172 Wills Nov 2012 A1
20120298640 Conrardy Nov 2012 A1
20120323496 Burroughs Dec 2012 A1
20130040270 Albrecht Feb 2013 A1
20130081293 Delin Apr 2013 A1
20130182070 Peters Jul 2013 A1
20130189656 Zboray Jul 2013 A1
20130189657 Wallace Jul 2013 A1
20130189658 Peters Jul 2013 A1
20130200882 Almalki Aug 2013 A1
20130206741 Pfeifer Aug 2013 A1
20130208569 Pfeifer Aug 2013 A1
20130209976 Postlethwaite Aug 2013 A1
20130262000 Hutchison Oct 2013 A1
20130264315 Hung Oct 2013 A1
20130264322 Bornemann Oct 2013 A1
20130288211 Patterson Oct 2013 A1
20130291271 Becker Nov 2013 A1
20130326842 Pearson Dec 2013 A1
20140008088 Chellew Jan 2014 A1
20140017642 Postlethwaite Jan 2014 A1
20140017645 Simpson Jan 2014 A1
20140042135 Daniel Feb 2014 A1
20140069899 Mehn Mar 2014 A1
20140131337 Williams May 2014 A1
20140134579 Becker May 2014 A1
20140134580 Becker May 2014 A1
20140140719 Suzuki May 2014 A1
20140144896 Einav May 2014 A1
20140184496 Gribetz Jul 2014 A1
20140220522 Peters Aug 2014 A1
20140234813 Peters Aug 2014 A1
20140263224 Becker Sep 2014 A1
20140263227 Daniel Sep 2014 A1
20140267773 Jeung Sep 2014 A1
20140272835 Becker Sep 2014 A1
20140272836 Becker Sep 2014 A1
20140272837 Becker Sep 2014 A1
20140272838 Becker Sep 2014 A1
20140315167 Kreindl Oct 2014 A1
20140322684 Wallace Oct 2014 A1
20140346158 Matthews Nov 2014 A1
20140346793 DeStories Nov 2014 A1
20140374396 Luo Dec 2014 A1
20150056584 Boulware Feb 2015 A1
20150056585 Boulware Feb 2015 A1
20150072323 Postlethwaite Mar 2015 A1
20150154884 Salsich Jun 2015 A1
20150170539 Barrera Jun 2015 A1
20150190875 Becker Jul 2015 A1
20150190876 Becker Jul 2015 A1
20150190887 Becker Jul 2015 A1
20150190888 Becker Jul 2015 A1
20150194072 Becker Jul 2015 A1
20150194073 Becker Jul 2015 A1
20150209887 DeLisio Jul 2015 A1
20150235565 Postlethwaite Aug 2015 A1
20150248845 Postlethwaite Sep 2015 A1
20150325153 Albrecht Nov 2015 A1
20150375323 Becker Dec 2015 A1
20150375324 Becker Dec 2015 A1
20150375327 Becker Dec 2015 A1
20150379894 Becker Dec 2015 A1
20160039034 Becker Feb 2016 A1
20160039053 Becker Feb 2016 A1
20160049085 Beeson Feb 2016 A1
20160093233 Boulware Mar 2016 A1
20160203734 Boulware Jul 2016 A1
20160203735 Boulware Jul 2016 A1
20160236303 Matthews Aug 2016 A1
20170326674 Dunbar Nov 2017 A1
Foreign Referenced Citations (70)
Number Date Country
2298208 Aug 2000 CA
2311685 Dec 2001 CA
2517874 Dec 2001 CA
2549553 Jul 2004 CA
2554498 Apr 2006 CA
101203197 Jun 2008 CN
101323046 Dec 2008 CN
102378666 Mar 2012 CN
102958636 Mar 2013 CN
102971106 Mar 2013 CN
202877704 Apr 2013 CN
104014906 Sep 2014 CN
202010011064 Oct 2010 DE
102010038902 Feb 2012 DE
0323277 Jul 1989 EP
0878263 Nov 1998 EP
0963744 Dec 1999 EP
1025946 Aug 2000 EP
1029306 Aug 2000 EP
1295195 Jun 2001 EP
1573699 Sep 2005 EP
1797545 Jun 2007 EP
1864744 Dec 2007 EP
2022592 Feb 2009 EP
2415560 Feb 2014 EP
2438440 Jan 2014 ES
1456780 Jul 1966 FR
2827066 Jan 2003 FR
2454232 May 2009 GB
S5527422 Feb 1980 JP
H05141909 Jun 1993 JP
H11146387 May 1999 JP
2000298427 Oct 2000 JP
2004181493 Jul 2004 JP
2007021542 Feb 2007 JP
2009125790 Jun 2009 JP
100876425 Dec 2008 KR
20110017484 Feb 2011 KR
20130048580 May 2013 KR
972552 Nov 1982 SU
1354234 Nov 1987 SU
1489933 Jun 1989 SU
1638145 Mar 1991 SU
9934950 Jul 1999 WO
9958286 Nov 1999 WO
03019349 Jan 2003 WO
2004057554 Jul 2004 WO
2005102230 Nov 2005 WO
2005110658 Nov 2005 WO
2006004427 Jan 2006 WO
2006034571 Apr 2006 WO
2007009131 Jan 2007 WO
2007044135 Apr 2007 WO
2009022443 Feb 2009 WO
2009053829 Apr 2009 WO
2009060231 May 2009 WO
2009092944 Jul 2009 WO
2009146359 Dec 2009 WO
2010000003 Jan 2010 WO
2010020867 Feb 2010 WO
2010020870 Feb 2010 WO
2010111722 Oct 2010 WO
2011112493 Sep 2011 WO
2011150165 Dec 2011 WO
2012137060 Oct 2012 WO
2013138831 Jan 2013 WO
2013023012 Feb 2013 WO
2014007830 Jan 2014 WO
2014074296 May 2014 WO
2014140719 Sep 2014 WO
Non-Patent Literature Citations (136)
Entry
“Low Cost Virtual Reality Welding Training System,” NSRP Joint Panel Meeting, Apr. 21, 2010, http://www.nsrp.org/6-Presentations/Joint/042110_Low_Cost_Virtual_Reality_Welder_Training_System_Fast.pdf.
“NJC Technology Displayed at ShipTech 2005”, Welding Journal, vol. 84, No. 3, Mar. 2005, p. 54, https://app.aws.org/w/r/www/wj/2005/03/WJ_2005_03.pdf.
“Sheet Metal Conference XXII,” Conference Program, American Welding Society, May 2006, Detroit.
“Virtual Reality Program to Train Welders for Shipbuilding”, American Welding Society, Navy Joining Center, https://app.aws.org/wj/2004/04/052/.
“Virtual Reality Welder Training Initiatives: Virtual Welding Lab Pilot,” Paul D. Camp Community College, Advanced Science & Automation Corporation, Northrop Grumman Newport News, Nov. 22, 2006, http://www.nsrp.org/6-Presentations/WD/103106_Virtual_Reality_Welder.pdf.
“Virtual Welding: A Low Cost Virtual Reality Welder Training System,” NSRP ASE, Feb. 19, 2009, http://www.nsrp.org/6-Presentations/WD/020409_Virtual_Welding_Wilbur.pdf.
“Virtual Welding—A Low Cost Virtual Reality Welder Training System”, Interim Status Report # 4, Technology Investment Agreement 2008-600, Feb. 18, 2009, http://www.nsrp.org/3-Key_Deliverables/FY08_Low-Cost_Virtual_Reality_Welder_Trainer/FY08_Low-Cost_Virtual_Reality_Welder_Trainer-Interim2.pdf.
“Vision for Welding Industry,” American Welding Society, Apr. 22, 1999, http://www.aws.org/library/doclib/vision.pdf.
“Welding in Defense Industry,” American Welding Society conference schedule, 2004. https://app.aws.org/conferences/defense/live_index.html.
“Welding Technology Roadmap,” prepared by Energetics, Inc., Columbia, MD, in cooperation with The American Welding Society and the Edison Welding Institute, Sep. 2000.
123arc.com—“Weld into the future”; 2000.
Advance Program of American Welding Society Programs and Events, Nov. 11-14, 2007, Chicago.
Aiteanu, Dorian, and Axel Graeser; “Generation and Rendering of a Virtual Welding Seam in an Augmented Reality Training Environment,” Proceedings of the Sixth IASTED International Conference on Visualization, Imaging, and Image Processing, Aug. 28-30, 2006, Palma de Mallorca, Spain, ED. J.J. Villaneuva, ACTA Press, 2006.
Aiteanu, Dorin, and Axel Graser, “Computer-Aided Manual Welding Using an Augmented Reality Supervisor,” Sheet Metal Welding Conference XII, Livoinia, MI, May 9-12, 2006, pp. 1-14.
Aiteanu, Dorin, et al., “A Step Forward in Manual Welding: Demonstration of Augmented Reality Helmet,” Institute of Automation, University of Bremen, Germany, 2003.
American Welding Society's Virtual Welding Trailer to Debut at FABTECH Careers in Welding Trailer Appeals to New Generation of Welders, Miami, Florida, Nov. 3, 2011.
American Welding Society Forms: typical Procedure Qualification Record and Welding Procedure Specification forms.
ArcSentry Weld Monitoring System, Version 3, Users Manual, Native American Technologies, Golden, CO, Dec. 10, 1999.
ARVIKA Forum Vorstellung Projeckt PAARA, BMW Group Virtual Reality Center, Nuernberg, 2003.
Ascension Technology Corporation: Tracking 3D Worlds: http://ascension-tech.com/, Dec. 1996.
Barckhoff, J.R.; “Total Welding Managemet,” American Welding Society, 2005.
Bender Shipbuilding and Repair, Co., “Virtual Welding—A Low Cost Virtual Reality Welder Training System”, Technical Proposal, Jan. 23, 2008.
Byrd, Alex Preston, “Identifying the effects of human factors and training methods on a weld training program” (2014). Graduate Theses and Dissertations. Paper 13991.
Central Welding Supply http://www.welders-direct.com/ Feb. 29, 2000.
Choquet, Claude, ARC+: Today's Virtual Reality Solution for Welders, Jun. 1, 2008.
Choquet, Claude, ARC+ & ARC PC Welding Simulators: Teach Welders with Virtual Interactive 3D Technologies; Jul. 2010.
Cybernetics: Enhancing Human Performance found in the DTIC Review dated Mar. 2001, p. 186/19. See http://www.dtic.mil/dtic/tr/fulltext/u2/a385219.pdf.
Dixon, Kevin et al.; “Gesture-based Programming for Robotic Arc Welding,” Carnegie Mellon University, Dec. 6, 2002.
Echtler, Florian, Fabian Stuurm, Kay Kindermann, Gudrun Klinker, Joachim Stilla, Jorn Trilk, Hesam Najafi, “The Intelligent Welding Gun: Augmented Reality for Experimental Vehicle Construction,” Virtual and Augmented Reality Applications in Manufacturing, Ong S.K and Nee A.Y.C., eds., Springer Verlag, 2003, pp. 1-27.
Evaluating Two Novel Tactile Feedback Devices, by Thomas Hulin, Phillipp Kremer, Robert Scheibe, Simon Schaetzle and Carsten Preusche presented at the 4th International Conference on Enactive Interfaces, Grenoble, France, Nov. 19-22, 2007.
EWI, “EWI ArcCheck,” marketing brochure, Columbus, Ohio.
EWI, “EWI SkillBuilder,” marketing brochure, Columbus, Ohio.
Fast, Kenneth, Jerry Jones, and Valerie Rhoades; “Virtual Welding—A Low Cost Virtual Reality Welder Training System Phase II,” National Shipbuilding Research Program (NSRP), NSRP ASE Technology Investment Agreement No. 2010-357, Feb. 29, 2012, http://www.nsrp.org/3-RA-Panel_Final_Reports/FY08_Virtual_Welder_Final_Report.pdf.
Fast et al., Virtual Training for Welding, Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2004); 0-7695-2191-6/04; 2004.
Fite-Georgel, Pierre; “Is there a Reality in Industrial Augmented Reality?” 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2011.
Fridenfalk et al., Design and Validation of a Universal 6D Seam Tracking System in Robotic Welding Based on Laser Scanning, Industrial Robotics: Programming, Simulation, and Application, ISBN 3-86611-286-6, pp. 702, ARS/pIV, Germany, Dec. 2006, edited by Kin Huat.
Fronius “The Ghost”: http://www.fronius.com/cps/rde/xchg/SID-3202EAB7-AE082518/fronius_interational/hs.xsl/79_15490_ENG_HTML.htm; 2006.
Fronius International GmbH—Focus on Welding—Fronius Virtual Welding; http://www.fronius.com/cps/rde/xchg/SID-99869147-0110E322/fronius_intenational/hs.xsl/79_15490_ENG_HML.htm; 2006.
Fronius Perfect Welding; 06,3082, EN v01 2010 aw05; Virtual Welding—The training method of the future; Feb. 20, 2012.
ftp://www.hitl.washington.edu/pub/scivw/publications/IDS-pdf/HAPTIC1.PDF, (University of Washington): Table 11, Tactile Feedback Actuator Technologies, p. 119, below the table is a. Based on Hasser (1995, 1996).
GAWDA—Welding & Gases Today Online GAWDA Media Blog; Will Games Turn Welding into a Virtual Market? Friday, Dec. 2, 2011; http://www.weldingandgasestoday.org/blogs/Devin-OToole/index.php/ta.
Gundersen, O., et al. “The Use of an Integrated Multiple Neural Network Structure for Simultaneous Prediction of Weld Shape, Mechanical Properties, and Distortion in 6063-T6 and 6082-T6 Aluminum Assemblies”, Mathematical Modelling of Weld Phenomena, vol. 5, Maney Publishing, 2001.
Haptic Feedback for Virtual Reality by Grigore C. Burdea dated 1996.
Hemez, Francois M., Scott W. Doebling, “Uncertainty, Validation of Computer Models an the Myth of Numerical Predictability,” Engineering Analysis Group (ESA-EA), Los Alamos National Laboratory, dated 2004.
Hillers, B, and Axel Graeser, “Direct welding arc observation withouth harsh flicker,” FABTECH International and AWS Welding Show, 2007.
Hillers, B, and Axel Graeser, “Real time Arc-Welding Video Observation System,” 62nd International Conference of IIW, Jul. 12-17, 2009, Singapore, 2009.
Hillers, B., et al.; “TEREBES: Welding Helmet with AR Capabilites,” Institute of Automation, University of Bremen, and Institute of Industrial Engineering and Ergonomics, RWTH Aachen Universty, 2004.
Hillers, Bernd, Dorin Aiteanu, Axel Graser, “Augmented Reality—Helmet for the Manual Welding Process,” Virtual and Augmented Reality Applications in Manufacturing, Institute of Automation, Universtity of Bremen, 2004.
Himperich, Frederick, “Applications in Augmented Reality in the Automotive Industry,” Fachgebiet Augmented Reality, Department of Informatics, Jul. 4, 2007, p. 1-21.
http://www.123arc.com “Simulation and Certification”; 2000.
Image from Sim Welder.com—R-V's Welder Training Goes Virtual, www.rvii.com/PDF/simwelder.pdf; Jan. 2010.
IMPACT Spring 2012 vol. 12, No. 2, Undergraduate Research in Information Technology Engineering, University of Virginia School of Engineering & Applied Science; 2012.
Impact Welding: miscellaneous examples from current and archived website, trade shows, etc. See, e.g., http://www.impactwelding.com.
Integrated Microelectromechanical Gyrosopes; Journal of Aerospace Engineering, Apr. 2003 pp. 65-75 (p. 65) by Huikai Xie and Garry K. Fedder.
International Search Report for PCT application No. PCT/US2015/04234, dated Nov. 27, 2015, 14 pgs.
International Search Report for PCT application No. PCT/US2009/045436, dated Nov. 9, 2009, 3 pgs.
International Search Report for PCT application No. PCT/US2012/050059 dated Nov. 27, 2012, 16 pgs.
International Search Report for PCT application No. PCT/US2013/038371 dated Jul. 31, 2013, 8 pgs.
International Search Report for PCT application No. PCT/US2013/066037 dated Mar. 11, 2014, 10 pgs.
International Search Report for PCT application No. PCT/US2013/066040 dated Mar. 11, 2014, 12 pgs.
International Search Report for PCT application No. PCT/US2014/018107, dated Jun. 2, 2014, 3 pgs.
International Search Report for PCT application No. PCT/US2014/018109, dated Jun. 2, 2014, 4 pgs.
International Search Report for PCT application No. PCT/US2014/018113, dated Jun. 2, 2014, 3 pgs.
International Search Report from PCT application No. PCT/US2014/018114, dated Jun. 2, 2014, 4 pgs.
International Search Report from PCT application No. PCT/US2014/065498, dated May 11, 2015, 13 pgs.
International Search Report from PCT application No. PCT/US2014/065506, dated Jun. 26, 2015, 16 pgs.
International Search Report from PCT application No. PCT/US2014/065512, dated Jun. 8, 2015, 17 pgs.
International Search Report from PCT application No. PCT/US2014/065525, dated Jul. 23, 2015, 16 pgs.
International Search Report from PCT application No. PCT/US2014/067951, dated Feb. 24, 2015, 10 pgs.
International Search Report from PCT application No. PCT/US2015-058667, dated Feb. 5, 2016, 14 pgs.
International Search Report from PCT application No. PCT/US2015/028939, dated Oct. 14, 2015, 13 pgs.
International Search Report from PCT application No. PCT/US2015/037410, dated Nov. 6, 2015, 10 pgs.
International Search Report from PCT application No. PCT/US2015/037439, dated Nov. 3, 2015, 12 pgs.
International Search Report from PCT application No. PCT/US2015/037440, dated Nov. 3, 2015, 12 pgs.
International Search Report from PCT application No. PCT/US2015/039680, dated Sep. 23, 2015, 12 pgs.
International Search Report from PCT application No. PCT/US2015/041462, dated Dec. 4, 2015, 14 pgs.
International Search Report from PCT application No. PCT/US2015/043370, dated Dec. 4, 2015, 12 pgs.
International Search Report from PCT application No. PCT/US2015/058666, dated Feb. 1, 2016, 11 pgs.
Jo et al., Visualization of Virtual Weld Beads, VRST 2009, Kyoto, Japan, Nov. 18-20, 2009; Electronics and Telecommunications Research Institute (ETRI) ACM 978-1 60558-869-8/09/0011.
Kiwinakiful; Holographic TV coming 2012 (as seen on BBC); http://www.youtube.com/watch?v=Ux6aD6vE9sk&feature=related, Jul. 2, 2011.
Kooima, Robert; Kinect +3D TV=Virtual Reality; http://www.youtube.com/watch?v=2MX1RinEXUM&feature=related, Feb. 26, 2011.
Leap Motion; https://www.leapmotion.com/, May 2012.
Lincoln Electric VRTEX Virtual Reality Arc Welding Trainer; http://www.lincolnelectric.com/en-us/equipment/training-equipment/pages/vrtex360.aspx; 1999.
MacCormick, John; How does the Kinect work?; http://users.dickinson.edu/˜jmac/selected-talks/kinect.pdf, Dec. 1, 2011.
NAMeS, Native American Technologies Weld Measuring Software, Users Guide, 2000.
National Science Foundation—Where Discoveries Begin—Science and Engineering's Most Powerful Statements Are Not Made From Words Alone—Entry Details for NSF International Science & Engineering Visualization Challenge, Public Voting ended on Mar. 9, 2012; Velu the welder by Muralitharan Vengadasalam—Sep. 30, 2011; https://nsf-scivis.skild.com/skild2/NationalScienceFoundation/viewEntryDetail.action?pid.
Native American Technologies, “ArcDirector Weld Controller” web page, http://web.archive.org/web/20020608125127/http://www.natech-inc.com/arcdirector/index.html, published Jun. 8, 2002.
Native American Technologies, “ArcSentry Weld Quality Monitoring System” web page, http://web.archive.org/web/20020608124903/http://www.natech-inc.com/arcsentry1/index.html, published Jun. 8, 2002.
Native American Technologies, “Official NAMeS Web Site” web page, http://web.archive.org/web/20020903210256/http://www.natech-inc.com/names/names.html, published Sep. 3, 2002.
Native American Technologies, “P/NA.3 Process Modelling and Optimization” web pages, http://web.archive.org/web/20020608125619/http://www.natech-inc.com/pna3/index.html, published Jun. 8, 2002.
Native American Technologies, “Process Improvement Products” web page, http://web.archive.org/web/20020608050736/http://www.natech-inc.com/products.html, published Jun. 8, 2002.
Natural Point, Trackir; http://www.naturalpoint.com/trackir/, Dec. 2003.
Numerical Simulation F Arc Welding Process and its Application Dissertation for Ohio State University by Min Hyun Cho, M.S. 2006: See Internet as this document is security protected) ohttps://etd.ohiolink.edu/ap:0:0:APPLICATION_PROCESS=DOWNLOAD _ETD_SUB_DOC_ACCNUM:::F1501_ID:osu1155741113, attachment.
NZ Manufacturer Game promotes welding trade careers; http://nzmanufacturer.co.nz/2011/11/gme-promotes-welding-trade-careers/ . . . Compentenz Industry Training; www.competenz.org.nz; Game promotes welding trade careers, Nov. 7, 2011.
OptiTrack: Motion Capture Systems: http://www.naturalpoint.com/optitrack/, Mar. 2005.
Penrod, Matt; “New Welder Training Tools,” EWI PowerPoint presentation, 2008.
PhaseSpace: Optical Motion Capture: http://phasespace.com/, 2009.
Playstation; Move Motion Controller: http://us.playstation.com/ps3/playstation-move/, Mar. 2010.
Polhemus: Innovation in Motion: http://polhemus.com/?page=researchandtechnology, 1992.
Porter, Nancy C., Edison Welding Institute; J. Allan Cote, General Dynamics Electrict Boat; Timothy D. Gifford, VRSim; and Wim Lam, FCS Controls—Virtual Reality Welder Training—Project No. S1051 Navy Man Tech Program; Project Review for Ship Tech 2005,—Mar. 1, 2005, Biloxi, MS, http://www.nsrp.org/6-Presentations/WD/Virtual_Welder.pdf.
Porter, Nancy C., Edison Welding Institute; J.Allan Cote, General Dynamics Electric Boat; Timoty D. Gifford, VRSim; and Wim Lam, FCS Controls—Virtual Reality Welder Training—Session 5; Joining Technologies for Naval Applications; 2007.
Porter et al., EWI-CRP Summary Report SR0512, Jul. 2005—Virtual Reality Welder Training.
Quebec International, May 28, 2008 “Video Game” Technology to Fill Growing Need; http://www.mri.gouv.qc.ca/portail/_scripts/actualities/viewnew.sap?NewID=5516.
Ryu, Jonghyun, Jaehoon Jung, Seojoon Kim, and Seungmoon Choi, “Perceptually Transparent Vibration Rendering Using a Vibration Motor for Haptic Interaction,” 16 IEEE International Conference on Robot & Human Interactive Communication, Jeju, Korea, Aug. 26-29, 2007.
Sandor, Christian, Gudrun Klinker, “PAARTI: Development of an Intelligent Welding Gun for BMW,” PIA 2003, Tokyo, Japan, Technical University of Munich Department of Informatics, Oct. 7, 2003.
Sandor, Christian, Gudrun Klinker; “Lessons Learned in Designing Ubiquitous Augmented Reality User Interfaces,” Emerging Technologies of Augmented Reality Interfaces, Eds. Haller, M, Billinghurst, M., and Thomas, B., Idea Group Inc., 2006.
ShotOfFuel; Wii Head Tracking for 3D, http://www.youtube.com/watch?v=1x5ffF-0Wr4, Mar. 19, 2008.
Sternowski, Andreas; “Handheld Welding Torch with Position Detection,” Patente Fonds, Patent Portfolio, Sep. 21, 2011.
Stone, R. T., K. Watts, and P. Zhong, “Virtual Reality Integrated Welder Training, Welding Research,” Welding Journal, vol. 90, Jul. 2011, pp. 136-s-141-s, https://app.aws.org/wj/supplement/wj201107_s136.pdf.
TCS News & Events: Press Release: TCS wins the “People Choice” award from National Science Foundation, USA, pp. 1-6; Press Release May 21, 2012; http://www.tsc.com/news_events/press_releases/Pages/TCS_People_Choice_award_Natio.
teachWELD: Welding Simulator/Hands-On Learning for Welding: http://realityworks.com/products/teachweld-welding-simulator; 2012.
Terebes; miscellaneous examples from http://www.terebes.uni-bremen.de.
The Rutgers Master II—New Design Force-Feedback Glove by Mourad Bouzit, Member, IEEE,Grigore Burdea, Senior Member, IEEE, George Popescu, Member, IEEE, and Rares Bolan, Student Member, found in IEEE/ASME Transactions on Mechatronics, vol. 7, No. 2, Jun. 2002.
thefabricator.com—Arc Welding Article; Heston, Tim, Virtual welding—Training in a virtual environment gives welding students a leg up—Mar. 11, 2008.
Tschurner, Petra, Hillers, Bernd, and Graeser, Axel; “A Concept for the Application of Augmented Realty in Manual Gas Metal Arc Welding,” Proceedings of the International Symposium on Mixed and Augmented Reality, 2002.
Vicon: Motion Capture Systems: http://vicon.com/, Dec. 1998.
Virtual Reality Training Manual Module 1—Training Overview—A Guide for Gas Metal Arc Welding—EWI 2006.
Welding Journal, American Welding Society, Nov. 2007, https://app.aws.org/wj/2007/11/WJ_2007_11.pdf.
White, S., et al., “Low-Cost Simulated MIG Welding for Advancement in Technical Training,” Virtual Reality, 15, 1, 69-81, Mar. 2011. ISSN:13594338 [Retrieved from EBSCOhost, Jun. 15, 2015].
“SOLDAMATIC: Augmented Training Technology for Welding,” Seabery Augmented Training Technology, Seabery Soluciones, 2011.
Hashimoto, Nobuyoshi et al., “Training System for Manual Arc Welding by Using Mixed Reality: Reduction of Position-Perception Error of Electrode Tip,” Journal of the Japan Society for Precision Engineering, vol. 72, pp. 249-253, 2006.
International Search Report for PCT application No. PCT/US2015/058563, dated Jan. 29, 2016, 13 pgs.
International Search Report from PCT application No. PCT/US2014/018103, dated Jun. 30, 2014, 13 pgs.
International Search Report from PCT application No. PCT/US2015/058567, dated May 6, 2016, 15 pgs.
International Search Report from PCT application No. PCT/US2015/058569, dated Feb. 10, 2016, 12 pgs.
International Search Report from PCT application No. PCT/US2015/058660, dated Feb. 2, 2016, 14 pgs.
International Search Report from PCT application No. PCT/US2015/058664, dated Apr. 25, 2016, 17 pgs.
International Search Report from PCT application No. PCT/US2016/023612, dated Jul. 18, 2016, 11 pgs.
Kobayashi, Kazuhiko et al., “Modified Training System for Manual Arc Welding by Using Mixed Reality and Investigation of Its Effectiveness,” Journal of the Japan Society for Precision Engineering, vol. 70, pp. 941-945, 2004.
Kobayashi, Kazuhiko et al., “Simulator of Manual Metal Arc Welding with Haptic Display,” Chiba University, ICAT 2001, Dec. 2001.
Kobayashi, Kazuhiko et al., “Skill Training System of Manual Arc Welding by Means of Face-Shield HMD and Virtual Electrode,” Chiba University, Japan, R. Nakatsu et al. (eds.), Entertainment Computing, Springer Science +Business Media, New York, 2003.
VRTEX 360 Operator's Manual, Lincoln Electric, Oct. 2012.
VRTEX 360, Lincoln Electric, Dec. 2009.
Canadian Office Action Appln. No. 2,959,374 dated Dec. 11, 2017 (5 pages).
Canadian Office Action Appln No. 2,959,374 dated Sep. 30, 2019.
Canadian Office Action Appln. No. 2,958,203 dated Oct. 4, 2019 (5 pages).
Related Publications (1)
Number Date Country
20160107258 A1 Apr 2016 US