This disclosure relates generally to use of optical equipment and techniques with subterranean wells and, in an example described below, more particularly provides a remote pumped multiple core optical fiber system.
Fiber amplifiers have been used for amplifying optical signals in optical fibers. However, optical pumping for a fiber amplifier is typically provided via a separate optical fiber. Thus, to provide direct optical amplification in a well, at least one additional optical fiber needs to be installed in the well.
Therefore, it will be appreciated that improvements are needed in the art of constructing and operating optical systems in wells.
Representatively illustrated in
In the
In other examples, the optical fiber 12 could be positioned in an interior or a wall of the tubular string 14, exterior to or in a wall of the casing 18, in the cement 20, etc. In some examples, the optical fiber 12 could be positioned in an uncased or open hole section of the wellbore 16. In some examples, a cable or tube could comprise or contain other types or combinations of lines (such as, electrical and/or hydraulic lines, etc.). Thus, it should be clearly understood that the scope of this disclosure is not limited to the details of the
As depicted in
In an example described more fully below, the amplifier 22 can comprise a dual core optical fiber, in which one of the cores is used for optically pumping the other core, which has been doped with one or more species of rare earth ions, such as erbium or praseodymium. Thus, the doped core essentially becomes a fiber laser pumped via another core of the amplifier 22. Any number or combination of cores may be used in the fiber amplifier 22 in keeping with the scope of this disclosure.
Referring additionally now to
Although only two cores 24, 28 are depicted in
In the
Optical power 38 transmitted via the outer cores 28, 36 optically pumps the rare earth ions 26 in the amplifier inner core 24. Optical signals 40 transmitted via the inner cores 24, 34 are thereby amplified, the amplifier inner core serving as an “in-line” fiber laser. Suitable multiple core optical fiber amplifiers are commercially available, and are known to those skilled in the art, and so will not be described further herein.
Note that optical signals 40 in the inner cores 24, 34 can be transmitted and amplified in any direction. The amplified signals 40 desirably will have a same wavelength and phase as the pre-amplified signals. The wavelength(s) chosen for the optical signals 40 and optical pump should be appropriate for desired excitation of the rare earth ions 26.
Referring additionally now to
Because the signal transmission and amplification functions can be accomplished using the single optical fiber 12, fewer penetrations are needed in wellheads, packers, etc., of the well, and existing penetrations can be more effectively utilized. The use of fewer optical fibers also reduces the risk that an optical fiber will become damaged during rig-up, installation, long term use, etc.
For effective transmission of the optical signals 40, the inner cores 24, 34 can be single mode cores. For effective transmission of optical power 38, the outer cores 28, 36 can be multi-mode cores. However, the scope of this disclosure is not limited to use of any particular core for any particular purpose, or to use of a single or multiple mode core to effectively accomplish that purpose.
In the
The sensor 50 may be intrinsic or extrinsic relative to the optical fiber 12. An extrinsic sensor 50, such as a pressure sensor, could be optically coupled to the optical fiber 12. An intrinsic sensor 50, such as a fiber Bragg grating used to detect strain, could be part of the optical fiber 12 itself.
Various types of interferometric sensors may be used for the sensor 50. However, it is not necessary in keeping with the scope of this disclosure for the sensor 50 to comprise an interferometric or other type of “optical” sensor.
In some examples, the optical fiber 12 can comprise the sensor 50. For example, distributed temperature, strain, pressure and acoustic energy measurements may be obtained by detecting Raman, coherent Rayleigh, stimulated Brillouin and/or other types of optical back scatter in the inner core 34. Such distributed measurements via detection of optical back scatter are well known to those skilled in the art, and so will not be described further herein.
Referring additionally now to
The modulator 52 is supplied with optical power 38 via the outer core 36. The modulator 52 could include, for example, an optical to electrical converter (such as a photodiode, etc.) which converts the optical power 38 to electrical power, the electrical power may be used to condition and/or amplify electrical or other signals from the sensor 50, and an electrical to optical converter (such as a light emitting diode, etc.) may be used to modulate and transmit the resulting optical signals 40 via the inner cores 24, 34. Of course, the optical power 38 transmitted via the outer core 36 may be used for other purposes downhole (for example, to provide power to other well tools), in keeping with the scope of this disclosure.
Referring additionally now to
As depicted in
It may now be fully appreciated that the above disclosure provides significant advancements to the art of constructing and utilizing optical systems in wells. By use of the multiple core 34, 36 optical fiber 12, fewer penetrations and optical fibers may be used. Fewer optical fibers used can result in cost and time savings in installation and maintenance for well optical systems. The multiple core optical fiber amplifier 22 examples described above are especially well suited for use with the multiple core optical fiber 12.
A downhole optical system 10 is provided to the art by the above disclosure. In one example, the system 10 can include an optical fiber 12 disposed in a subterranean well, and an optical fiber amplifier 22 which amplifies optical power in a first core 34 of the optical fiber 12 in the well, the amplifier 22 being optically pumped with optical power 38 in a second core 36 of the optical fiber 12 in the well.
The fiber amplifier 22 may comprise a rare earth doped core 24. Other types of optical amplifiers may be used, if desired.
The optical fiber first core 34 can comprise a single mode core. The optical fiber second core 36 can comprise a multiple mode (multi-mode) core.
The fiber amplifier 22 may be optically connected between sections 12a,b of the optical fiber 12. The fiber amplifier 22 may comprise first and second cores 24, 28 optically connected respectively to the optical fiber first and second cores 34, 36.
The optical fiber first core 34 may be optically connected to at least one sensor 50 in the well. The optical fiber first core 34 may comprise a sensor in the well.
The optical power 38 in the optical fiber second core 36 can be used to modulate a sensor 50 indication transmitted optically via the optical fiber first core 34.
The fiber amplifier 22 can comprise a reflector 54 which reflects the optical power 38 in the optical fiber second core 36 through the fiber amplifier 22.
Another downhole optical system 10 described above can include an optical fiber 12 disposed in a subterranean well, the optical fiber 12 comprising first and second cores 34, 36, and an optical fiber amplifier 22 comprising first and second cores 24, 28 optically coupled respectively to the optical fiber first and second cores 34, 36 in the well. The fiber amplifier 22 may amplify optical power in the optical fiber first core 34, the amplifier 22 being optically pumped with optical power 38 in the optical fiber second core 36.
A downhole optical system 10 described above can comprise, an optical fiber 12 disposed in a subterranean well, and an optical fiber amplifier 22 which amplifies optical power in a single mode core 34 of the optical fiber 12 in the well, the amplifier 22 being optically pumped with optical power in a multiple mode core 36 of the optical fiber 12 in the well. The single mode core 34 may be surrounded by the multiple mode core 36.
Although various examples have been described above, with each example having certain features, it should be understood that it is not necessary for a particular feature of one example to be used exclusively with that example. Instead, any of the features described above and/or depicted in the drawings can be combined with any of the examples, in addition to or in substitution for any of the other features of those examples. One example's features are not mutually exclusive to another example's features. Instead, the scope of this disclosure encompasses any combination of any of the features.
Although each example described above includes a certain combination of features, it should be understood that it is not necessary for all features of an example to be used. Instead, any of the features described above can be used, without any other particular feature or features also being used.
It should be understood that the various embodiments described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of this disclosure. The embodiments are described merely as examples of useful applications of the principles of the disclosure, which is not limited to any specific details of these embodiments.
The terms “including,” “includes,” “comprising,” “comprises,” and similar terms are used in a non-limiting sense in this specification. For example, if a system, method, apparatus, device, etc., is described as “including” a certain feature or element, the system, method, apparatus, device, etc., can include that feature or element, and can also include other features or elements. Similarly, the term “comprises” is considered to mean “comprises, but is not limited to.”
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the disclosure, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of this disclosure. For example, structures disclosed as being separately formed can, in other examples, be integrally formed and vice versa. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the invention being limited solely by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4162400 | Pitts, Jr. | Jul 1979 | A |
5191206 | Boiarski et al. | Mar 1993 | A |
5389782 | Hilliard | Feb 1995 | A |
5892615 | Grubb et al. | Apr 1999 | A |
6281489 | Tubel | Aug 2001 | B1 |
6317537 | Ionov et al. | Nov 2001 | B1 |
6728165 | Roscigno et al. | Apr 2004 | B1 |
6910803 | MacDougall | Jun 2005 | B2 |
6970396 | Maas et al. | Nov 2005 | B2 |
6995899 | Aronstam | Feb 2006 | B2 |
7583371 | MacDougall | Sep 2009 | B2 |
7599047 | Zou et al. | Oct 2009 | B2 |
8274400 | Wilson et al. | Sep 2012 | B2 |
8304714 | Csutak | Nov 2012 | B2 |
8365431 | Parish | Feb 2013 | B1 |
8451453 | Molin | May 2013 | B2 |
9075252 | Samson et al. | Jul 2015 | B2 |
20020040963 | Clayton et al. | Apr 2002 | A1 |
20020063866 | Kersey et al. | May 2002 | A1 |
20030146393 | Youngner | Aug 2003 | A1 |
20030169489 | Jiang et al. | Sep 2003 | A1 |
20040113104 | Maida, Jr. | Jun 2004 | A1 |
20040190588 | MacDougall | Sep 2004 | A1 |
20050094129 | MacDougall | May 2005 | A1 |
20060133711 | Vannuffelen et al. | Jun 2006 | A1 |
20060152383 | Yamate et al. | Jul 2006 | A1 |
20060289724 | Skinner | Dec 2006 | A1 |
20080063337 | MacDougall et al. | Mar 2008 | A1 |
20090326826 | Hull et al. | Dec 2009 | A1 |
20100107754 | Hartog et al. | May 2010 | A1 |
20100181472 | Csutak | Jul 2010 | A1 |
20100327764 | Knapp | Dec 2010 | A1 |
20110088462 | Samson et al. | Apr 2011 | A1 |
20110090496 | Samson et al. | Apr 2011 | A1 |
20110163891 | Wilson | Jul 2011 | A1 |
20110188798 | Yafuso | Aug 2011 | A1 |
20110290992 | Sato et al. | Dec 2011 | A1 |
20110292763 | Coates et al. | Dec 2011 | A1 |
20120127459 | Handerek | May 2012 | A1 |
20120294607 | Winzer et al. | Nov 2012 | A1 |
20130271769 | Handerek | Oct 2013 | A1 |
20140362431 | Mitchell et al. | Dec 2014 | A1 |
20150192773 | Perkins et al. | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
2004003342 | Jan 2004 | WO |
WO-2004003342 | Jan 2004 | WO |
WO-2005033465 | Apr 2005 | WO |
WO-2007140134 | Dec 2007 | WO |
WO-2014149227 | Sep 2014 | WO |
Entry |
---|
Encyclopedia of Laser Physics and Technology; “Double-clad Fibers”, article via http://www.rp-photonics.com/double—clad—fibers.html, dated Feb. 12, 2013, 4 pages. |
OZ OPTICS; “Fiber Optic Distributed Brillouin Sensors”, article DTS0115 via www.ozoptics.com, dated Sep. 22, 2006, 5 pages. |
Thevenaz, Luc et al.; “Truly Distributed Strain and Temperature Sensing Using Embedded Optical Fibers”, article via http://dewww.epfl.ch/met/metrology.html, received Feb. 11, 2013, 15 pages. |
Smith, Jeff et al.; “Simultaneous Distributed Strain and Temperature Measurement”, Applied Optics, vol. 38, No. 25, dated Sep. 1, 1999, 6 pages. |
AFL; “DNS-4793 FiberRod—2.03mm Glass Matrix with VHS500 CSPFA fiber, 200C glass version”, product specifications, received Feb. 11, 2013, 1 page. |
Fibertronix; “Double Clad Optical Fiber”, product specification, dated Feb. 3, 2010, 1 page. |
Luna Innovations; “Fiber Optic Shape Sensing”, technology snapshot, Feb. 24, 2012, 3 pages. |
Laser Focus World; “Multicore Optical Fibers Could Be Next-Gen PON Solution”, article via http://www.laserfocusworld.com/articles/2012/01/multicore-optical-fibers.html, dated Feb. 8, 2013, 2 pages. |
A. Boh Ruffin; “Stimulated Brillouin Scattering: An Overview of Measurements, System Impairments, and Applications”, NIST-SOFM 2004, dated 2004, 6 pages. |
Luna Technologies; “Optical Backscatter Reflectometer”, Model OBR 4600, LTOBR4600 article via www.lunatechnologies.com, dated Sep. 3, 2010, 4 pages. |
Luna Innovations Incorporated; “Fiber Optic Shape Sensing”, technology snapshot, dated Aug. 24, 2012, 4 pages. |
Ezine Articles; “What are Optical Fiber Amplifiers and How Do They Work?”, article via http://ezinearticles.com, dated Feb. 12, 2013, 2 pages. |
P.C. Wait, et al.; “Landau Placzek Ratio Applied to Distributed Fibre Sensing”, Optics Communications 122 article, pp. 141-146, dated Jan. 1, 1996, 6 pages. |
Specification and Drawings for U.S. Appl. No. 13/847,165, filed Mar. 19, 2013, 27 pages. |
Specification and Drawings for U.S. Appl. No. 13/847,204, filed Mar. 19, 2013, 22 pages. |
International Search Report with Written Opinion issued Jun. 3, 2014 for PCT Patent Application No. PCT/U52014/015484, 16 pages. |
International Application Serial No. PCT/US2014/015482, International Preliminary Report on Patentability mailed Oct. 1, 2015, 14 pgs. |
International Application Serial No. PCT/US2014/015482, International Search Report mailed May 14, 2014, 3 pgs. |
Canadian Application Serial No. 2,890,076, Office Action mailed Apr. 20, 2016, 4 pgs. |
European Application Serial No. 14770797.0, Office Action mailed Oct. 27, 2015, 2 pgs. |
European Application Serial No. 14770797.0, Response filed Feb. 26, 2016 to Office Action mailed Oct. 27, 2015, 11 pgs. |
International Application Serial No. PCT/US2014/015482, Written Opinion mailed May 14, 2014, 12 pgs. |
European Search Opinion issued in corresponding application No. EP 14770797.0 dated Oct. 28, 2016, 11 pgs. |
Number | Date | Country | |
---|---|---|---|
20140285875 A1 | Sep 2014 | US |