The present invention relates to remote water delivery means and water pumping assemblies. More particularly, this invention relates to a remote water storage with an integrated high volume and pressure water delivery pump for use in fire protection and emergency situations.
In emergency situations, such as when a building, vehicle, or other large object catches fire, a matter of seconds can determine not only whether the object is a total loss, but whether lives could be at risk. It is, therefore, imperative that personnel trained to put out the fire arrive on the scene as quickly as possible. Often, due to expanding population growth in rural areas not supplied with water by public utilities, water storage tanks for fire suppression are being used in increasing numbers. These tanks, which are often times buried in the ground to save space and prevent freezing, require the utilization of a ‘drafting apparatus’ in order to extract the water and deliver it to the emergency or firefighting operations. This means of retrieving the water in an expedient manner and in sufficient volumes necessary to salvage the burning object proves difficult at best. Because the water must be drafted, an effective vacuum must be established on the intake side of the pump. This historically has been fraught with human and mechanical failure with an undesirable frequency. Furthermore, there is a physical limitation as to tank proximity with regard to the drafting apparatus. In addition, the effort and time required to establish water delivery is increased due to the effort associated with ensuring suitable drafting characteristics (i.e., hardware connections, water-tight seals, etc.). The problems previously encountered with poor water delivery from submersible water storage vessels relate primarily with the incompatible design features of submersible pumps with requirements for high volume and high pressure applications. Submersible pumps are typically designed having low head open center designs for industrial watering or outputting solids and wastes from a submersed storage tank or sediment pond where the volumes may be high but the pressure of water delivery is low to protect the pump from the solids. These submersible pumps are not designed to pump large volumes of water with the requisite pressure for fire-fighting applications (for example, sufficient pressure to enable delivery of water through tack lines of 250 feet of 1 and ¾ inch hose for fighting emergency fire situations).
Therefore, it is advantageous to utilize a submersible, mechanically driven means of pumping water out of these sources which can be quickly implemented in an emergency situation and provide the firefighters or other emergency personnel with a supply of water having high enough pressure and volume to quickly attend to the fire.
It is therefore an object of the present invention to provide a submersible water pump of sufficient volume and pressure handling capabilities which can be placed into a remote cistern for extracting a supply of water stored there within.
Another object of the present invention is to provide a submersible pump as described above which can be either hydraulically or electrically powered, suitable for situations such as firefighting or industrial watering.
Another object of the present invention is to provide a removable cistern pump which may be utilized in conjunction with prior art ‘drafting’ to significantly increase discharge volume.
Still, a further object of the present invention is to provide a hydraulically powered submersible pump for use with in-ground cisterns which provides a rapid, simplistic, and efficient water delivery technique.
It is a further object of the present invention to provide a hydraulically powered submersible pump for use with in-ground cisterns which is highly reliable and predictable in performance.
It is another object of the present invention to provide a hydraulically powered submersible pump for use with in-ground cisterns which allows for increased flexibility of the physical location of the cistern with regard to the power supply, or discharge outputs due to the elimination of the need to be in proximity of the drafting apparatus.
Finally, it is an object of the present invention to be able to retrofit the pump system onto existing cistern/storage tanks with minimal effort or equipment.
These and other objects will be understood wherein the present invention discloses a remote pumping system for cisterns, comprising a high volume and pressure water pump driven by a hydraulic or electrically powered motor, for rapidly supplying a large volume of water to an extinguishment operation involving a burning object or building. The pump is lowered into a cistern by means of a rail system and is powered electrically or hydraulically by a remote power supply. In a further embodiment, a water-tight, above ground containment cabinet houses the discharge and hydraulic hose reels, and optionally the power supply.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring now to the figures, in particular
The operating volumes delivered by the water pump assembly 10 of the present disclosure can operate at specific pressures designated by the user and in some embodiments meet and/or exceed fire service performance. In some embodiments, the operating pressures used to deliver the volumes of water described above can range from about 100 kPa (14.5 psi) to about 2100 kPa (305 psi), or from about 200 kPa (29 psi) to about 2100 kPa (305 psi), or from about 500 kPa (73 psi) to about 2100 kPa (305 psi), or from about 750 kPa (109 psi) to about 2100 kPa (305 psi), or from about 1000 kPa (145 psi) to about 2100 kPa (305 psi), or from about 1500 kPa (218 psi) to about 2100 kPa (305 psi).
The primary embodiment of this invention comprises a high volume, high pressure water pump assembly 10 which is lowered into the cistern by means of a rail system 16 extending above ground. The rail system 16 can comprise any type of controlled guiding means available, so long as it is highly durable and can stand up to the conditions of implementation subterraneously. In some embodiments, the rail guiding means can comprise a powered lift device 19 which can be powered electrically and/or hydraulically to raise and lower rail system 16. In some embodiments, the high water pressure water pump 20 can include, for example, any rotary non-positive displacement pump. In some embodiments, the pump can be a centrifugal pump, a boundary layer pump, a disc pump and turbine pumps. In some preferred embodiments, the water pump 20 is a centrifugal pump.
The water pump assembly 10, when lowered into the cistern to withdraw a supply of water, remains interconnected to the surface by both the discharge pipe 63 and the power supply lines 37, which depending upon the desired pump utilized in a given application may consist of either electrical or hydraulic lines. An optional above ground, water-tight storage cabinet 12 may be utilized to store the pump's power supply or additional equipment. In some embodiments, power supply 82 can be mounted on site and contained within storage cabinet 12. In some embodiments, power supply 82 is mounted to a mobile vehicle, for example a fire truck, municipal and military vehicles capable of providing the power necessary to operate the high pressure water pump assembly 10 via motor assembly 30 (as shown in
Referring now to
Pump housing 21 further comprises a tangential pump output 27, which terminates in a flange plate 24 journally attached to a discharge elbow 61 having a complementary flange plate 66, by means of fasteners 26 positioned through the two plates 24, 66.
In some embodiments, the water pump assembly 10 can include a single or two stage series and/or parallel pump coupled to a mounted motor. In some embodiments, the water pump assembly 10 can comprise a piston motor driven centrifugal pump, for example a HE 500 motor driven centrifugal pump commercially available from Darley, Melrose Park, Ill. USA.
Opposite intake screen 22 on water pump 20, pump housing 21 attaches to the drive shaft housing 57, by means of the shaft housing flange 28 and mounting hardware 51. Referring now to
Hydraulic or electric motor assembly 30, known in the art, receives a pressurized supply of hydraulic fluid or electrical power by means of power supply lines 37 depicted in
The optional pump assembly housing 70, manufactured from aluminum, stainless steel, or other suitable material, comprises a rectangular container which protects water pump assembly 10 from damage during operation and further provides protection of water pump assembly 10 from large foreign matter entering the pump impeller and causing damage while in use. This is accomplished by providing pump assembly housing 70 with a series of apertures 72 through which the water must flow into prior to being drawn into intake screen 22 of water pump 20 located therein. Apertures 72 are numerous enough not to impede the pump's performance and supply delivery and are positioned low enough on pump assembly housing 70 so as to allow the pump assembly to operate in as little as two inches of water as shown by numeral 74. One or more access apertures 78 may be positioned higher up on the housing for accessing the hydraulic pump or lines for maintenance or replacement.
As previously disclosed herein, pump housing 21 attaches to discharge elbow 61, which in turn attaches journally to a discharge pipe 60 running vertically up and out of the housing, parallel to water pump assembly 10. Discharge pipe 60 terminates at an upper end 62 through the top side 79 of pump assembly housing 70 and connects to discharge pipe 63 depicted in
In a further embodiment shown in
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 60/953003, filed on Jul. 31, 2007. The entire disclosure of the above application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60953003 | Jul 2007 | US |