The present invention generally relates to wireless communication systems using power amplifiers and remote radio head units (RRU or RRH). More specifically, the present invention relates to RRU which are part of a distributed base station in which all radio-related functions are contained in a small single unit that can be deployed in a location remote from the main unit.
Wireless and mobile network operators face the continuing challenge of building networks that effectively manage high data-traffic growth rates. Mobility and an increased level of multimedia content for end users require end-to-end network adaptations that support both new services and the increased demand for broadband and flat-rate Internet access. In addition, network operators must consider the most cost-effective solutions to expand network capacity and evolution towards 4G and beyond.
Wireless and mobile technology standards are evolving towards higher bandwidth requirements for both peak rates and cell throughput growth. Thee latest standards supporting this are HSPA+, WiMAX, TD-SCDMA and LTE. The network upgrades required to deploy networks based on these standards must balance the limited availability of new spectrum, leverage existing spectrum, and ensure operation of all desired standards. This all must take place at the same time during the transition phase, which usually spans many years.
Distributed open base station architecture concepts have evolved in parallel with the evolution of the standards to provide a flexible, cheaper, and more scalable modular environment for managing the radio access evolution. For example, the Open Base Station Architecture Initiative (OBSAI), the Common Public Radio Interface (CPRI), and the IR Interface standards introduced standardized interfaces separating the Base Station server and the remote radio head part of a base station by an optical fiber.
The RRU concept is a fundamental part of a state-of-the-art base station architecture. 2G/3G/4G base stations are typically connected to RRUs over optical fibers. Either CPRI, OBSAI or IR Interfaces may be used to carry data to the RRH to cover a three-sector cell. The RRU incorporates a large number of digital interfacing and processing functions. Traditionally, a multi-channel RRU means that multiple antennas are used, typically with two power amplifiers for two distinct bands. A duplexer is used to combine the two power amplifier outputs. Switches are used to isolate the transmit signals from the received signals as occurs in a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) modulation. To extent the prior art architecture to multiple bands (i.e., two or more bands) implementation would consist of adding additional channelized power amplifiers in parallel. The output of the additional power amplifiers is typically combined in an N by 1 duplexer and fed to a single antenna.
While conventional RRU architecture offers some benefits, RRUs to date are power-inefficient, costly and inflexible. Further, their poor DC-to-RF power conversion insures that they will have a large mechanical housing. In addition, current RRU designs are inflexible. As standards evolve, there is a need for multi-band RRUs that can accommodate two or more operating channels using a single wideband power amplifier. This creates an isolation problem at the individual receivers because the wideband power amplifier is always turned on. Isolation between the wideband transmitter and receivers is a problem with any modulation standard (HSPA+, WiMAX, LTE, etc.) when multi-band RRUs are developed using a single power amplifier. This is a common problem for all communication systems that utilize a wideband power amplifier in a multi-band scenario.
Accordingly, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a high performance and cost effective technique for implementing RRU systems that service multi-frequency bands. Further, the present disclosure enables a RRU to be field-reconfigurable, and supports multi-modulation schemes (modulation agnostic), multi-carriers, multi-frequency bands, and multi-channels. The present invention also serves multi-frequency bands within a single RRU to economize the cost of radio network deployment. In particular, the present invention resolves an isolation issue for a RRU with fewer power amplifiers than the number of operating frequency bands. Multi-mode radios capable of operating according to GSM, HSPA, LTE, TD-SCDMA and WiMAX standards and advanced software configurability are key features in the deployment of more flexible and energy-efficient radio networks.
The present invention achieves the above objects using techniques generally based on methods and techniques for maximizing the isolation between the transmitted signal (Tx Signal) and the received signal (Rx Signal). The Tx Signal may comprise noise generated at the output of the power amplifier or it may comprise an unwanted transmitter band leaking into the receiver. With the use of the present invention, conventional RRU's can be extended to a multi-band and multi-channel configuration. Multi-band means that more than one frequency bands are used in the RRU and multi-channel means that more than one output antenna is used. Various embodiments of the invention are disclosed.
An embodiment of the present invention utilizes duplexers, switches and circulators to maximize the isolation between the transmitter and receiver. Another embodiment of the present invention utilizes an interference Cancellation System (ICS) together with duplexers, switches and circulators.
Applications of the present invention are suitable for use with all wireless base-stations, remote radio heads, distributed base stations, distributed antenna systems, access points, repeaters, mobile equipment and wireless terminals, portable wireless devices, and other wireless communication systems such as microwave and satellite communications. The present invention is also field upgradable through a link such as an Ethernet connection to a remote computing center.
Further objects and advantages of the present invention can be more fully understood from the following detailed description taken in conjunction with the accompanying drawings in which:
The present invention is a novel RRU system that utilizes a wideband power amplifier. The present invention is a hybrid system of digital and analog modules. The interplay of the digital and analog modules of the hybrid system eliminates interference between the wideband power amplifier output and the receiver's inputs. The present invention, therefore, achieves higher Transmitter (Tx) to Receiver (Rx) isolation when using wideband power amplifiers with multiple frequency bands.
Referring first to
From the foregoing teachings, those skilled in the art will appreciate that the RRU system of the present invention enables the use of single wideband power amplifier for multi-band operation, which consequently saves hardware resources and reduces costs. The RRU system is also reconfigurable and field-programmable since the algorithms can be adjusted like software in the digital processor at anytime.
Moreover, the RRU system is agnostic to modulation schemes such as QPSK, QAM, OFDM, etc. in CDMA, TD-SCDMA, GSM, WCDMA, CDMA2000, and wireless LAN systems. This means that the RRU system is capable of supporting multi-modulation schemes, multi-frequency bands and multi-channels.
Although the present invention has been described with reference to the preferred embodiments, it will be understood that the invention is not limited to the details described thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.
This application claims the benefit of the following applications, attached as Appendices: U.S. patent application Ser. No. 12/415,676, filed Mar. 31, 2009, and through it U.S. Patent Appn Ser. No. 61/041,164, filed Mar. 31, 2008; which also claims the benefit of U.S. Provisional Patent Application Ser. No. 61/172,642, filed Apr. 24, 2009; U.S. patent application Ser. No. 12/603,419, filed Oct. 21, 2009, and through it U.S. patent application Ser. No. 12/108,507, filed Apr. 23, 2008, and through it U.S. Patent Application Ser. No. 60/925,577, filed Apr. 23, 2007; U.S. patent application Ser. No. 12/330,451 filed Dec. 8, 2008, and through it U.S. Patent Application Ser. No. 61/012,416, filed Dec. 7, 2007; U.S. patent application Ser. No. 11/961,969, filed Dec. 20, 2007, and through it U.S. Patent Application Ser. No. 60/877,035, filed Dec. 26, 2006, and U.S. Patent Application Ser. No. 60/925,603, filed Apr. 23, 2007; U.S. patent application Ser. No. 12/108,502, filed Apr. 23, 2008, and through it U.S. patent application Ser. No. 12/021,241, filed Jan. 28, 2008, and through that to U.S. Patent Application Ser. No. 60/897,746, filed Jan. 26, 2007. U.S. Patent Application Ser. No. 61/288,838, filed Dec. 21, 2009, entitled MULTI-BAND WIDEBAND POWER AMPLIFIER DIGITAL PREDISTORTION SYSTEM AND METHOD and naming as inventors Wan-Jong Kim, Kyoung-Joon Cho, and Shawn Patrick Stapleton. U.S. Patent Application Ser. No. 61/288,840, filed Dec. 21, 2009, entitled REMOTE RADIO HEAD UNIT SYSTEM WITH WIDEBAND POWER AMPLIFIER AND METHOD and naming as inventors Chengxun Wang and Shawn Patrick Stapleton. U.S. Patent Application Ser. No. 61/288,844, filed Dec. 21, 2009, entitled MODULATION AGNOSTIC DIGITAL HYBRID MODE POWER AMPLIFIER SYSTEM AND METHOD and naming as inventors Wan-Jong Kim, Kyoung-Joon Cho, Shawn Patrick Stapleton, Ying Xiao. U.S. Patent Application Ser. No. 61/288,847, filed Dec. 21, 2009, entitled HIGH EFFICIENCY, REMOTELY RECONFIGURABLE REMOTE RADIO HEAD UNIT SYSTEM AND METHOD FOR WIRELESS COMMUNICATIONS and naming as inventors Wan-Jong Kim, Kyoung-Joon Cho, and Shawn Patrick Stapleton, and Ying Xiao. All of the foregoing are incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
61288840 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12928933 | Dec 2010 | US |
Child | 14248597 | US |